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Abstract
Background: Automated protein function prediction methods are the only practical approach for assigning functions 
to genes obtained from model organisms. Many of the previously reported function annotation methods are of limited 
utility for fungal protein annotation. They are often trained only to one species, are not available for high-volume data 
processing, or require the use of data derived by experiments such as microarray analysis. To meet the increasing need 
for high throughput, automated annotation of fungal genomes, we have developed a tool for annotating fungal 
protein sequences with terms from the Gene Ontology.

Results: We describe a classifier called PoGO (Prediction of Gene Ontology terms) that uses statistical pattern 
recognition methods to assign Gene Ontology (GO) terms to proteins from filamentous fungi. PoGO is organized as a 
meta-classifier in which each evidence source (sequence similarity, protein domains, protein structure and biochemical 
properties) is used to train independent base-level classifiers. The outputs of the base classifiers are used to train a 
meta-classifier, which provides the final assignment of GO terms. An independent classifier is trained for each GO term, 
making the system amenable to updating, without having to re-train the whole system. The resulting system is robust. 
It provides better accuracy and can assign GO terms to a higher percentage of unannotated protein sequences than 
other methods that we tested.

Conclusions: Our annotation system overcomes many of the shortcomings that we found in other methods. We also 
provide a web server where users can submit protein sequences to be annotated.

Background
Our ability to obtain genome sequences is quickly out-
pacing our ability to annotate genes and identify gene
functions. The automated annotation of gene models in
newly sequenced genomes is greatly facilitated by easy-
to-use software pipelines [1]. While equally as important
as gene the gene models, functional annotation of pro-
teins is usually limited to an automatic processing with
sequence similarity searching tools such as BLAST, fol-
lowed by extensive manual curation by dedicated data-
base curators and community annotation jamborees.
There is increasing demand to quickly annotate newly
sequenced genomes so that they can be used for design-
ing microarray analyses, proteomics, comparative
genomics, and other experiments. It is clear that manual

gene function annotation cannot be scaled to meet the
influx of newly sequenced model organisms.

Two of the main considerations for developing a pro-
tein function classifier are the sources of evidence, or fea-
tures, used for assigning functional categories to the
proteins and the method used for defining the relation-
ships between the features and the categories. A number
of automated methods have been developed in recent
years that vary both in the sources of features used as evi-
dence for the classifier and in the classification algorithm
used to assign protein functions. The most common fea-
ture types rely on sequence similarity, often using BLAST
[2] to identify similar proteins from a large database.
Classifiers may also utilize protein family databases such
as PFAM and InterPro, bio-chemical attributes such as
molecular weight and percentage amino acid content [3],
phylogenetic profiles [4,5] transcription factor binding
sites [6] as sources of features. Several classifiers have also
been developed that utilize features from laboratory
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experiments such as gene expression profiles [7,8], and
protein-protein interactions [8,9].

A classifier is used to determine the relationships
between protein features and their potential functions.
The simplest examples are manually constructed map-
ping tables which represent the curator's knowledge of
the relationships between features and functional catego-
ries. One example is Interpro2GO, a manually curated
mapping, of InterPro terms to GO terms. The GOA proj-
ect relies on several such mappings to provide automated
GO annotations for users [10,11]. More sophisticated
classifiers have been developed using machine learning
algorithms which can automatically deduce the relation-
ships between the features and the functional categories
based on a set of previously annotated proteins that serve
as training examples. The use of machine learning algo-
rithms can improve the accuracy of the annotations by
discovering relationships between features and the func-
tional categories that were not discovered by human
curators [12-15]. In addition, they can be applied rapidly
and consistently to large datasets, saving many hours of
human curation.

Draft genome sequences and machine generated gene
models are becoming available for an increasing number
of fungal species but machine annotations of protein
functions are still limited. We found that pre-existing
functional classifiers are either not amenable to genome-
scale analyses or are trained only for a small range of taxa
[6,16,17]. In addition, many of the previously published
protein function annotation systems utilize features
obtained from laboratory experiments such as transcrip-
tional profiling or protein-protein interaction assays.
These methods cannot be applied to most fungal pro-
teomes since experimental data are not available.

