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Abstract
Background: Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs 
sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome 
positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides 
the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of 
conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, 
but has not previously been studied with methods based on expectation maximization (EM).

Results: We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their 
effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a 
discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-
chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME 
using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also 
show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and 
that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior.

Conclusions: We conclude that using position-specific priors can substantially increase the power of EM-based motif 
discovery algorithms such as MEME algorithm.

Background
Short, linear sequence motifs in protein or nucleic acid
sequences are of considerable interest to biologists. This
type of sequence pattern is often indicative of important
biological sequence signals such as transcription factor
binding sites (TFBSs) or splice junctions in nucleotide
sequences, and of sumoylation sites and stabilization
domains in proteins. Consequently, there has been long
and continuing interest in developing software algo-
rithms that can automatically discover functional
sequence motifs in sets of biopolymer sequences sus-
pected to harbor one or more common sequence signals.

Biological sequence motifs are often quite subtle, and
discovering them in a set of sequences is often impossible
since real motifs may be indistinguishable from random
artifacts. This has encouraged the development of spe-
cialized motif discovery algorithms that can effectively

utilize information in addition to the sequences them-
selves.

One successful approach for improving motif discovery
using auxiliary data has been to incorporate evolutionary
conservation information into the discovery process [1,2].
This approach typically augments the set of input
sequences with one or more phylogenetic relatives of
each of the original sequences. Such motif discovery algo-
rithms are designed to emphasize motifs that are con-
served across related species, on the assumption that
such motifs are more likely to be functional.

Another fruitful approach has been to utilize biological
information to select a "negative" set of sequences, and to
modify the search process to seek motifs that are rela-
tively over-represented in the "positive" sequences. This
second approach can be also viewed as discovery of dis-
criminative motifs [3,4]. Using negative sequences has the
effect of steering the motif discovery process away from
sequence patterns that are due to effects unrelated to the
particular type of motif being sought. This is desirable
when searching for binding site in genomic sequences
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due to the extremely non-random nature of genomic
DNA.

A third approach for improving motif discovery has
been to seek motifs whose presence in sequences is corre-
lated with some biological signal such as mRNA level.
These approaches typically use a regression model, and
look for motifs that minimize the residual error between
a biological signal associated with each input sequence
and a motif-based mathematical model of the signal [5,6].

Recently, a general approach has been proposed that
allows the incorporation of almost any type of auxiliary
information into the class of motif discovery algorithms
based on Gibbs sampling [7]. The additional information
is converted into a measure of the likelihood that a motif
starts at each position in each sequence in the input. This
is measure is referred to as a "position-specific prior"
(PSP). Gibbs sampling algorithms optimize a Bayesian
sequence model, and the PSP approach allows the (sum-
marized) auxiliary information to bias the optimization
toward real motifs.

The PSP approach has several advantages. Firstly, it can
directly and simultaneously incorporate multiple types of
auxiliary data into motif discovery. Secondly, it cleanly
separates the problem model optimization from any
issues arising from trying to incorporate heterogenous
data into the biological sequence model. Thirdly, the PSP
methodology can sometimes avoid the severe increase in
computational complexity suffered by many of previous
approaches to incorporating auxiliary information into
motif discovery.

The PSP approach has shown great promise in extend-

ing the power of Gibbs sampling-based motif discovery

algorithms [7]. For example, a "discriminative conserva-

tion" ( ) prior has been shown to be extremely effec-

tive for discovering TFBS motifs in yeast sequences when

used with a Gibbs sampling algorithm [8]. Incorporation

of nucleosome positioning and transcription factor struc-

tural class information into a PSP has also proved useful

in the discovery of yeast TFBS motifs [9]. However, the

benefits of PSPs to EM-based algorithms (such as

MEME) has yet to be studied.

In this paper, we describe extending MEME to enable it

to use position-specific priors. Like Gibbs sampling-

based algorithms, the popular MEME motif discovery

algorithm [10] uses a Bayesian probabilistic model in the

search for motifs. To allow comparison with previous

work, we study the affect of using the  PSP with

MEME. This PSP combines evidence of evolutionary

conservation with the ability of a motif to discriminate

between sequences binding the TF and those that do not.

To explore the benefits of using PSPs with MEME, we

focus on discovering TFBS motifs in chromatin immuno-

precipitation (ChIP) data for yeast and mouse transcrip-

tion factors. We show that using the  PSP greatly

improves MEME's ability to discover motifs in an

extremely well-studied example of 156 sequence sets

derived from TF ChIP-chip (ChIP followed by microrar-

ray) experiments in yeast. In fact, using this PSP, MEME

discovers the correct TF motif in more of the yeast ChIP-

chip datasets than six other algorithms that use conserva-

tion information, including the Gibbs sample using the

same PSP. We further show that using the  PSP,

MEME discovers more accurate motifs in mouse ChIP-

seq (ChIP followed by sequencing) data [11].

Methods
We describe the enhancements to MEME required for
reading in and utilizing a file containing a position-spe-
cific prior corresponding to the input DNA or protein
sequences. We cover how PSP information is utilized
during each of MEME's three major phases. We also
describe how MEME converts a prior on motifs of a
width w0 to a prior on motifs of width w ≠ w0 in order to
allow MEME to discover motifs of a width different than
that for which the prior was derived. (Further implemen-
tation details are given in Additional file 1.)

