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Abstract

Background: De Bruijn graphs are a theoretical framework underlying several modern genome assembly
programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to
analyze the global repeat structure of prokaryotic genomes.

Results: We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an
upper-bound on the performance of genome assemblers for de novo reconstruction of genomes across a wide
range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be
reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible
genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).

Conclusions: Our results improve upon previous studies on the feasibility of assembly with short reads and
provide a comprehensive benchmark against which to compare the performance of the short-read assemblers
currently being developed.

Background
Recently, new technologies developed by 454 Life
Sciences [1], Illumina [2], ABI/SOLiD [3], Helicos [4],
and others can sequence large quantities of DNA in
only hours. Instead of approximately 1000 nucleotide
reads common with traditional Sanger sequencing, these
technologies generate reads of only about 25-400 conse-
cutive nucleotides. Further, with traditional sequencing
techniques, most of the ~ 1000 nt reads come in pairs,
separated by an approximately known distance spanning
thousands or tens of thousands of nucleotides. These
pairs provide long-range information to help order the
reads, but such long-range pairing is not yet widely
available or is considerably more expensive. The next
generation sequencing technologies with paired-end
protocols are generally limited to much more closely
spaced pairs, typically separated by at most a few hun-
dred or a few thousand nucleotides. Nevertheless, these
limitations are mitigated by much higher throughput
(approximately 4 hours per 500 × 106 nucleotides of
DNA for 454-based sequencing, for example) and the

resulting increased redundancy that comes from the
ability to cheaply sample the same genome many times
over. However, shorter read lengths lead to a much
more computationally challenging assembly problem
because they provide less information to determine the
location and structure of repetitive subsequences. It is
therefore important to understand the limits and pro-
mise of these technologies.
In this paper, we study an idealized instance of the

short-read assembly problem and attempt to estimate
the ability of these technologies to reconstruct genomes.
In particular, for a given read length k, we assume that
we are given all length-k substrings of a genome g as
well as the number of times they occur. This is an idea-
lization in many respects. First, in practice not all
length-k substrings will be obtained. Second, many of
the substrings returned by the sequencing technology
will contain errors (indels or substitutions). However,
the repetitive sampling possible with the faster and less
expensive sequencing reduces these two problems some-
what. Furthermore, the topic of error correction on
short-read sequences is itself an active area of research
(see, e.g. [5]). Third, sequencing technologies return
substrings of both g and the reverse complement of g.
Here, we assume instead that the reads are all oriented
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in the forward direction. Lastly, sequencing technologies
do not directly provide the number of occurrences of
each length-k substrings. Instead, the number of occur-
rences must be estimated from statistics computed on
the population of redundantly sampled length-k sub-
strings. For example, sequences observed twice as often
as expected probably occur twice in the genome.
Despite these simplifying assumptions, it is important

to conduct an analysis of the fundamental challenge of
assembly – the repeat structure of the genome – free of
the biases or limitations of any particular sequencing
technology. These technologies are advancing at a rapid
rate, and while the sequencing error rate or read length
may improve from one model of sequencer to the next,
the repeat structure of a genome is fixed. Our analysis
shows the fundamental limits of assembly based on just
one unavoidable parameter, the length of the reads,
which in turn determines the length of confounding
repeats. Thus we can give an upper bound on how well
an assembler could possibly reconstruct a genome given
reads of a certain length. In practice, an assembly of real
data may fail to reach this limit by a considerable mar-
gin, but we can be confident that no assembler could
surpass this limit without risking misassemblies.
Furthermore, our analysis also gives an upper bound on
assembly with paired-end sequences, which we can con-
servatively model as extremely long reads, because reads
of length X have strictly more information than paired-
end sequences with insert size X.
Similar string reconstruction problems have been con-

sidered in the past [6,7]. Rubinov and Gelfand [8] con-
sidered the problem of reconstructing a string given the
set of k-long substrings and a list of all pairs of k-long
subsequences (i, j) such that i precedes j at some dis-
tance in the string. Because they have complete, long-
range precedence data, the problem is different than
that which we consider here. Others [7] have considered
the problem of reconstructing a string from its length-k
substrings taking their multiplicities {ci} as unknown
(rather than as input as we do here). The problem of
finding the shortest superstring containing a set of
strings has also been extensively studied (see, e.g. [9]).
Of course, work in traditional sequence assembly has
produced many algorithms and heuristics (e.g. [10-12])
for solving similar problems in practice. Newer assem-
blers are also being developed to handle short-read data
(e.g. [5,13-18]).
In this paper, we explore the repeat structure of a