Classifiers that employ features derived from multiple,
heterogeneous data sources usually transform the format
of each data type into a common format regardless of the
properties of each data source [17]. For example, an e-
value threshold might be applied to BLAST search results
instead of utilizing the e-value directly. The problems
with this approach are that the data from each data
source is weighted differently and that distinctions
between data points can be lost during transformation.
Meta-learning classifiers (meta-classifiers) overcome this
problem by training independent classifiers (called base-
classifiers) for each heterogeneous data source and then
use the decisions from the base-classifiers as features to
train a meta-classifier. In this way, weights of each data
source can be learned by the meta-classifier. Meta-learn-
ing classifiers are useful for combining multiple weak
learning algorithms and for combining heterogeneous
data sources.

We developed a functional classification system called
PoGO (Prediction of Gene Ontology terms) that enables

us to assign GO terms to fungal proteins in a high-
throughput fashion without the requiring evidence from
laboratory experiments. We incorporated several evi-
dence sources that emulate what a human curator would
use during manual protein function annotation and we
avoided features that require laboratory experiments or
that otherwise could not be applied to newly sequenced
genomes. During the course of our experiments, we dis-
covered that taxon-specific classifiers outperform classi-
fiers that are trained with larger datasets from a wide
array of taxa. We developed a taxon-specific classifier for
Fungi and we are currently using it to assign GO terms to
the proteomes of more than 30 filamentous fungi. We
provide as web application that enables users to annotate
proteins through their web browser.

Implementation and Results
Overview of the PoGO classifier
Protein functional annotation is a multi-label classifica-
tion problem in which each protein may be assigned one
or more GO terms. Various approaches may be applied to
solving multi-label classification problems, but the sim-
plest method, and the one we employed, is to consider
each GO term as an independent classification problem.
Thus, PoGO is actually a team of independent classifiers.
The disadvantage to this approach is that interdependen-
cies among the labels cannot be incorporated into the
classifier, thus potentially increasing error. The advan-
tage, however, is that a wide range of binary classification
algorithms may be applied to the problem. In addition,
this approach is more flexible in that different algorithms
and/or datasets may be used to train the classifier for
each GO term, enabling us to optimize the classification
of individual GO terms or groups of GO terms if neces-
sary. Individual GO terms or groups of GO terms may
also be re-trained, as new training data of evidence
sources become available. PoGO consists of four base
classifiers, each of which utilizes distinct data sources,
and a meta-classifier for combining the outputs from the
base classifiers into a final classification.

Design and evaluation of the base classifiers
InterPro
InterPro terms [18] are defined in the InterPro database
which is a curated protein domain database that acts as a
central reference for several protein family and functional
domain databases, including Prosite, Prints, Pfam, Pro-
dom, SMART, TIGRFams and PIR SuperFamily. We have
previously showed that InterPro is an important source of
features for identifying GO terms for proteins [19,20].
Using the InterProScan application [21], we can obtain
InterPro terms for unannotated proteins. Using Inter-
ProScan, we identified 3339 InterPro terms in the fungal
protein dataset. We employed Support Vector Machines
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(SVM) algorithm as the classifier as described previously
[19]. For each GO term, we construct a dataset that is
comprised of all proteins that are annotated with the GO
term (the positive class) and all proteins that are not
annotated with the GO term (the negative class). Since
the data sets are highly imbalanced, we perform under-
sampling of the negative class as described previously
[19]. This step removes members of the negative class so
that the training dataset will have the same number of
proteins as the positive class. We also apply Chi-square
feature selection to remove features from the classifier
that do not contribute to the accuracy of the classifier.
Previous results have shown that these steps improve
classification accuracy and reduce learning time [19].
Sequence Similarity
Several previous methods including GoFigure [14], GOb-
let [22], and OntoBlast [23] use sequence similarity based
on BLAST [2] results as features. GOAnno [24] is also an
extension of the similarity-based annotation using hierar-
chically structured functional categories. In this example,
the annotations assigned to the BLAST hits are used as
features. We employ a similar approach. The feature set is
comprised of hit obtained in a BLAST search of a data-
base of GO annotated proteins (excluding machine anno-
tated terms) using an expect threshold (E-value) of 1-10.
The BLAST database was constructed by extracting pro-
teins from the taxonomic group Fungi from the UniProt
database. The resulting feature set contains 3182 features.
We employ undersampling and feature selection as
described previously, and also utilize the SVM algorithm
to train the classifier.
Biochemical properties
Other authors have previously shown that biochemical
properties of proteins, such as a protein's charge, amino
acid composition, are useful for functional classification
[25]. The properties that we use in this study include
amino acid content, molecular weight, proportion of neg-
atively and positively charged residues, hydrophobicity,
isoelectric point and amino acid pair ratio. We use the
pepstat and compseq programs in EMBOSS [26] to com-
pute the biochemical properties based on the amino acid
sequence of each protein. Unlike the previous datasets,
the biochemical properties are not sparse, and are
numeric rather than binary. We compared various forms
of undersampling and learning methods and found that
with this dataset, the Adaboosting method using a linear
classifier [27] and using an unbalanced dataset provided
the best accuracy (Table S1, Additional File 1).
Protein Tertiary Structure
The fourth feature set is protein structure as computed
using the HHpred program [28] which is used for protein
homology detection and structure prediction using the
SCOP database [29]. We use the top 10 selected tem-
plates as features and the remaining undefined templates

