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Abstract

coevolution in and among the molecule(s).

sequence changes.

dynamics around the native state of proteins.

Background: One of the most challenging aspects of biomolecular systems is the understanding of the

A complete, theoretical picture of the selective advantage, and thus a functional annotation, of (co-)mutations is
still lacking. Using sequence-based and information theoretical inspired methods we can identify coevolving resi-
dues in proteins without understanding the underlying biophysical properties giving rise to such coevolutionary
dynamics. Detailed (atomistic) simulations are prohibitively expensive. At the same time reduced molecular models
are an efficient way to determine the reduced dynamics around the native state. The combination of sequence
based approaches with such reduced models is therefore a promising approach to annotate evolutionary

Results: With the R package BioPhysConnectoR we provide a framework to connect the information
theoretical domain of biomolecular sequences to biophysical properties of the encoded molecules - derived from
reduced molecular models. To this end we have integrated several fragmented ideas into one single package
ready to be used in connection with additional statistical routines in R. Additionally, the package leverages the
power of modern multi-core architectures to reduce turn-around times in evolutionary and biomolecular design
studies. Our package is a first step to achieve the above mentioned annotation of coevolution by reduced

Conclusions: BioPhysConnectoR is implemented as an R package and distributed under GPL 2 license. It
allows for efficient and perfectly parallelized functional annotation of coevolution found at the sequence level.

Background

One of the biggest challenges in the post-genome era [1]
is to understand how proteins evolve, fold, and structu-
rally encode their function. Understanding the underly-
ing coupling of protein sequence evolution and bio-
mechanics is the first step to develop new drugs and
annotate molecular evolution in physical space. Explor-
ing the accessible sequence space of a protein provides
insights into its evolutionary history and phylogenetic
relations. Mutual information (MI), an information-the-
oretical approach, is widely used to detect coevolution
[2-9] at the sequence level within a protein or among
several molecules. Such statistical methods allow high-
throughput investigations, but the biophysical/-chemical
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implications of protein sequence changes are not
revealed by these methods.

In general a sequence change is fixated in molecular
evolution, if it has proven to be useful in the physical
realm by benefitial biophysical properties and functions.
Interactions between proteins as well as functional
aspects of monomers are largely conserved throughout
evolution, which implies coevolution among residues.
Such coevolution contributes to maintain crucial inter-
actions between these coevolving residues. To explore
the physical realm, molecular dynamics (MD) simula-
tions and related methods are routinely employed. Their
applicability is restricted to just a few mutants due to
severe computational demands of MD. To overcome
this drawback a number of coarse-grained models have
been developed in recent years [10-12]. In contrast to
MD simulations, these models allow high-throughput
screening of natural and unnatural mutations.
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Hamacher [13] developed a protocol to integrate
both the information from sequence-driven methods
and the mechanical aspects derived by biophysical
interaction theories, eventually bridging the gap
between statistical bioinformatics and molecular
dynamics/biophysics. Connecting both points of view
proved to be essential for the construction of molecu-
lar interaction networks [12] and helps to understand
thermodynamical properties and evolutionary changes
[14]. The purpose of BioPhysConnectoR is to pro-
vide evolutionary biologists and other bioinformatics
researchers with these protocols and allow for future
development of new protocols to integrate information
space and physical space in a holistic picture of mole-
cular evolution.

Implementation

The BioPhysConnectoR package is an add-on pack-
age to the statistical software R version 2.8+ [15]. Bio-
PhysConnectoR includes source code from the
bio3d[16] package and uses functions from the
matrixcalc[l7] and the snow[18] package. To
address runtime features we integrated native C/C+
+-routines for more complex computational tasks that
are callable from within the R environment. We provide
low-level routines to account for specific tasks as well as
high-level routines to process complete protocols. These
can be customized via various arguments. BioPhys -
ConnectoR includes utilities to perform the following
tasks:

1. An alignment given in fasta format can be read and
information theoretical measures such as MI and
entropy can be computed. It is possible to compute a
null model [19] to estimate the statistical relevance of
the derived MI values.

2. It is possible to read a pdb file and compute the
Hessian as well as the covariance matrix for a coarse-
grained anisotropic network model (ANM) [10,11], thus
computing reduced dynamical properties of the mole-
cule. This is done in the ANM in a harmonic approxi-
mation of the full, atomistic potential. The actual
computation is performed by a singular value decompo-
sition (SVD). Additionally B-factors can be extracted
from the covariance matrix.