Incorporating position-specific priors into MEME
The basic task of biological sequence motif discovery is,
given a set of DNA or protein sequences, to determine
which positions in the sequences are motif occurrences
(sites). MEME does this using a statistical sequence
model that it creates based on certain hints provided by
the user about the number of sites expected in each
sequence and the width of the motif sites. The parame-
ters of the model are referred to here collectively as ϕ.
MEME discovers motifs by optimizing the statistical
parameters of the model using the Expectation Maximi-
zation (EM) algorithm. The statistical parameters of the
model include a position-specific probability matrix
(PSPM) representation of the motif, referred to here as θ.
The PSPM specifies the probability of each possible letter
(amino acid or nucleotide) at each of the w positions in
the motif. A motif is a model of aligned words of a spe-
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cific length k (k-mers), each from a different sequence,
representing the likelihood of a given letter appearing at
each position.

To discover a motif, MEME proceeds in three phases.
In Phase I, MEME determines good starting points for the
EM algorithm. Since MEME automatically determines
the width of the motif and the number of sites, this first
phase actually selects starting points for various combi-
nations of motif width and number-of-sites. In Phase II,
MEME runs the EM optimization algorithm from each
starting point determined in the first phase in order to
produce a candidate PSPM representation of the motif. In
Phase III, MEME scores each of the candidate motif
PSPMs found by EM. To do this, it uses the candidate
motif PSPM to predict motif sites, and calculates the sta-
tistical significance of the relative entropy of the pre-
dicted sites. MEME outputs the candidate motif with the
highest statistical significance. Once the motif has been
selected and output, MEME "probabilistically erases" the
motif 's sites, and begins the process again at Phase I in
order to discover further motifs.

We describe below how we have enhanced MEME to
utilize PSP information in each of its three phases. In
what follows, we assume that MEME has been provided
with a set of n sequences X = {X1, ..., Xn}. For notational
convenience we assume, without loss of generality, that
all input sequences have the same length, L.
Overview of position-specific priors
By default, MEME assumes that every position in every
sequence is equally likely a priori to be a motif site. Posi-
tion-specific priors allow the user to change this assump-
tion, thereby causing the sequence model to favor motifs
that include high-probability sites over those that do not.
A PSP defines, for each position in a given set of n
sequences, our prior belief that a site (for any motif )
starts at that position. To express this in notation, we
introduce the binary "missing information" variables Z =
{Zi,j}, where Zi,j = 1 if a site starts at position j in sequence
Xi, and Zi,j = 0 otherwise. We can then specify a PSP com-
pletely by the set of values P = {Pi,j}, where

For convenience, we define the special value Pi,0 to be
the prior probability there is no motif site anywhere in
sequence Xi. To complete our definition of what a PSP is,
we add the assumption that a PSP is tied to a particular
motif width, w0. Therefore, the meaning of Pi,j is the prior
probability of any motif of width w0 having a site at posi-
tion j in sequence Xi. (We discuss later how MEME
derives PSPs of different widths from a fixed-width PSP
given in its input.)

MEME only allows sites that fit completely within a
sequence, so we require that the last w - 1 positions in a
sequence have Pi,j = 0. MEME can require every sequence
to have one site (OOPS sequence model) or it can allow
sequence to have zero or one sites (ZOOPS sequence
model). Clearly, this implies (based on our definition of
Pi,0, above) that Pi,0 = 0 in the OOPS sequence model. For
the ZOOPS model, we allow Pi,0 to have any value in the
range [0, ..., 1]. MEME has one more model–the ANR
model–that allows any number of motif sites any
sequence. We have not yet implemented PSPs for this
model.

MEME searches for motifs in the protein or DNA
sequences given in its input. However, MEME can also
search for DNA motifs that may have sites on either
strand. In that case, we index the sites on the opposite
strand from -L to -1 and we then define Zi,j and Pi,j for j 
[-L, ..., L]. In order for the Pi,j to define a probability distri-
bution, they must all lie in the the range [0, ..., 1] and, for
the OOPS and ZOOPS sequence models they must sum
to 1 for i = 1, ..., n, where n is the number of sequences in
the input to MEME. For all sequence models, the sum
over site position, j, runs from 0 to L (rather than -L to L)
in the protein and single-stranded DNA cases. Note that
we define Pi,j = 0 for all values of j where a motif would
not fit entirely within the sequence.

Our implementation of PSPs in MEME has one addi-
tional constraint. When we are considering motifs that
may occur on either DNA strand (the strand given in the
input sequences or its reverse complement), we require
that the PSP be symmetrical. That is, we require that Pi,j =
Pi,-j for all sequences Xi and sequence positions j. This
restriction seems reasonable to us, since the prior proba-
bility of any DNA motif in a set sequences by definition is
the same as that of its reverse complement motif.
Providing position-specific priors to MEME
MEME can now read PSPs in a format described in Addi-
tional file 1. When a PSP file is not provided, MEME
assumes, as before, a uniform prior over motif site posi-
tions. PSPs can be generated using Hartemink software
[8] followed by conversion to MEME's PSP format as
described in Additional file 1. The MEME PSP format
requires that the set of prior values, {Pi,j} for i = 1, ..., N
and j = 0, ..., L, be specified, and that they obey all the
constraints described above. For any sequences for which
priors are not supplied in the PSP file, priors are calcu-
lated as uniform priors. The MEME PSP format includes
the width, w0, of the motifs for which the prior is
designed. If MEME is run in double-stranded mode on
DNA, the symmetry restriction allows us to generate the
PSP for the second strand automatically.