are set to zero for each protein. This dataset is comprised
of 8494 binary features. As described previously, we use
the SVM algorithm combined with dataset undersam-
pling to create the classifier.

Design and evaluation of the meta-classifier
The meta-classifier uses the classification decisions from
the base classifiers as its inputs (Figure 1). To develop our
meta-classifier, we used the Combiner meta-learning
strategy [30,31] with a minor modification. Meta-learn-
ing strategies such as Combiner are trained using base-
level classifiers in which each base-level classifier has
been trained using the same input data and different clas-
sification algorithms. In our case, we vary both the type
of classification algorithm and the type of features used
for training, although the set of proteins used to derive
that used to train each of the base-classifiers are identical.
An overview of the training and classification system is
shown in Figure 1. In the case of Combiner, the training
dataset T is divided into two equal parts T1 and T2. The
base-level learning algorithms are trained using T1 and
then the resulting classifiers are used to predict func-
tional categories for T2. Then the process is reversed and
T2 is used for training and T1 is used for classification.
The predictions are then used as features for the meta-
classifier. To evaluate the performance of the set of base-
classifiers together with the meta-classifier, we perform
ten-fold cross validation by constructing ten datasets in
which 10% of the proteins are held out of the training
dataset. Thus, T1 and T2 each contain 45% of the training
proteins and the remaining 10% are used for evaluation,
in each round of cross validation. We tested two statisti-
cal pattern recognition algorithms, Naíve Bayes and Sup-
port Vector Machines (SVMs), as meta-classifiers. Since
the meta-data are highly imbalanced, we created a bal-
anced dataset by under-sampling as described previously
[19] and compared the performance of Naïve Bayes and
SVM classifiers trained with both datasets (Table 1). The
Naive Bayes classifier trained using the unbalanced data-
set provided the best overall performance so it was
selected as the meta-classifier.

Performance evaluation
Performance evaluation of protein function classifiers
performance is a complex issue, since no standard meth-
ods exist [32]. Authors typically utilize standard machine-
learning metrics such as sensitivity and specificity but the
manner in which they are applied vary, which prevents us
from directly comparing the performance of classifiers by
comparing the performance values reported in publica-
tions. Most authors compute performance statistics by
first calculating the statistics for each protein individually,
and then calculating an average over all of the tested pro-
teins. In a traditional machine-learning approach, perfor-
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mance statistics are calculated for each functional
category. The issue is further confounded since the test
proteins may be annotated with functional categories that
were not within the repertoire of categories that can be
predicted by the classifier, and these categories may or
may not be treated as classification errors during perfor-
mance evaluation. Furthermore, the set of proteins used
for evaluation is not consistent among all of the protein
function classifiers. Authors usually employ cross-valida-
tion in order to evaluate their classifier using hold-out
sets from the training data set. Standard protein data sets
have been developed for annual competitions, such as the
one that is often held in conjunction with the Annual
International Conference on Intelligent Systems for
Molecular Biology (ISMB) but these data sets are not use-
ful for taxon specific classifiers such as PoGO.