3. In silico experiments can be performed by changing
the underlying protein sequence or “breaking” amino
acid contacts for the computation of biophysical proper-
ties. For given alignments, the outcome can be com-
bined with the respective MI or joint entropy values.

4. The self-consistent pair contact probability (SCPCP)
[20] method is included as an additional method to
derive B-factors and further biophysical properties from
a coarse-grained approach.

5. Some additional matrix routines are implemented.
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Methods

Information-theoretical approach

As a measure for coevolution among residues we use
MI [2-9], defined as [21]:

MIij—ZZPij(er) pilx)pi(y) 1)

xeX; yeyY;

where x and y are realizations of the random vari-
ables X; and Y; drawn from a set S, taken from a
multiple sequence alignment as columns i and j -
resulting in an MI matrix (MI;;). For proteins we are
concerned with the symbol set of the 20 standard
amino acids S 44, which can be expanded to include
the gap character and an extra character for non-stan-
dard amino acids S ::S’AA=SAAU{"—","X“}. The
probabilities p;(x), p;(y), and p;(x, y) are obtained as
the relative frequencies of amino acids within the col-
umns of a multiple sequence alignment.

Biophysical approach

Reduced molecular models [10,11] are obtained by using
only a coarse-grained representation of amino acids,
such that each amino acid is represented by a bead at
the center of its respective C,, atom.

Interactions between amino acids in contact with one
another are modeled as harmonic springs, with one
spring constant, K, weighting the strength of interac-
tions between adjacent amino acids in the sequence
(i and i + 1), and individual “sequence-dependent”
spring constants, r;, controlling other interactions. The
total potential for a protein in any conformation is thus

V=l Dlsi st )+ X T sih) @

i (ij)eC

where s; ;1 is the distance of the C, atoms at adja-
cent positions (i.e. covalently attached pairs) at a time
point in a test conformation, and 53i+1 is the distance
of the same atoms in the native structure. C contains all
pairs of residue positions i and j with non-covalent con-
tacts that are within a given cutoff. The amino acid-spe-
cific statistical contact potential matrices of Miyazawa
and Jernigan (MJ) [22] and Keskin et. al. (KE) [23] were
used for the non-covalent spring constants, x; to pro-
vide for sequence specificity [11]. Using MJ and KE, the
ANM was shown to improve the correspondence to
experimental results [11,12]. Other weighting schemes
for amino acids contacts can be provided by the user as
arguments to the respective function in
BioPhysConnectoR.

For the investigation of the mechanics of the mole-
cule, we construct the Hessian matrix of the potential V.
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Via SVD we compute the eigenmodes and -frequencies
to derive the covariance matrix M. The entry Mg-‘ﬁ
reads:

[akaT T‘ﬂ
k.. 3)
af _ ij

for o, B = x, y, z. The eigenvalues of the Hessian are
denoted with A, and the respective eigenvectors with
ur, - i, j are the indices of the residues.

M includes all mechano-dynamical information
obtainable by the model in eq. 2. The covariance matrix
turns out to be the inverse of the Hessian in this model.
Considering three translational and three rotational
degrees of freedom, the sum over k leaves out the first
six eigenvalues that vanish. Thus we effectively compute
the Moore-Penrose pseudo-inverse [24,25]. The isotro-
pic B-factors can directly be derived from this matrix as

2
8r
B="1 N M @)

a=x,y,z

Introducing mutations leads to changes in the physical
realm and thus to a covariance matrix M™""* different
from the “wild-type” one M™. The impact of a specific
mutation on the biomechanical behavior of the molecule
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can be estimated determining the Frobenius norm (FN)
of the respective covariance matrices as follows

=Xy -nap ) ®
2]

Such elastic network models were extended to include
thermodynamics - including phase transitions indicating
folding/unfolding events. The extension we implemented
is the SCPCP approximation first proposed by Miche-
letti et al. [20] and later used by Hamacher et al. [12] to
investigate binding free energies of ribosomal subunits.
The SCPCP can produce non-harmonic effects beyond
properties one usually would expect in simple models.
In particular it can show finite-size equivalents of
“phase transitions”, e.g. protein unfolding.