P Pr Z i n j Li j i j, ,( ) [ , , ], [ , , ].= = ∈ ∈1 1 1 for … …
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Renormalizing position-specific priors for motifs of different 
widths
As mentioned above, a PSP is tied to a particular motif
width for which it is derived. When MEME is considering
motifs of width w, different from w0, the one specified in
the PSP input file, it renormalizes the PSP. The renormal-
ization attempts, in a heuristic fashion, to extend the
information captured by the PSP about motifs of width w0
to a PSP suitable for motifs of width w. Renormalization
also insures that the new PSP obeys all of the constraints
described above. In particular, when w >w0, there are
fewer legal positions for motif sites in a given sequence,
so the constraint that the Pi,j sum to 1 would be violated
without renormalization.

For motifs that are wider than the width for which the
input PSP was designed, the renormalized PSP uses the
geometric mean of Pi,j for all width-w0 sites that are com-
pletely contained by a width-w site. The intuition behind
this definition is that the information in each of the com-
pletely contained sites should be included in our estimate
of the prior probability of the longer site containing them.
When w >w0, a width-w site at position j completely con-
tains width-w0 sites starting at positions j through j + w -
w0. If we let c = w - w0 + 1 be the number of shorter sites a
longer site contains, our renormalized PSP, PSP(w), is
computed as

for i [1, ..., n] and j  [1, ..., L - w + 1]. To keep computa-
tion costs reasonable, and because the value of informa-
tion contained in a prior on shorter motifs decreases as
the width of the longer motif increases, we constrain c ≤
w0 in Eqn. 1.

For motifs that are shorter than those for which the PSP
was designed (w <w0), MEME does not renormalize the
input PSP. In this case, it simply uses the input PSP as
though it were designed for the shorter width motifs, set-
ting PSP(w) = PSP. This has the implication that some
potential motif sites at the ends of sequences will be
ignored when searching for shorter motifs, since their Pi,j
values will remain zero even though they are legal start-
ing positions for the shorter motif. For example, if the
PSP width is 8 and MEME is searching for motifs of width
7, the last possible position for a motif in each sequence
will have Pi,j = 0. This seems more sensible than setting
the value of Pi,j based, say, on the value of pi,j-1 since the
width-8 PSP contains no explicit information on the prior
probability of a site starting at position j. This is because
removing the first letter of the word starting at position j -

1 might result in a word with a much lower prior proba-
bility. In any case, we expect that useful priors will tend to
be relatively short (6 to 10) in relationship to the lengths
of the sequences containing the motifs. In what follows,
we always assume that the PSP has been normalized to
the current motif width being considered by MEME, so
we drop the width notation from PSP(w) and Pi,j,w.
MEME Phase I: Finding Starting Points
To find starting points for EM, MEME converts each sub-
sequence of the data into a "starting" PSPM and calcu-
lates a score for it using an algorithm that approximates
one step of EM followed by the scoring phase. Creation of
the starting PSPM from a subsequence has been previ-
ously described [10]. Each such PSPM, θM is then used to
calculate the probability under the motif model of every
potential site in the input sequence, Pr(site|θM). Previ-
ously, for the OOPS and ZOOPS models, the single site
with the highest likelihood from each sequence was
determined. For the OOPS model, these sites were then
assigned a score. For the ZOOPS model, these sites were
sorted in decreasing order by their likelihoods, and the
top t sites for successively larger values of t were scored.

To incorporate PSPs into this phase of MEME, sites are
now sorted by a value proportional to their posterior
probabilities, Pr(site|θM)Pr(θM), where Pr(θM) is the prior
probability of the potential site being a real site, as speci-
fied by the PSP. That is, if the site starts at position j in
sequence Xi, then Pr(θM) = Pi,j. We found this approach
was not sufficient to insure that the best starting points
for EM were found, but that incorporating the PSP into
scoring the sets of sites with the highest posterior proba-
bilities helped significantly (data not shown). Conse-
quently, the prior probability of each site is now used by
MEME when it scores the predicted sites, as described in
the next paragraph.

The final score for a potential starting point is a
weighted version of the log likelihood ratio (LLR) of its
set of predicted sites. The LLR of a set of sites is normally
computed by aligning the sites, counting the number of
times each letter occurs in each column of the aligned
sites, and normalizing the counts to frequencies. To cal-
culate the weighted LLR, MEME scales the individual pri-
ors independently in each sequence so that the largest of
Pi,j in each sequence is 1. These scaled priors are then
used as weights on the counts of the numbers of letters in
each column of the motif.

In more detail, the weighted LLR is computed by
MEME as follows. First, MEME computes weights
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where  is the maximum value of Pi,j in sequence Xi.