Since we train an individual classifier for each func-
tional category, we evaluated the performance of each
classifier individually and then computed an arithmetic

mean of all the classifiers. All performance metrics were
computed using 10-fold cross validation. When we com-
pare the performance of PoGO to other GO term classifi-
ers (AAPFC [19], MultiPfam2GO [33], Gotcha [15],
GOPet [13], and InterPro2GO [10]), we use a hold-out set
of 71 proteins (1% of our original dataset) that were not
used in the training. We calculate the performance of
each protein individually, and then report the overall
average values. The various classifiers that we tested were
all trained using different data sources and were devel-
oped to annotate different sets of GO terms. As perfor-
mance metrics, we use sensitivity, specificity and F-
measure. Sensitivity is the proportion of GO term anno-
tations in the training dataset that were correctly anno-
tated by the classifier, and specificity is the proportion of
available GO term annotations not assigned to the pro-
teins that were also not assigned to the protein by the
classifier. We also use F-measure to provide a single over-

Figure 1 Overview of the PoGO training and evaluation procedure. The PoGO classifier uses a Combiner configuration in which two base-level 
classifiers are trained on 45% of the training proteins and evaluated on another 45% of the training proteins. The remaining 10% of the training pro-
teins are used to evaluate the meta-classifier. This configuration is repeated for each of the Gene Ontology terms trained in PoGO.
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all metric for comparing the performance of various clas-
sifiers.

Considering only the base classifiers, the InterPro term
classifier had the highest average F-measure value (Table
1). Surprisingly, the BLAST classifier had low F-measure
as well as the lowest specificity, indicating that it results
in a large number of false-positive annotations. The F-
measure values of the Naïve Bayes meta-classifiers are
higher than the base-classifiers (Table 1). The highest F-
measure for a meta-classifier (0.3335) was obtained from
the Naïve Bayes meta-classifier using the unbalanced
dataset. Thus, the meta-classifier trained with the Naïve
Bayes algorithm using the unbalanced dataset provides
superior results over any single classifier and was used for
further experiments.

The classifiers for GO terms that performed poorly
were removed by excluding those that have an F-measure
below an arbitrary threshold. We tested a range of thresh-
old values and compared the performance to our previ-
ous classifier Automated Annotation of Protein

Functional Class (AAPFC) [19] which only uses InterPro
terms as features. We also compared the performance to
MultiPfam2GO [33] a classifier that can assign GO terms
to proteins on the basis of protein domains that are
described in PFAM. PoGO consistently outperformed
AAPFC over the range of threshold values tested (Table
2). The F-measure values obtained with PoGO were com-
parable to, although slightly lower than, those obtained
for MultiPfam2GO. For example, at a threshold value of
0.7, the average F-measure for MultiPfam2GO [33] was
0.99 while the F-Measure for PoGO was 0.98 (Table 2).
PoGO was able to assign GO terms to considerably more
proteins than either AAPFC or MultiPfam2GO. We attri-
bute this to the additional feature types, such as sequence
similarity and protein structure that were included in the
dataset. For proteins that to not have matched to the
InterPro database, these additional feature types are often
times still assigned to the protein, and can be sufficient
for predicting the GO terms.

Table 1: Performance comparison of the base and meta classifiers.

Classifier Sensitivity Specificity F-Measure

Base Classifiers InterPro 0.1893 0.9682 0.2456

BLAST 0.0251 0.8547 0.0471

Biochemical properties 0.0099 0.9213 0.0173

Protein Structure 0.0795 0.9599 0.1304

Meta-classifiers Naïve Bayes/
Unbalanced

0.2620 0.9982 0.3355

Naïve Bayes/Balanced 0.0629 0.9358 0.1140

SVM/Unbalanced 0.0011 0.9273 0.0022

SVM/Balanced 0.0462 0.3696 0.0052

Performance represents an average of all classifiers trained with each data set and is measured by 10-fold cross validation.