large collection of prokaryotic genomes at different
levels of resolution. We define a measure of the com-
plexity of a genome in terms of the number of possible
different reconstructions with the same repeat structure
for repeats longer than a given threshold (read length).
Our measure complements previously proposed

complexity measures that estimate the “repetitiveness”
of a genome’s sequence at a local scale (linguistic com-
plexity [19]) or global scale (index of repetitiveness [20])
and focuses specifically on the question of how repeats
affect the ability to reconstruct a genome from reads of
a given length. For example, our method would distin-
guish between the difficulty of assembling 3 repeats
each in 2 copies (8 different genome reconstructions)
from the difficulty of assembling one repeat with 6
copies (720 different reconstructions) while a simple
repeat counting method might not. Furthermore, global
repeat analysis might fail to take into account the rela-
tive positioning of the repeats. We reveal that most of
the repeat complexity of the majority of organisms is
caused by intergenic repeats or mobile genetic elements.
We conclude from this analysis that most genes in a
prokaryotic organism can, in principle, be reconstructed
from reads as short as 25 nt. This is in contrast with the
difficulty even a small number of repeats poses on the
reconstruction of the entire genome.
This study represents a first comprehensive empirical

investigation of the limits of the information that can be
extracted from short reads encoded within de Bruijn
graphs. In this context, a de Bruijn graph for length-k
has a node for each (k - 1)-substring in the read set and
an edge connecting two nodes if their (k - 1)-mers are
consecutive in some read. The de Bruijn graph has
become a popular framework for genome assembly of
short reads, since the graph structure captures the
sequence and repeat composition of the genome, with-
out requiring an expensive explicit overlap computation
between reads. Here, we quantify how easily prokaryotic
genomes can be reconstructed from short-read data by
using several previously known combinatorial results to
compute the number of strings consistent with length-k
substrings extracted from 375 organisms. Using these
exact combinatorial results, we improve upon previous
estimates of assembly complexity [15,21] that relied pri-
marily on the distribution of intra-repeat distances. We
also derive another estimate for the complexity of the
assembly problem by computing an upper bound on the
N50 contig size that is achievable, even with mate-pair
information. (The N50 contig size is a widely used sta-
tistic for evaluating the quality of a proposed assembly.)
These more accurate estimates of the complexity of the
reconstruction problem permit a more realistic assess-
ment of the challenges of the assembly problem and
provide a benchmark against which new assembly meth-
ods can be evaluated.

Methods
Constructing the de Bruijn graph
The de Bruijn graph derived from length-k reads of a
genome g contains a node for each (k - 1)-mer present
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in the genome, and a directed edge u ® v for every
instance where the (k - 1)-mer represented by v occurs
immediately after the (k - 1)-mer for u. In other words,
there is an edge if u occurs at position i and v occurs
starting at position i + 1. These edges can be obtained
by considering every k-mer present in the genome and
connecting the node for its (k - 1)-prefix to the node for
its (k - 1)-suffix. Crucially, the de Bruijn graph can be a
multigraph, with parallel edges between nodes. Self-
loops are also permitted. Note that this definition of a
de Bruijn graph differs from the traditional definition
described in the mathematical literature in the 1940s
[22] that requires the graph to contain all length-k
strings that can be formed from an alphabet (rather
than just those strings present in the genome). The
more general formulation of the de Bruijn graph used in
this paper, and the closely related string graph, are com-
monly used in the sequence assembly literature [23-26]
under the same name, and we follow the same conven-
tion. Throughout this paper, we use s, t, u, v and w to
denote both nodes within the de Bruijn graph and the
DNA sequences they represent. The de Bruijn graph
encodes all the information available from the input of
the list of all k-mers of g. Because an edge u ® v only
occurs if v follows u somewhere in the genome g, we
must traverse every edge to reconstruct the genome,
and thus the correct genome sequence corresponds to
an Eulerian path through the de Brujin graph [27].
We classify the nodes of a de Bruijn graph as decision

and non-decision nodes. Decision nodes–those with
more than one predecessor or more than one succes-
sor–are the primary complication in reconstructing the
correct genome sequence from a de Brujin graph as
they introduce ambiguity in possible graph traversals.
Non-decision nodes (with at most one successor and at
most one predecessor) correspond to sections of the
graph that can be unambiguously reconstructed.
Simplification of the de Bruijn graphs
We applied the following graph transformations to the
idealized de Bruijn graph constructed from the genome
sequences. Each transformation preserves the entire set
of paths consistent with the graph. See Figure 1 for
illustrations of the various transformations. Successively
applied, these transformations simplify the graph
towards the smallest equivalent graph possible – the
most parsimonious graph structure that encodes the full
information contained in the set of k-mers.
We use the term path to be an ordered sequence of