The weighted count, ca,k, of letter a in position k of the

motif, is computed by adding the weight , 0 ≤  ≤ 1,

to ca,k when the site at position j in sequence Xi has letter

a in position k of the site. Thus, sites with higher prior

values will contribute more to the weighted counts than

sites with low prior values. (Note that, with the uniform

prior, all the weights  are 1, so this results in the ca,k

being unweighted counts.) The weighted counts are then

turned into weighted frequencies by dividing by Nwt, fa,k =

ca,k/Nwt, where Nwt is the sum of the weights, , of all

sites included in the alignment. We now define a new

motif model in terms of parameters  = {fa,k}. Let pa =

Pr(a|θB) be the probability of letter a under the zero-

order Markov background model supplied as an input to

MEME (the default if none is supplied is a zero-order

model based on the letter frequencies of the sequence

data). If the weights were all equal to 1, the LLR of the set

of sites under this new model would be

We refer to Eqn. 2 as the "weighted LLR" of the set of
sites when the weights on the sites are not all equal to 1.

For each potential starting PSPM, MEME computes the
LLR using Eqn. 2 on different numbers of predicted sites,
t. MEME does this by considering only the t predicted
sites with the largest posterior probabilities for succes-
sively larger values of t. For the OOPS model, the only
value of t tried is the number of input sequences, t = n.

MEME repeats this entire process for successively
larger values of w. For each combination of t and w,
MEME runs EM using the potential PSPM that has the
largest weighted log likelihood ratio. EM is described in
the next section.
MEME Phase II: Expectation Maximization
MEME uses EM to maximize the expectation of the joint
likelihood of the sequence model given the sequences X

and the missing information variables Z (refer to Table 1).
EM proceeds by iterating an E-step followed by an M-
step. The only change required to MEME's existing EM
implementation is the replacement of uniform assump-
tion of site positions with the position-specific prior in
the E-step.

For OOPS and ZOOPS models, the parameters of the
sequence model are ϕ = {θ, γ, P}. EM re-estimates the
PSPM, θ, but holds fixed the PSP, P. The additional
parameter, γ, represents the probability that a randomly
chosen sequence in the dataset contains a motif site. This
is always equal to 1 for the OOPS model, and is estimated
by EM for the ZOOPS model.
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Table 1: Definition of terms used in describing the MEME 
algorithm

n number of input sequences

L length of input sequences

X = {X1, ..., Xn} the set of n input sequences

w width of a MEME motif

m = L - w + 1 number of positions for a site

γ probability of a site in any 
sequence

θ PSPM model of motif;

P = {Pi,j} position-specific prior (PSP)

w0 width for which input PSP is 
defined

Z = {Zi,j} missing information 
variables for i  [1, n],j  [-L, L]

Z(t) expectation of Z at EM 
iteration t

 = Pr(Zi,j = 1|ϕ(t))
prior probability given PSP & 
model

ϕ(t) model parameters at EM 
iteration t

ϕ = {θ, γ, P} all sequence model 
parameters

Pi j
t

,
( )
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The E-step of EM computes new estimates of the con-
ditional probabilities of the missing variables Z, condi-
tioned on the current estimate of the model parameters,

where ϕ(t) is the parameter estimate at the start of the
current iteration, t, of EM. The current estimate of the
probability of each possible site based only on the model
is Pr(Zi,j = 1|ϕ(t)). For notational convenience, we define
variables that represent this probability for j  [1, ..., L],

where m = L - w + 1 is the number of places a motif site
will fit in a sequence.

With these definitions, the computation in the E-step of
the new estimates of the conditional probabilities of miss-
ing variables Z for the OOPS and ZOOPS models can be
written as

for i  [1, ..., n] and j  [0, ..., m]. When searching both

DNA strands, the sum in the denominator in Eqn. 4 goes

from -m to m, and we define  for j  [-m, ..., 0, ...,m].
The M step re-estimates ϕ by solving

The M-step of the EM algorithm in MEME is
unchanged. See Bailey and Elkan [10] for more details on
how the terms in Eqn. 4 and Eqn. 5 are computed.
MEME Phase III: Scoring the Motifs
The scoring phase of the MEME algorithm assigns scores
to the motifs discovered by EM. The criterion is based on
the statistical significance of the log-likelihood ratio (Eqn.
2) of the most likely sites for the motif in the sequence
dataset. Unlike the starting point phase (Phase I), the
scoring phase of MEME computes the unweighted LLR,
even when using non-uniform positional priors. This
choice was motivated by tests which showed that the
weighted LLR performed no better, so we chose to keep
this part of the MEME algorithm unchanged (data not

shown). Although the scoring phase of MEME was not
changed as a result of incorporating PSPs, it has not been
documented previously, so we describe it briefly here.

The significance measure used to rank motifs takes into
account the LLR of the motif, its width and the number of
sites it contains. The sites of a candidate motif are those
with the largest final values of Z(t). For the OOPS model,
MEME scores the motif consisting of these sites. With the
ZOOPS model, MEME sorts the sites by decreasing Zi,j
value, and scores each prefix of the sorted list.

MEME scores a motif consisting of a set of sites as fol-
lows. The LLR of each column of the aligned sites is com-
puted, and the p-value of the column-LLR is computed
based on the background Markov model using the
dynamic programming method of Hertz and Stormo [12].
These p-values are then multiplied together and the p-
value of the resulting product is computed as described in
Bailey and Gribskov [13]. (Computing this column-LLR
based p-value requires far less time than directly comput-
ing the p-value of the total LLR of the motif.) To make the
scores of various motif widths and numbers of sites com-
patible, MEME multiplies the p-value of the motif by the
number of possible ways to select positions for the given
number of sites in the set of sequences, X. This final score
is referred to as the E-value of the motif.