Table 2: Overall classifier performance after excluding poorly performing GO term classifiers.

Threshold 
F-measure

F-Measure Percentage of Proteins Annotated

AAPFC MultiPfam2GO PoGO AAPFC MultiPfam2GO PoGO

0.7 0.8955 0.9903 0.9814 1.8 2.8 25.4

0.6 0.8317 0.9705 0.9336 3.8 5.2 31.0

0.5 0.6835 0.9169 0.7518 9.8 10.7 54.3

0.4 0.6619 0.8861 0.6751 17.6 13.4 65.6

0.3 0.5353 0.8520 0.5214 34.9 15.6 86.3

0.2 0.4396 0.5835 0.4456 58.1 28.2 96.2

Properties were computed after removing individual GO term classifiers with an F-measure below the indicated threshold.
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We also compared the performance of PoGO to
AAPFC, MultiPfam2GO as well as to Gotcha [15], GOPet
[13], and InterPro2GO [10] by randomly holding out 1%
of the training dataset (71 proteins) prior to training
PoGO, and then using the hold-out set to evaluate the
performance of all the classifiers. As shown in Table 3,
PoGO outperforms the other classifiers by a considerable
margin.

Evaluation of taxon-specific classifiers
Since our goal is to develop a classifier for fungal proteins
the previous experiments were performed with a training
dataset comprised only of proteins from fungi. Larger
training datasets generally result in more robust classifi-
ers so we evaluated the performance of PoGO when non-
fungal proteins are included in the training data. We
developed a dataset called Fungi-expanded by adding
non-fungal proteins to the Fungi dataset that contain at
least one GO term that is found in the Fungi dataset. We
also prepared another dataset called UniProt that
includes all GO term-annotated proteins in the UniProt
database regardless of the taxonomic origin. In all cases,
we removed GO terms from the proteins that were anno-
tated with the evidence code IEA (Inferred from Elec-
tronic Annotation), and those that had less than 10
representative proteins. Among these datasets, Fungi is
the smallest. The UniProt set is composed of 119,016
proteins and 2826 GO terms, which is approximately 17
times larger than Fungi in proteins and 7 times larger in
GO terms (Table 4). In a similar manner, we prepared
three more taxon-specific datasets representing the taxo-
nomic groups Bacteria, Viridiplantae, and Vertebrata.

We compared the performance of classifiers trained
with each of these data sets using 10-fold cross validation
as described previously. Because the training and cross-
validation time for all the datasets is prohibitively long we
performed these experiments using the InterPro base
classifier. We also measured the performance of the
Interpro2GO mapping by using it to assign GO terms to

proteins and measuring performance with Sensitivity,
Specificity, and F-measure. All of the PoGO classifiers
outperformed the Interpro2GO mapping (data not
shown). Adding additional non-fungal proteins to the
fungal specific GO terms (the Fungi-expanded dataset)
added more than three times the number of GO terms
than the Fungi dataset with only a slight reduction in per-
formance (Table 4). In all cases, the classifiers trained
with taxon specific datasets performed better than the
classifier trained with the UniProt dataset. Since the
Fungi dataset is significantly smaller than the UniProt
dataset, we reasoned that the improved performance
could be due to overfitting. Overfitting can occur when
the training dataset is very small, or the number of fea-
tures in the model is very large. An overfitted classifier
can perform well when the instances (proteins in our
case) are similar to the ones in the training data, but per-
form poorly when presented with instances that are not
similar to the training data. To determine whether the
improved performance is due to over-fitting, we trained
PoGO classifiers with 10 smaller datasets containing the
same number of proteins as the Fungi dataset. These sub-
samples were prepared by randomly selecting proteins
from the UniProt dataset. If the classifier for the Fungi
dataset was overfitted, we would expect that it would
have better performance than the classifiers derived from
the sub-sampled datasets. The average F-measure of the
subsampled classifiers is 0.4135 while the F-measure for
the Fungi classifier is 0.3101, indicating that the Fungi
classifier is not subject to overfitting.