edges. If the path starts and ends at the same node, it is
a circuit. A trail is a path that is not a circuit. If the
nodes s and t with unequal in- and out-degrees exist
then the de Bruijn graph admits an Eulerian trail start-
ing at s and ending at t, otherwise it contains only
Eulerian circuits. Either is possible for graphs obtained

from genomic sequence data: a circular chromosome
necessarily yields a graph with circuits, while a linear
genome may or may not, depending on whether the 3’-
most k - 1 nucleotides equal the 5’-most.
Compressing paths
If u ® v is an edge, we say u is a predecessor of v and v
is a successor of u. If a node u has a successor v, and if
u is the only predecessor of v, then nodes u and v can
be merged into a single node that has the predecessors
of u and the successors of v (Figure 1a), similar to pre-
vious approaches [14-17]. This transformation, called
path compression, can be made even if there are multi-
ple, parallel edges from u to v. Prior to path compres-
sion, there is a node for each (k - 1)-mer that appears in
the genome, and the number of edges equals the gen-
ome length. Following path compression, the graphs
dramatically decrease in size as non-branching chains
are replaced by single nodes.
Path compression is a standard, natural technique, but

additional simplifications are also possible for reducing
the size of the genome graph even further. Decision
nodes–those with more than one predecessor or more
than one successor–are the complication in extracting
the correct genome sequence from a genome graph. We
distinguish three types of decision nodes: forward deci-
sion nodes have more than one successor, but a single
predecessor; backward decision nodes have more than
one predecessor, but a single successor; and full decision
nodes have both more than one predecessor and more
than one successor. We refer to forward and backward
decision nodes as half decisions nodes.
Compressing tree-like regions
Any Eulerian graph G can be decomposed into simple,
edge-disjoint cycles. (A simple cycle is one that uses
each node at most once.) From this decomposition, a
cycle graph cycle(G) can be constructed with a vertex
for each simple cycle in G and an edge connecting
cycles if they share a node in the Eulerian graph. If
cycle(G) is a tree, then G only has a single Eulerian tour
[28]. More generally, if an induced subgraph of cycle(G)
is a tree, then the corresponding region has a unique
traversal in any Eulerian tour. Thus, these tree-like
regions can be collapsed into a single node labeled by
the sequence constructed from that unique tour (Figure
1b).
Rather than explicitly constructing the cycle graph, in

practice it is more efficient to recursively collapse the
tree-like regions, starting with the leaves. Leaves can be
identified by pairs of nodes u, v for which u is both the
only predecessor and only successor of v, and u has
only a single in-edge and a single out-edge that are not
adjacent to v. In this case, the sequence of v can be
appended to u, and v can be eliminated. A node u that
has one or more self-loops and has only one in- and
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one out-edge that are not self-loops is also a leaf, and its
self-loops can be collapsed into u. After collapsing a
leaf, we perform any newly possible path compressions
near the collapsed node.
Splitting half decision nodes
The graph can be modified by splitting forward and back-
ward decision nodes into several new nodes without
changing the strings represented by the graph (Figure
1c). If v is a forward decision node with predecessor u
and successors w1, ..., wm (m ≥ 2) then node v can be
replaced by m new nodes v1, ..., vm. Edges vi ® wi are
added with multiplicity equal to the multiplicity of the
edge v ® wi. Backward decision nodes can similarly be
split. Splitting a forward decision node in this manner
may cause its predecessor to become a forward decision
node, which can subsequently be split. In this way we can
“unzip” a sequence of half decision nodes, thereby shift-
ing the decision point in the direction of the unique pre-
decessor/successor. While this transformation increases
the number of nodes, the new nodes vi can often be
eliminated by an application of path compression.