Measuring the Benefits of using PSPs
To evaluate the benefit of using PSPs in motif discovery,
we search for motifs in sets of sequences predicted to
bind different TFs in yeast and in mouse. The yeast data is
from 156 ChIP-chip experiments each measuring the
binding of a single TF [14]. The mouse data is from 13
ChIP-seq experiments measuring binding of a TF [11].
The yeast TF data has been used extensively as a test case
for evaluating motif discovery algorithms, so using it
allows us to easily compare MEME with PSPs to a large
number of other algorithms. Since ChIP-seq data is
inherently of a higher quality than ChIP-chip data, the
mouse TF data allows us to measure the benefit of using
PSPs on a slightly easier motif discovery task. The mouse
data covers 13 TFs–Nanog, Oct4, Sox2, Smad1, E2f1,
Tcfcp2l1, Ctcf, Zfx, Stat3, Klf4, Esrrb, c-Myc and n-Myc.

We measure accuracy of MEME both with and without

the use of PSPs. The PSP we use is the discriminative con-

servation prior ( ), which has previously been shown

to be very effective for discovering TF binding site motifs

in the yeast dataset [8]. The  prior is based on the

degree to which the 8-mer starting at position Xi,j is con-

served in the input sequence set X and a set of ortholo-

gous sequences from other species, compared with a
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negative set of sequences and their orthologs. For com-

parison, we measure the accuracy of the PRIORITY motif

discovery algorithm using the  PSP (PRIORITY- ).

We also compare with previously published results on the

yeast dataset.

On the yeast data, we use the  PSP as reported by

Gordân et al [8]. This prior is based on intergenic regions

from S. cerevisiae that have a ChIP-chip fluorescence p-

value ≤ 0.001 and the orthologous regions from the six

related organisms S. paradoxus, S. mikatae, S. kudria-

vzevii, S. bayanus, S. castelli, and S. kluyveri. The negative

sequences are all S. cerevisiae intergenic regions with a p-

value ≥ 0.5 and their orthologs.

We create our own  PSP for each of the 13 mouse

datasets. For each dataset, the positive sequences are 200

base pair (bp) regions centered on the ChIP-seq peaks

reported by Chen et al. [11]. We use the mafFrags pro-

gram to obtain orthologous sequences for sixteen addi-

tional species from the multiz17way alignment [15]. We

obtain negative sequences and their orthologs for con-

structing the mouse  PSP by extracting 100 bp

regions on either side of each positive sequence. We use

the -PSP creation scripts provided by the Hartemink

group [8] to create the mouse PSPs from the positive and

negative sequence and ortholog sets. (More detail includ-

ing the list of other species is in Additional file 1.)
To measure the accuracy of motif discovery on the

yeast datasets, we utilize the same metric as previous
researchers [8,14]. This metric compares the single motif
reported by a motif discovery algorithm to a known motif
for the TF by computing the scaled Euclidean distance
between the PSPMs for the motifs. The distance is scaled
so that the maximum distance is 1, and the minimum dis-
tance is 0. The scaled Euclidean distance between PSPMs
f and g is defined as

where fa, i and ga, i are the probabilities of base a at posi-
tion i in the two motifs. We use the same known PSPMs
as used by previous researchers [8], and the same crite-
rion for successful motif discovery–scaled Euclidean dis-

tance <0.25. Since the reported motif may be of a
different length or on the opposite DNA strand from the
known motif, we actually compute the minimum value of
D for all possible alignments of the reported motif (or its
reverse complement) with the known motif, with the
minimum overlap the length of the shorter motif.

Our evaluation of motifs discovered in the yeast ChIP-
chip datasets utilizes a human-curated set of motifs that
represents the consensus predictions of many motif dis-
covery algorithms on those datasets. Such a "gold stan-
dard" set of motifs does not exist for the 13 mouse ChIP-
seq datasets. Consequently, we take a different approach
to measuring the accuracy of motifs discovered in those
datasets.

With the mouse ChIP-seq datasets, our underlying
measure of motif quality is the amount of correlation
between a motif-based binding affinity score and a ChIP-
based binding score. We believe that a high correlation
between an in vivo measure of TF affinity and a motif-
based in silico measure is indicative of an accurate TF
binding motif. (We describe our two binding affinity
scores and the correlation measure we use in the next
paragraph.) For each ChIP-seq dataset, we measure this
correlation in a cross-validation setting, discovering
motifs on randomly chosen sets of positive and negative
sequences, and computing the correlation measure on
held-out sequences. To compare algorithms, we compare
our correlation-based quality measure between motifs
found on the same sample of sequences.