An important point to consider is that each GO term is
trained independently, and the number of proteins that
are used to train each GO term classifier varies consider-
ably, depending on the availability of GO annotated pro-
teins in UniProt. If small data sets lead to overfitting, then
we would expect to see a correlation between data set size
and classifier performance [34], where classifiers trained
with a smaller number of proteins would tend to have
higher performance. We compared the performance vs.

Table 3: Performance comparison of GO annotation methods using 71 randomly selected proteins.

Sensitivity Specificity F-measure Percentage of 
proteins annotated

PoGO 0.3129 0.4101 0.3948 93.0

InterPro2GO 0.0971 0.0938 0.0938 15.5

AAPFC 0.2623 0.3431 0.2217 91.5

Gotcha 0.1182 0.1980 0.1072 100

MultiPfam2GO 0.0945 0.6425 0.1127 64.8

GOPet 0.2080 0.2752 0.1983 100

The evaluation was performed using 71 (1% of the original training dataset) randomly selected proteins that were held out of the training 
dataset. All GO terms annotated to the evaluation proteins were considered when computing the performance metrics.
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dataset size for GO terms that were present in the taxon
specific and the randomly undersampled datasets but
found no correlation in any dataset (Table S2, Additional
File 1). The taxon specific datasets may be considered to
be a form of data partitioning that removes distantly
related proteins from the data. This, in effect, would
cause GO terms that are never found within a taxonomic

group to be removed from the classifier, thus the error of
the individual GO term classifier does not contribute to
the overall error of the system.

Web Server
We have developed a web server that enables users to
annotate protein sequences using the taxon specific clas-

Figure 2 Flowchart of the PoGO web server. Four different sequence analysis programs converts data to InterPro term, Blast result, Bio-chemical 
property and protein structure information, which is represented by the gray and black box. After the transformed data applied to the PoGO training 
model, we can get the final GO annotation and its supplementary information in each query protein.
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Table 4: Summary statistics and performance evaluation of the taxon-specific classifiers.

Dataset Proteins InterPro 
terms

GO terms Sensitivity Specificity F-measure

UniProt 119016 8414 2826 0.1149 0.9976 0.0893

Fungi 7093 3331 459 0.2680 0.9745 0.3101

Fungi-
expanded

70205 5438 1390 0.2304 0.9875 0.2611

Bacteria 3282 2255 115 0.5693 0.9786 0.5691

Viridiplantae 5669 2087 285 0.3808 0.9840 0.3789

Vertebrata 16079 1706 1232 0.0939 0.9555 0.1446

Performance comparison of the InterPro base-classifier on taxon-specific and the UniProt training datasets. No F-measure threshold was 
applied while computing the performance metrics.
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sifiers described in this manuscript (Figure 2). The classi-
fication results are stored on the server in flat files, and
are presented to the user in a table that contains the
annotated GO terms as well as and InterPro terms and
links to a detailed page for each protein. The detail page
contains a graphical view of the InterPro annotations and
along with a list of predicted GO terms and descriptions
including the category. In addition, the tab-separated
data files of the GO annotations are available for down-
load, enabling to import of the data into other programs.
The classification algorithms, undersampling, feature
selection and the computation of performance metrics
were performed in MATLAB [35] using the pattern rec-
ognition toolbox [36]. The web application, as well as sev-
eral data handling scripts, were written in php. The
source code for the web server have been released under
the terms of the BSD license and is available in Additional
File 2 as well as on the PoGO home page.

Conclusions
In this paper, we describe a meta-classifier for assigning
GO terms to proteins using heterogeneous feature sets.
By using multiple, heterogeneous data sources, we devel-
oped a classifier that offers improved accuracy compared
to previously reported annotation methods. More impor-
tantly, this system can assign GO terms to a higher pro-
portion of proteins than annotation methods that rely
only on one feature type. We also found that taxon-spe-
cific classifiers have significantly better performance than
species independent systems. Functional annotations
provided by PoGO are being used for fungal comparative
genomics projects in our research group. We also provide
a public web server where users can annotate protein
sequences.
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