Exploiting edge multiplicities
If, at each decision node, each incoming edge could be
correctly paired with an outgoing edge, there would be
no difficulty in reconstructing the correct genome. Typi-
cally, without additional information, it is not possible to
make any such pairings. In some cases, however, the
edge multiplicities can be used to identify a predecessor
of a node that must be matched with a successor (Figure
1d). In particular, let u ® v ® w be three nodes in a path
such that the edge u ® v has the highest multiplicity
among edges entering v and v ® w has the highest multi-
plicity among edges leaving v. Let cu and cw be the multi-
plicities of the edges u ® v and v ® w, respectively. If u
≠ w, we can infer that the path u ® v ® w must be part
of any Eulerian tour if cu> d+(v) -cw, where d+(v) is the
number of edges leaving v. In other words, all the incom-
ing edges coming from u cannot be matched without
using at least one outgoing edge adjacent to w (using rea-
soning similar to the pigeonhole principle). This reason-
ing can be used to reconstruct longer subsequences of
DNA, but because it generally increased the size of the
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Figure 1 Graph Transformations. Each transformation modifies the genome graph such that the set of sequences consistent with the graph is
unchanged. The nodes duplicated or removed by the simplification are shown as hollow circles. (a) Standard path compression collapses
adjacent nodes u and v if v must follow u and u must precede v. (b) Portions of the cycle graph that are trees (shown as lines connecting
square nodes) represent sections of the genome graph with a single solution. These can be collapsed into a single node connected to the rest
of the sequence graph H. (c) Forward and backward half-decision nodes (those with either a single predecessor or a single successor) can be
split into several nodes, which can usually be eliminated with path compression. (d) We can infer a path between a predecessor and successor if
reasoning akin to the pigeonhole principle implies that at some point that predecessor must immediately precede that successor. (e) Some non-
decision nodes u cannot be eliminated via path compression because both their predecessor and successors are decision nodes. In these cases,
we can eliminate the non-decision node, and several edges, by replacing u with edges labeled with the sequence represented by u.
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final graphs due to interactions with the other simplifica-
tion techniques described here, we do not consider this
type of simplification further in this paper.
Converting non-decision nodes to edges
Repeated application of these transformations typically
leads to many three-node paths u ® v ® w where u is
the only predecessor of v and w is the only successor of
v but, because there are other edges incident to u and
w, the path cannot be collapsed. We can, however,
replace node v with an edge u ® w labeled with the
sequence of v (Figure 1e). Following path compression
and this transformation, the graph contains either just a
single node or only decision nodes that have both more
than one predecessor and more than one successor.
Maximal compression
The simplification procedures aim to: (i) coalesce multi-
ple adjacent non-decision nodes into single nodes or
edges; and (ii) resolve some of the apparent ambiguity
represented by the decision nodes. In order to estimate
the smallest graph that is equivalent to the input de
Bruijn graph, we apply each of these transformations in
turn. Because several of the transformations can lead to
opportunities for new applications of other transforma-
tions, the order in which we apply them is important.
We start by performing path compression. Then, all
tree-like regions of the graph are collapsed, followed by
another round of path compression. We then split all
backward decision nodes, then all forward decision
nodes, and perform the path compressions that have
been newly made possible. Finally, we convert non-deci-
sion nodes into edges. These techniques reduce, on
average, the number of edges in the de Bruijn graphs by
a further 65% compared with performing only path
compression.
Counting words consistent with de Bruijn graphs
In 1975, J.P. Hutchinson and H.S. Wilf [29,30] gave an
expression that can be used to compute the number of
unique words consistent with a de Bruijn graph. The
following theorem, from [30], gives an expression for
the number of possible reconstructions that are consis-
tent with the de Bruijn graph. Let d-(u) and d+(u) be,
respectively, the in- and out-degrees of vertex u (where
the graph will be clear in context). Because the de
Bruijn graph is Eulerian, d+(u) = d-(u) for all u with the
possible exception of two nodes s and t for which d-(s)
= d+(s) - 1 and d+(t) = d-(t) - 1.
Theorem 1 (Adapted from [30]) Let A = (auv) be the

adjacency matrix for an n-vertex de Bruijn graph G,
with both auv > 1 and self-loops allowed. If d+(v) = d-(v)
for all v, then choose a vertex t arbitrarily, otherwise
pick the unique t such that d+(t) = d-(t) - 1. Finally, let
ru = d+(u) + 1 if u = t or ru = d+(u) otherwise. Then the
number of words consistent with G that can be spelled
ending with node t is given by
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where L is the n × n matrix with ru-auu along the
diagonal and -auv in entry (u, v).
The values ru in Theorem 1 are the number of times

that the sequence represented by u must appear in the
output word, given that path for the word ends at node t
and thus that the output word ends with the sequence
represented by t. When traversing the graph, we output u
when we exit node u, except for the last node on a trail
or circuit which must also be output when it is entered
for the last time so that the k-mer associated with the last
traversed edge is output. See [29,30] for a proof of the
above theorem. Briefly, it is proved by an extension of
the “BEST” theorem [31-33] for counting the number of
Eulerian circuits modified to correct for multiple edges
and for the fact that we allow Eulerian trails in addition
to only circuits. For example, the sequence q = “sababa-
babab” yields a three node de Bruijn graph when k = 5.
For this graph, the number of tours is 3!3! = 36 but they
all yield the same sequence. By increasing the length of q
in this example, we can increase the number of Eulerian
circuits arbitrarily, while maintaining the property that
all circuits reconstruct a single word.  (G, t) is compu-
table in polynomial time.
To correctly apply Theorem 1 to the short-read assem-