The details of our evaluation of motifs in the mouse
ChIP-seq data are as follows. Our ChIP-based estimate of
binding by the ChIP-ed TF at a genomic location is the
"peak score" reported by Chen et al. [11], and is the nor-
malized count of the number of sequence tags overlap-
ping the peak's genomic location. This is our best direct
evidence that the TF was bound in the neighborhood of
the peak. Each positive sequence is assigned the peak
score of the peak it contains. Our motif-based measure of
binding by the ChIP-ed TF is for each positive sequence
is its "Average Motif Affinity" (AMA) [16] score. The
AMA score is justified as a measure of TF binding affinity
on theoretical grounds [17], and it has been used for
motif discovery [5] where it showed strong correlation
with gene expression, and for motif enrichment analysis
[18,19] where it showed strong correlation with TF bind-
ing. Because the AMA score estimates the average bind-
ing affinity of a region of DNA, it captures contributions
from multiple sites in a given region. Our motif quality
measure is the Spearman correlation coefficient (CC)
between the ranks of the held-out positive sequences
sorted by their AMA and peak scores, respectively. We
use a rank-based statistic because it is less sensitive than a
correlation between the original values to dissimilarities
in the distributions being compared [20]. To compare
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pairs of algorithms, we use each algorithm to learn one
motif in each of 50 random samples consisting of 100
positive sequences and 200 negative sequences. We then
apply the sign test to the quality measures of pairs of
motifs learned on the same input set to decide if one algo-
rithm discovers significantly better motifs.

All yeast runs use a third-order Markov background

model, for consistency with reported PRIORITY results.

We let MEME search for a single motif of width from 7 to

12, with sites on either DNA strand. For all mouse runs,

MEME and PRIORITY-  use a fifth order background

Markov model, computed from the negative set, and

search for motifs of widths 8 to 20. To compute AMA, we

use the AMA program, which is part of the MEME suite

of programs [21], using the same background model as

we use in motif discovery. In all cases, we use PRIORITY

2.0.0 with its default settings, except for changing to a

fifth-order background model for the mouse runs. We

test MEME with both the OOPS and ZOOPS models,

with and without the  PSP, with sites on either strand.

Results and Discussion
Improved motif discovery using MEME with PSPs in yeast 
TF ChIP-chip datasets

Our evaluation of the effect of adding PSPs to MEME

starts with measuring improvement in finding TF motifs

in yeast ChIP-chip datasets. We run MEME using the

OOPS and ZOOPS models with and without the 

prior on each of 156 ChIP-chip datasets, and compare the

single reported motif PSPM to the known PSPM for the

TF pulled down in the ChIP-chip experiment. Success is

defined as scaled Euclidean distance <0.25 between the

reported PSPM and the known PSPM for the TF. Note

that, to insure our results are directly comparable to the

results reported by Gordân et al. [8], we use the script

provided by them to compute the scaled Euclidean dis-

tance, which reports a distance of 1.0 (the maximum) if

the found motif does not contain a region of width six

with average information content at least 1 bit.)

The improvement in the number of motifs successfully

discovered is quite dramatic. Using the  PSP with

MEME more than doubles the number of yeast TF motifs

successfully discovered (Table 2). The most successful

approach is using MEME with the ZOOPS model with

the  prior (ZOOPS- ), which discovers the correct

motif in 81 of the 156 datasets. Without the  prior,

MEME with the ZOOPS model only discovers the correct

motif in 39 of the datasets.

The accuracy of motif discovery by several other algo-

rithms using these same yeast TF ChIP-chip datasets and

success metric has been reported previously [8,22], allow-

ing us to compare our current results more broadly. As

seen in Table 2, the success rate of ZOOPS-  (81

motifs found) is substantially higher than a number of

conservation-based EM or Gibbs sampler motif discovery

algorithms (PhyloCon [22], PhyME [23], PhyloGibbs [1],

Converge [22], PRIORITY-C [8]).

The ZOOPS-  approach also performs at least as

well on the yeast datasets as the Gibbs sampler-based

algorithm PRIORITY, when PRIORITY is given the same

 PSP as MEME. The developers of the PRIORITY

algorithm (and of the PSP concept) reported a success

rate of 76 out of 156 on the yeast datasets (result shown in

Table 2 above the horizontal line). However, since Gibbs

sampling algorithms are stochastic–their outputs vary

from run to run–we wished to place error bars on PRI-

ORITY- 's success rate. We therefore ran PRIORITY-

 ten times on each yeast dataset. The success rate var-

ied from 65 to 74 correct motifs, with an average success

rate of 69 (sd = 3), as shown in the last line of Table 2. The

fact that we did not observe any PRIORITY-  run with

as high a success rate as previously reported [8] may be a

result of the stochastic nature of the algorithm, or may be

due to us using a more recent version of PRIORITY (Ver-

sion 2.0.0).

Improved motif discovery using MEME with PSPs in mouse 
TF ChIP-seq datasets
As an additional check on the value of using PSPs with
MEME, we measure the improvement in TF motif dis-
covery on 13 mouse TF ChIP-seq datasets. Our evalua-
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tion of mouse data is intended to demonstrate that the
results generalize to a data set of different properties–a
higher eukaryote, with sequence data derived from a dif-
ferent technology. We measure the correlation between
the ChIP-seq peak score ranks of the sequences, and the
AMA score ranks assigned using the discovered motif. To
insure that this measurement is unbiased, we measure the
correlation using held-out sequences, which are not used
in discovering the motif. We compare pairs of motif dis-
covery algorithms by sampling from all the sequence data
(positive and negative), and applying a paired significance
test (sign test) to the pairs of correlation scores.