Results and Discussion

In this section we present an example application of the
BioPhysConnectoR package to the HIV-1 protease
[PDB:1KZK]. The molecule is a homo-dimer with 99
amino acids in each chain. We show the work flow of
the employed protocol in Figure 1. To illustrate the
usage of the BioPhysConnectoR routines we provide
a code example (see Figure 2) as well. The pdb file
serves as input for the computation of the biophysical
properties. To gain insight into evolutionary features, we
use data provided by Chen et al. [26]. The nucleotide

Sequence model

Multiple sequence alignment

.

compute mutual information

combine results of sequence model and biophysical model

interpretation

Figure 1 Flowchart. The protocol describes the two major workflows the package provides to combine results from investigations concerning
sequence and structure of a molecule. Key positions for coevolution and function can be identified using a combination of the workflows.

Biophysical modell

PDB

Y

compute correlation matrix

for each contact:
switch off contact
compute new correlation matrix
compute Frobenius norm
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Code I:

library(BioPhysConnectoR)

p <- extractPDB("1KZK.pdb")

# set up interaction parameters

mjl <- mat.read(system.file("mjl.txt", package = "BioPhysConnectoR"))
mj2 <- mat.read(system.file("mj2.txt", package = "BioPhysConnectoR"))
alpha <- 82

interaction.mat <- build.interact(aa2num(p$seq), mjl, mj2, p$chains, alpha)
# contact distance squared

cuts <- 169

# build contact map and internal variables

out <- build.contacts(p$lca, cuts, p$coords)

# build the Hessian

hess <- build.hess(out$cm, interaction.mat, out$deltas)

# compute everything, storing the temperature factors

Bfactors <- get.bfacs(build.invhess(get.svd(hess)))

Code II:

library(BioPhysConnectoR)

clust<-makeCluster (2)

simc(pdb= "1KZK.pdb", alpha= 82, cuts= 169, mj.avg= TRUE, bfacs= TRUE,
frob= TRUE, cluster= clust)

stopCluster(clust)

Figure 2 Example code. At the top (Code I), a detailed example for the computation of the B-factors using the provided low-level routines is
shown. At the bottom (Code II), the function call of simc is shown with all parameters given to the function to compute the values of Figure
4. The parameter alpha represents the strength of peptide bonds and is set to 82 per default, the parameter cuts denoting the squared
cutoff distance for a contact has a default value of 169. If no interaction weighting matrix is given, the MJ and KE matrices [22,23] are used to
describe the specific intra- and interchain interaction strengths, respectively, eventually averaged if mj . avg = TRUE. If the parameter bfacs is
set TRUE, for each broken contact the computed B-factors are written into files. Frobenius norms are only computed and returned if frob =
TRUE. With the parameter cluster it is possible to provide an initialized cluster for a parallel computation.
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Figure 3 Ml vs. f. We applied the protocol proposed by Hamacher [13] to a monomer of the HIV-1 protease [PDB:1KZK]. First, we identified
coevolving positions of the protein sequences using MI. We then switched off the 400 contacts with the highest MI values consecutively and
computed the Frobenius norm to determine the impact of mechanical changes. Plotting the Frobenius norm against Ml helps to identify key
residues. Interactions between those are subject to a high selective pressure (indicated by high MI) and have the largest influence on the
protein dynamics and stability (large Frobenius norm f).
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sequences were translated into amino acid sequences.
As we are concerned with about 45160 sequences, we
do not need to consider finite size effects [19] in the MI
results.

The alignment is read and MI values are computed.
We then pick those residue pairs with the highest MI
values that are non-covalently in contact within the cut-
off of 13A. The pdb is read and the C, atoms of the
first chain are selected. We compute the covariance
matrix M"* for this system. Afterwards we “break” the
contact for each previously selected amino acid pair
(a, b), one at a time, and compute a respective new cov-
ariance matrix M™" @ ®) The corresponding change in
the mechanical behavior can be annotated by the Frobe-
nius norm f (see eq. 5) between these two matrices.