bly problem, we have to consider the cases of linear and
circular genomes separately. In the typical circular case,
the graph Dk(g) will contain Eulerian circuits, and any
node can be chosen as the final node t. Theorem 1 will
count the number of distinct linear words q ending at t. If
t occurs more than once in the genome but there is some
unique sequence of DNA in the genome, then cycling q to
end at each instance of t yields a different word counted
by  (Dk(g), t), each of which is equivalent to the same
cyclic ordering of the nodes. In this case, because there are
d+(t) occurrences of t, the number of cyclically equivalent
words starting at t is  (Gk(g), t)/d

+(t).
We say a de Bruijn graph of a circular genome is peri-

odic if it can be traversed with an Eulerian path of the
form (tw1tw2t... twm)

ct for c > 1 and some choice of
(possibly empty) paths w1, ..., wm that do not contain t.
(The exponentiation notation indicates c repetitions of
the parenthesized path.) In the very special case of peri-
odic, circular genomes the number of solution words
does not equal  (Dk(g), t)/d

+(t) for each t because
many words may be cyclic permutations of each other.
We do not encounter this special case in the chromo-
somes studied here. In particular, if there is any unique
sequence of DNA of length ≥ k - 1 then the graph will
not be periodic.
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In the less common case of linear genomes, if the
graph admits an Eulerian trail, there is a single choice of
which node to chose as t. If a linear genome yields an
Eulerian graph with Eulerian circuits (because its k - 1
suffix equals its k - 1 prefix), then any node can be used
as the final node t, but the linearization of the Eulerian
circuit may produce a chromosome with the wrong start
position, a minor misassembly.
Extracting idealized contigs and computing the N50 size
Every edge in the genome graph corresponds to a
sequence of DNA in the chromosome. Initially, these
edges correspond to k-mer reads, but after path com-
pression and other simplifications discussed above, these
edges can represent long, unambiguous stretches of the
chromosome bounded on either end by ambiguities.
Hence, it is reasonable to use the set of remaining edges
to estimate a set of contigs that can be extracted from a
genome graph. We create one contig for each edge. If
non-decision nodes are collapsed into edges as described
above, some edges will be labeled with DNA sequences.
If edge u ® v has been labeled, the contig associated
with an edge u ® v will contain the sequence repre-
sented by node u concatenated with the sequence
assigned to edge u ® v, otherwise the contig will con-
tain only the sequence represented by node u. If u ® v
is labeled, then the length of the contig is taken to be
length(u) + length(u, v) - 2(k - 2). If u ® v is unla-
beled, the length of the contig is taken to be length(u) -
(k - 2). Because the sequences represented by adjacent
nodes and edges overlap by k - 2 nucleotides, the terms
(k -2) and 2(k -2) ensure that overlapping bases are
counted only once. Hence, the sum of the lengths of the
contigs equals the chromosome length. The N50 size is
the length m of the largest contig such that at least 50%
of the genome is covered by contigs of size ≥ m; it is a
commonly used measure of the connectedness of the
assembly. Computing the N50 size using the idealized
contigs defined above gives an estimate for the achiev-
able N50 size. This estimate will probably be much lar-
ger than what can actually be obtained from real, noisy
data, and thus it provides a reasonable upper bound on
that size in practice.
Counting reconstructible genes
For many purposes, it is sufficient to reconstruct only
the coding regions of the genes of a species. We con-
sider a gene to be reconstructible if the sequence encod-
ing it can be unambiguously inferred from the de Bruijn
graph to be present in the genome. For example, if a
gene contains a repeat, it is less likely to be reconstructi-
ble because the repeat will introduce several possible
sequences downstream of the start codon.
Formally, to test whether a gene is reconstructible, we

first find the node s that represents the region of the
chromosome containing the start codon of the gene.