On the mouse datasets, using the  prior improves

the accuracy of the motifs discovered by MEME (see

Table 3), although the improvement is slight compared to

that seen in the yeast ChIP-chip datasets. The OOPS

model with the  prior has significantly better accu-

racy than without the prior on 3 of the 13 datasets, and

shows no significant difference in accuracy on the other

10, according to the sign test. Similarly, the  prior

improves the ZOOPS on 4 of the 13 datasets, but

degrades the performance on 3 datasets. MEME using

the  prior finds better motifs for TFs c-Myc and n-

Myc with both the OOPS and ZOOPS models. The

motifs for three other TFs (Stat3, Zfx and E2f1) are

improved using the  prior with one or the other of the

two sequence models. These results indicate that using

DC

DC

DC

DC

DC

Table 2: Performance of motif discovery algorithms on yeast TF ChIP-chip datasets. 

Algorithm Description Successes Proportion of Successes

PhyloCon local alignment of conserved 
regions

19 12%

PhyME alignment-based; uses EM 21 13%

MEME_c MEME run with non-
conserved bases masked

49 31%

PhyloGibbs similar to PhyME but uses 
Gibbs sampling

54 35%

Kellis et al. alignment-based 56 36%

Converge alignment-based; uses EM 66 42%

PRIORITY- Gibbs sampler with 
conservation-based priors

69 44%

PRIORITY- Gibbs sampler with 
discriminative conservation-
based priors

76 49%

MEME: OOPS MEME with OOPS model 36 23%

MEME: ZOOPS MEME with ZOOPS model 39 25%

MEME: OOPS- MEME with OOPS model and 
 priors

73 47%

MEME: ZOOPS- MEME with ZOOPS model and 
 priors

81 52%

PRIORITY- Gibbs sampler with 
discriminative conservation-
based priors

69 (3) 44%

The table shows the number motifs (out of 156) successfully discovered by the named algorithms. The results in the top half of the table are 
taken from Gordân et al. [8]. Results in the bottom half are for new experiments performed by us. Each algorithm is allowed to report one 
motif, and success is declared if the scaled Euclidean distance to the known PSPM is <0.25. Proportions (out of 156) successes are rounded to 
the nearest integral percent.

C

DC

DC
DC

DC
DC

DC



Ba
ile

y 
et

 a
l. 

BM
C 

Bi
oi

nf
or

m
at

ic
s 2

01
0,

 1
1:

17
9

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

21
05

/1
1/

17
9

Pa
ge

 1
0 

of
 1

4

Table 3: Performance of motif discovery algorithms on mouse TF ChIP-seq datasets.

OOPS- vs. OOPS ZOOPS- vs. ZOOPS OOPS- vs. ZOOPS- OOPS- vs. PRIORITY-

TF W L T p-value W L T p-value W L T p-value W L T p-value

Nanog × 3.4e-01 × 1.3e-03 × 7.7e-03 × 2.1e-09

Oct4 × 1.0e-01 × 3.4e-01 × 5.8e-07 × 4.5e-14

Sox2 × 1.6e-01 × 1.6e-02 × 4.4e-01 × 1.3e-03

Smad1 × 1.0e-01 × 1.6e-01 × 2.4e-01 × 1.6e-01

E2f1 × 2.4e-01 × 4.5e-05 × 4.5e-05 × 4.4e-01

Tcfcp2l1 × 1.0e-01 × 7.7e-03 × 1.6e-02 × 1.9e-11

Ctcf × 4.4e-01 × 2.4e-01 × 4.4e-01 × 8.9e-16

Zfx × 1.0e-01 × 1.3e-03 × 1.6e-01 × 2.2e-10

Stat3 × 3.3e-03 × 4.4e-01 × 6.0e-02 × 1.6e-01

Klf4 × 1.6e-01 × 6.0e-02 × 1.0e-01 × 1.6e-01

Esrrb × 6.0e-02 × 6.0e-02 × 3.3e-03 × 4.5e-14

c-Myc × 3.3e-02 × 3.3e-03 × 2.4e-01 × 4.5e-05

n-Myc × 1.5e-04 × 4.5e-05 × 1.6e-02 × 1.6e-08

Total 3 0 10 4 3 6 4 2 7 6 3 4

The table compares the relative accuracy of pairs of motif discovery algorithms. Relative accuracy is measured by the correlation on held out sets of sequences of the sequence ranks based on ChIP-
seq peak scores versus the ranks based on the motif-based AMA score. A check in the "win" or "W" ("loss" or "L") column indicates that the motifs found by the first (second) algorithm had 
significantly better Spearman rank correlation, as judged by the sign test on the 50 random repeats (p-value < 0.05). A check in the "tie" or "T" column indicates that there was no significant 

difference. The "Total" line shows the totals using the sign test to judge significance. OOPS, ZOOPS, OOPS-  and ZOOPS-  refer to MEME with those models and with or without the  

prior.
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Figure 1 Comparison of motifs found in mouse ChIP-seq datasets. The figure shows the motifs reported by Chen et al. [11] and those found by 

MEME in sequences identified as bound to the given transcription factor in 13 ChIP-seq experiments. The MEME motifs were found using 100 ran-

domly chosen bound sequences and the OOPS-  prior. The inter-motif distance (scaled Euclidean distance) is computed as described in Addi-

tional file 1.

TF Chen et al. motif MEME motif inter-motif
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the  prior with MEME will likely improve the accu-

racy of TF motifs found in ChIP-seq data from higher

eukaryotes.