We plotted the MI value of each residue pair (a, b)
against the Frobenius norm £ ? when breaking this
specific contact in Figure 3. The figure shows the
separation into four cases as discussed in [13]. We clas-
sify entries by the proximity to the four points located
at angles 45°, 135°, 225°, 315° respectively. Pairs with
low MI values have undergone little coevolution and
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thus coevolve less than those with higher values. If these
pairs show also small FN scores, their contact has no
relevant meaning. The low coevolution can be explained
by the rather unimportant impact the interaction of
such a pair has on the overall molecular dynamics. On
the other hand, high FN values indicate large changes in
the covariance matrix within the modeling framework
we implemented. These changes in the covariance
matrix suggest in turn relevant changes in the
mechanics of the molecule when “breaking” this specific
contact. Details of this protocol can be found in [13].
Note that our protocol allows the annotation of the
non-correlating MI-FN-value pairs: usually one would
not expect correlation. Instead one is interested why
particular high MI appears for pairings. One out of sev-
eral biophysical aspects stems from the dynamics of
around the native state - computable by BioPhysCon-
nectoR. Additional effects might include e.g. electro-
statics or binding partner recognition capabilities.

We tested the efficiency of the code for this particular
example using different numbers of cores (see Figure 4)
in the parallelization provided by the snow package.

3

1000
]

seconds

X multicore
A snow
x
| | | I T T T |
1 2 3 4 5 & 7 8
cores
Figure 4 Timings. We tested the routine simc for breaking individual contacts and computing the Frobenius norm of the covariance matrix
with respect to the original matrix using different numbers of cores. We compared the speed-up of the parallelization provided by the R
packages multicore [31] and snow[18]. The elapsed time for both is fitted to a scaling law of the form tcpy = a + ¢ (#cores)”" with some
unimportant constants a, ¢ and tcpy the total CPU time, and #cores the number of multi-cores used.
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Figure 5 Temperature factors. B-factors for the HIV-1 protease [PDB:1KZK] computed using the ANM (top) and the SCPCP (bottom) model.
The picture was rendered using VMD [32], “blue” indicates high, “white” intermediate and “red” low values. High temperature factors imply
exibility and low ones rigidity.
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Figure 4 suggests efficient parallelization up to 8 cores
in accordance with Amdahl’s law [27].

Furthermore we determined the temperature factors
(or B-factors), using the ANM and the SCPCP. The
results are shown in Figure 5. As can be concluded
from this graphic, the ANM detects larger flexible
regions than the SCPCP.

Future Trends & Intended Use

R[15] is a widely used and powerful environment for
interactive analysis of statistical data in bioinformatics
offering lots of additional software packages (e.g. from
the Bioconductor[28] software project). We imple-
mented the BioPhysConnectoR package in R to make
the routines and underlying concepts accessible to a wide
community allowing fast and parallelized network-based
analysis of protein structures. Work is in progress to
develop more efficient algorithms to compute covariance
matrices for mutated systems and for biomolecular
design [29] in the elastic network framework.

Conclusions

In the BioPhysConnectoR package we provide rou-
tines to compare an original protein system to subse-
quently altered ones with mutated amino acid sequences
or “broken” non-covalent contacts. Using sequence
alignments we are able to score sequence changes and
coevolution by the bio-mechanical ramifications of these
changes. We can then use the biophysical modeling to
annotate signals of coevolution in the sequence data.
We include several options to alter the protocol of [13]:
I) parametrization of bonds and contacts can be chan-
ged; II) including the well-known MJ and KE weighting
scheme [22,23]; individual interactions in the structure
can be altered; III) details on how to analyze mechanical
changes can be modified by computing FNs just for sub-
sets of residues; IV) dynamical and thermodynamical
properties can be computed. Changes in the molecular
mechanics for different scenarios (including mutations)
can then be computed e.g. by the FN of the respective
covariance matrices. The evolutionary connection of
residues (indicated by high MI values) can be annotated
by biophysical properties of the encoded molecule. In
addition, a thermodynamical, reduced model is included
to correlate the variability of protein sequences and
thermodynamical implications. The package can further-
more be combined with state of the art optimization
schemes to design molecules [29,30].

Availability and requirements
Project name: BioPhysConnectoR

Project home page: http://bioserver.bio.tu-darmstadt.
de/software/BioPhysConnectoR and CRAN at http://
cran.r-project.org/
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Operating system: cross-platform

Programming language: R and C/C++

Requirements: The R packages snow and matrix-
calc are automatically installed from the CRAN
repository.

License: GPL 2 license

Any restrictions to use by non-academics: none
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