We then find all paths that start at s and continue until
they pass through first a backward decision and then a
forward decision. For this purpose, a full decision node
counts as simultaneously a backward and forward deci-
sion. If the region of the gene is wholly contained within
a region represented by such a path, then we say the
gene is reconstructible. This is a local definition of
reconstructibility, requiring only a neighborhood around
the node containing the start codon s to be considered.
For the analysis presented here, we test each of the
genes for reconstructibility on a graph in which the
tree-like regions have been collapsed and path compres-
sion has been performed (see above).
Forward decisions are not by themselves sufficient to

confuse the reconstruction: because every edge must be
taken, we can exhaustively follow each path. Nodes with
more than one predecessor (backward decisions), how-
ever, “pollute” the walk and once a subsequent forward
decision is encountered it is not possible to locally
determine which branch should be taken. It is possible
that a gene may not be considered reconstructible when
walking from its start codon to its stop codon but
would be reconstructible if the definition were changed
to consider walking from its stop codon to its start
codon. In practice, we expect few genes are reconstruc-
tible by walking forward but not reconstructible by
walking backward, hence we restrict ourselves to the
definition of reconstructibility above.

Results and Discussion
Sequences and annotations
Sequence and annotation data for 384 completely
sequenced bacterial and archaeal genomes were down-
loaded from GenBank. These genomes comprise 668
chromosomes and plasmids. Our study was focused on
the main chromosomes of these organisms, so molecules
whose FASTA header line included the word “plasmid”
were excluded. This left 419 molecules, of which 11
were linear DNA. For simplicity, these 11 linear mole-
cules were excluded from subsequent analysis, leaving
408 molecules representing the chromosomal DNA of
375 organisms. The annotation in the .ptt file accompa-
nying the sequence was used when evaluating how
many protein-coding genes could be uniquely
reconstructed.
Simplification of de Bruijn graphs from prokaryotic
genomes
We constructed de Bruijn graphs representing the main
chromosomes of 375 organisms (408 chromosomes in
total) from all substrings (reads) of length 25, 35, 50,
100, 250, and 1000, as described in the Methods section.
This resulted in representations of the chromosomes at
7 different resolutions. This process simulates perfect
genome coverage with error-free reads. Every path
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through this graph represents a possible reconstruction
of the genome that is consistent with the read informa-
tion. The initial de Bruijn graphs, obtained from the set
of length-k substrings, are typically very large and diffi-
cult to analyze computationally. Therefore, we first sim-
plify the graph as much as possible through a series of
graph transformations, as described in the Methods sec-
tion above.
The simplification techniques are extremely effective

in reducing the size of the genome graphs without chan-
ging the information they encode. After performing an
initial round of path compression, compressing tree-like
regions of the graph that have a unique traversal further
reduced the number of edges in each genome graph by
between 8% (25 nt reads) and 18% (1000 nt reads) on
average. These averages are somewhat skewed by a
number of already small graphs that experienced a near-
100% reduction in number of edges. The median reduc-
tion in number of edges ranged from 2.5% (1000 nt
reads) to 9.5% (100 nt reads) and is shown in Table 1
for various read lengths. Splitting half decision nodes
(nodes that have a single successor but multiple prede-
cessors, or a single predecessor but multiple successors)
into several parallel paths and compressing any newly
compressible paths provides a large further decrease in
the size of the graph compared with the number of
edges following the compression of tree-like regions.
This splitting and compression gives further median
reductions of between 20 and 26 percent. The reduction
factor does not strongly depend on the read length.
Table 1 gives the median reduction in the number of
edges achieved by this node splitting. Finally, some non-
decision nodes with only a single predecessor and single
successor will remain. Converting these nodes to labeled
edges causes the number of edges to be reduced by
approximately another 50% beyond the already applied
reductions. The combined effect of all simplifications
was to reduce the number of edges by a median of
between 65 and 70 percent (Table 1), creating much
smaller and more manageable graphs, from which
longer contiguous sequences can be extracted.
As expected, increasing read lengths leads to improved

ability to reconstruct a genome: with reads of length 100
only 22 of the chromosomes have a unique solution,
while 85 have a unique solution using reads of length
500, and over a quarter (120) have a unique solution
with 1000 nt reads.
This is an encouraging result and demonstrates how,

in the limit, increasing the read length will eventually
resolve ambiguities in the genome. However, it also
demonstrates the limitations of short-range paired-end
protocols. If 1000 nt reads are not sufficient to fully dis-
ambiguate the repeat structure of most genomes, then
short-range paired-end reads cannot either if the

separation between the endpoints of the reads is less
than 1000 nt. In fact, an assembly of short-range paired-
end reads is likely to perform significantly worse than
an assembly of long reads with corresponding length,
since long reads are a conservative approximation of
paired-end data. In particular, paired-end reads have
additional sources of uncertainty (variation in the
separation between the reads, chimeric pairs, etc) and
substantial algorithmic challenges (efficiently finding
unique paths of consistent separation, accurately resol-
ving short tandem repeats, etc). Nevertheless, even a
conservative approximation is sufficient to maintain our
results as a theoretically strong upper bound on the
potential for assembly.
Number of reconstructions consistent with genome
graphs
The number of strings that are consistent with a given
de Bruijn graph is a reasonable estimation of the com-
plexity of reassembling the genome given the informa-
tion contained in perfect reads of a particular length.
The more strings that are consistent with the graph, the
more uncertain we are that a given string is the correct
one. The short-read assembly problem can be comple-
tely solved, given only reads (and mate pairings), if and
only if there is only a single string consistent with the
de Bruijn graph.
The number of strings  (G) consistent with a de