As a further evaluation of our method with ChIP-seq

data, we also directly compare the motifs found by

MEME using the OOPS-  prior with those reported

by Chen et al. [11]. In Figure 1, we show the Chen et al.

motifs along side the motif found by MEME using a ran-

dom sample of 100 ChIP-seq peak sequences that

achieved the highest value of our unbiased correlation-

based quality measure. For all 12 of the 13 Chen et al.

ChIP-seq experiments where they reported a motif,

MEME using the OOPS-  prior discovers a strongly

similar motif. Those authors reported no motif for the

E2f1 experiment, but the motif found by MEME resem-

bles the TRANSFAC [24] E2f1 motif. We also show the

scaled Euclidean distance (Eqn. 6) between each Chen et

al. motif and the MEME motif in Figure 1. (Note that we

do not require the aligned motif regions to have average

information content of at least 1 bit in the inter-motif dis-

tance computation in Figure 1. Without this change, the

inter-motif distances for Oct4, n-Myc and E2f1 would be

reported as "1.0".) All 13 motifs discovered by MEME

have distances less than or equal to 0.30 to the corre-

sponding Chen et al. or TRANSFAC motif, and 11 out of

13 have distances below 0.17. We emphasize however,

that this result only indicates that MEME is finding

motifs similar to those found by those authors, and we

believe that our correlation-based quality measure is

more appropriate with this data.

To answer the question of whether using the  prior

with the OOPS or ZOOPS model is more appropriate

with the mouse ChIP-seq data, Table 3 shows the relative

accuracy of OOPS-  versus ZOOPS- . According

to the sign test, OOPS-  finds significantly more accu-

rate motifs in more datasets (4 vs. 2) than ZOOPS- .

Although the sample size is small (13 datasets), it seems

reasonable to conclude that the OOPS-  approach will

produce better motifs on average with ChIP-seq data.

A direct comparison of the accuracy of motifs found in

the mouse datasets by OOPS-  and PRIORITY-

indicates that MEME with using the  prior and the

OOPS model has a slight edge. According to the sign test,

OOPS-  produces significantly better motifs for 6 of

the 13 mouse ChIP-seq datasets, compared with PRIOR-

ITY- . On 3 of the datasets, PRIORITY-  produces

more accurate motifs. This result is in agreement with

our results using the yeast ChIP-chip datasets, where

MEME using the  prior and the ZOOPS model was

(slightly) more successful than PRIORITY- . As we

expect, the ZOOPS model works better for ChIP-chip

data, while the OOPS model works better for ChIP-seq

for the examples we present here.

Conclusions
Position specific priors are an elegant and flexible way to
utilize prior information from heterogeneous sources to
improve the discovery of sequence motifs. In addition to
allowing information from multiple sources to be incor-
porated into a Bayesian motif discovery framework, posi-
tional priors can even incorporate information from
negative examples (so-called "discriminative" priors). Fur-
thermore, using PSPs does not increase the running time
of the underlying motif discovery algorithm. This flexibil-
ity has the potential to extend the range of applications
and sensitivity of motif discovery algorithms that can uti-
lize PSPs. Although we only study DNA datasets, our
modifications to MEME are not DNA-specific. MEME is
freely available for academic use and downloading at
http://meme.nbcr.net.

PSPs had previously been shown to be of benefit when

used with a Gibbs sampling motif discovery algorithm.

We have shown here that they can also be of great benefit

to MEME, which is based on EM and a heuristic search

for starting points. We focused on using a prior that com-

bines evolutionary information gleaned from orthologous

sequences with positively and negatively labeled

sequences in a discriminative prior (the "discriminative

conservation",  prior). Using this PSP on well-studied

sequence datasets from 156 yeast TF ChIP-chip experi-
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ments improves the performance of MEME dramati-

cally–more than doubling the number of datasets where

MEME identifies the correct TF binding motif as its first

prediction. Furthermore, using the  prior allows

MEME to achieve prediction accuracies that are superior

to a large number of motif discovery algorithms, without

increasing its running time.

We also confirm the benefit of PSPs to MEME when

applied to TF motif discovery in ChIP-seq data from a

higher eukaryotic species (mouse). To increase the inde-

pendence of this second test, we used a novel way to mea-

sure the accuracy of the discovered motifs that obviates

the need to rely on a set of known motifs (a "gold stan-

dard"). Although the observed benefits were somewhat

small, they were substantial enough to indicate that con-

structing a  prior and utilizing it with MEME is

worthwhile even for higher eukaryotic ChIP-seq derived

data.
In follow-up work, we plan to investigate PSPs designed

specifically for ChIP-seq data. One approach might be to
create a PSP that encodes the increased prior probability
of the primary motif being located near the center of the
ChIP-seq peak. We also plan to investigate PSPs designed
for motif discovery in protein sequences. For protein
motifs, PSPs based on spaced triples rather than the k-
mers used here for DNA PSPs might be more appropri-
ate, given the larger protein alphabet. We also intend to
implement PSPs for use with MEME's ANR model, which
allows multiple repeats of a motif within a single
sequence. We don't foresee any major difficulties in
incorporating PSPs into the ANR model but have focused
on the OOPS and ZOOPS models in this work in order to
facilitate direct comparison with previous work by others
on PSPs.
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