Bruijn graph G is related, but not equal to, the number
of unique Eulerian circuits. There may be many more
Eulerian circuits than solution strings because the dis-
tinct orderings of edges that differentiate Eulerian cir-
cuits can lead to the same ordering of the nodes, and
thus the same DNA sequence. Parallel edges are more
than a theoretical issue: across the 2, 856 graphs consid-
ered (constructed using various read lengths), on aver-
age 18% of the edges had multiplicities ≥ 2. Therefore, it

Table 1 Reduction in graph sizes.

k Collapsing
Trees (%)

Splitting
half-decisions

Total reduction
(%)

25 4.56 25.98 64.78

35 6.34 23.11 65.17

50 8.12 21.34 65.87

100 9.54 20.18 67.01

250 6.50 24.21 68.21

500 4.76 25.93 70.31

1000 2.50 25.00 70.00

Column 2 gives the median percent reduction in number of edges by
compressing tree-like regions compared with performing only path
compression. Column 3 gives the median further reduction in number of
edges achieved by splitting half-decision nodes, for various read lengths k.
Column 4 gives the median percent reduction in number of edges (beyond
path compression) achieved by the combination of collapsing tree-like
regions, splitting half-decision nodes, and converting non-decision nodes to
edges. Percentage reduction is computed by (Old # edges - New # edges)/
(Old # edges).

Kingsford et al. BMC Bioinformatics 2010, 11:21
http://www.biomedcentral.com/1471-2105/11/21

Page 7 of 11



is important to correct for the common case of parallel
edges.
In Figure 2, we plot  (G) for the de Bruijn graphs G

constructed from length-50 reads. The number of possi-
ble reconstructions is often astronomical. Only the 365
chromosomes with fewer than 2900 possible reconstruc-
tions are shown. As one would expect, the longer gen-
omes generally have more solution words. However, this
is not always the case. For example, Yersinia pestis
appears much more complicated to reconstruct than
Escherichia coli, even though both genomes are about
the same size (4.4 Mb). Hence, one cannot use genome
size as the sole indicator of assembly complexity. In fact,
the genome of Y. pestis contains a large number of
insertion sequences [34], and these insertion sequences
complicate its de Bruijn graph.
Achievable N50 contig size
Repeats cause ambiguities in the ordering of genome
segments. The location and distribution of the repeats
affects the quality of the assembly: many repeats loca-
lized to a small region (as in CRISPR [35] elements, for
example) make that region difficult to assemble cor-
rectly, but do not disrupt the global organization of the
genome. Conversely, repeats spread throughout the gen-
ome divide the sequence into many, smaller blocks
whose order cannot be determined.
To determine what fraction of a typical genome can

be assembled without error using reads of a given
length, we extract from a simplified genome graph a set
of contiguous sequences (contigs) that can be unambigu-
ously assembled as discussed in the Methods section.
From this set of idealized contigs, we compute the N50

size, a standard measure used to assess the quality of
genome assemblies. Here, to facilitate comparison across
hundreds of genomes, we divide the N50 score by the
length of the chromosome to get the N50 contig size as
a fraction of the total genome length. We we refer to
this slightly modified measure as the relative N50.
As expected, longer reads lead to a larger number of

long contigs, and a corresponding increase in N50 size.
Figure 3 plots the fraction of chromosomes for which
the relative N50 was at least a given value. With 500 or
1000 nt long reads, 25-35% of the chromosomes can be
nearly completely reconstructed in the absence of error.
For 1000-nt reads, the median relative N50 size is 47%
of the genome length, indicating that long contigs are
often achievable. With 25-nt reads, however, the median
relative N50 size is only 1.14% of the genome length.
Despite this low N50 score, we will see in the next sec-
tion that one can still reconstruct entire genes from
even 25-nt data. Median relative N50 sizes for other
read lengths are given in Table 2. These idealized N50
sizes are a practical upper bound on what can be
achieved with reads of varying sizes and provide a
benchmark against which to compare the success of
assembly methods.
Possibility of gene reconstruction
Surprisingly, most genes in most of the genomes are
reconstructible, as defined above, even when using very
short reads. Figure 4 plots, for various read lengths, the
percentage of chromosomes for which at least a given
number of genes are reconstructible. Even with reads as
short as 25 bases, at least 85% of all genes are recon-
structible in almost all chromosomes. The biggest incre-
mental improvement in reconstructibility comes from
increasing read lengths from 25 nt to 35 nt. If 100 nt
reads are used, 98.7% of genes are reconstructible in the
average chromosome. The median number of recon-
structible genes is shown in Table 2 for various read
lengths. This successful gene reconstruction is further
evidence that de novo short-read sequencing can yield
useful information, even with very short read lengths.
A very large fraction of the genes that are not recon-

structible by this definition were made non-reconstructi-
ble by mobile genetic elements. The non-reconstructible
genes were statistically enriched for annotations related
to transposases, insertion sequences (IS), phages, and
integrases for read lengths 25, 35, 50, 100, 250, 500, and
1000 (all P-values < 10-50, hypergeometric distribution).
For example, at 100-nt reads across all genomes, 49% of
the non-hypothetical, non-reconstructible genes have
the phrase “transpos” within their description (in the
GenBank .ptt file). An additional 18% are tagged as
insertion sequences. Thus, at least 67% of the difficulty
in reconstructing the protein-coding genes using 100-nt
reads stems from such mobile genetic elements. For

Figure 2 Number of words consistent with genome graphs. The
size of the solution space for each chromosome using reads of
length 50 nt. Only the 365 chromosomes that had fewer than 2900

possible reconstructions are shown.
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other read lengths, the percentage of the non-recon-
structible genes tagged as transposase- or IS-related
ranges from 25% (25-nt reads) to 77% (500-nt reads).
Conversely, most transposase genes are not reconstructi-
ble using reads = 50-nt long: at 50-nt reads, 51% of
transposase genes and 72% of IS-related genes were
non-reconstructible.
The remaining non-reconstructible genes may be of

interest on their own. Repeats within and nearby genes
are one of the mechanisms through which prokaryotes
achieve phase variation [36], for example, in order to
evade the immune system. In addition, this idealized

assessment of the ability to assemble coding regions
gives us another benchmark against which to compare
assemblies constructed from noisy data. Given these
results, we should expect assemblies to contain the com-
plete sequences of a high fraction of protein-coding
genes.

Conclusions
We present a comprehensive examination of the diffi-
culty of reconstructing prokaryotic genomes from short
substrings based on several measures derived from an
idealized analysis of the genome reconstruction problem.
The resulting simplified genome graphs for 375 organ-
isms are publicly available at http://www.cbcb.umd.edu/
research/complexity/. These graphs may be a starting
point for additional repeat analysis [26].
These graphs provide a strong theoretical upper

bound on the performance of short read assembly, and
therefore provide a yardstick against which to measure
the performance of current and future genome assem-
blers. In particular, while computational methods and
laboratory protocols for minimizing sequencing errors
and uneven coverage are improving, our results reveal
the unavoidable fundamental limitations of assembly

Figure 3 Relative N50 size. Cumulative histogram plotting the relative N50 size (x-axis; see text for definition) against the percentage of
chromosomes (y-axis) for which the contigs achieve an N50 size at least that large. For example, approximately 40% of chromosomes yield a
relative N50 contig size of at least 50% of the genome length when using 500-nt reads.

Table 2 Median N50 and reconstructible genes.

k N50 (%) Genes (%)

25 1.14 96.29

35 2.41 98.12

50 3.90 98.94

100 8.12 99.51

250 13.52 99.84

500 18.03 100

1000 46.57 100

Median N50 as a percentage of the chromosome size and median number of
genes that are reconstructible for various read lengths k.
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from short reads. Even paired-end reads, which have
been extremely useful for resolving certain classes of
repeats, will not alone solve the assembly problem for
most organisms.
Finally our analyses show that even though there may

be an astronomical number of consistent genome recon-
structions assembled from short reads, even extremely
short reads (25 bp) are sufficient to correctly reconstruct
the majority of genes in an organism under idealized
conditions. For many genome studies, this may be suffi-
cient to satisfy the goals of the project, but caution is
prudent if computing a full unambiguous genome
reconstruction from short reads is required. If practical
results are not as impressive, those results can be attrib-
uted to either non-ideal data or deficiencies in the algo-
rithms, rather than inherent limitations. By better
understanding these limitations with idealized data, we
can also begin to investigate what additional information
(such as optical maps [37]) is most profitably added to
short-read sequencing data to make these new technolo-
gies as useful as possible.
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