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Abstract

Background: It is well known that most of the binding free energy of protein interaction is contributed by a few key
hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions.
Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale
since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying
hot spots are greatly desired and urgently required.

Results: In this work, we introduce an efficient approach that uses support vector machine (SVM) to predict hot spot
residues in protein interfaces. We systematically investigate a wide variety of 62 features from a combination of protein
sequence and structure information. Then, to remove redundant and irrelevant features and improve the prediction
performance, feature selection is employed using the F-score method. Based on the selected features, nine individual-
feature based predictors are developed to identify hot spots using SVMs. Furthermore, a new ensemble classifier,
namely APIS (A combined model based on Protrusion Index and Solvent accessibility), is developed to further improve
the prediction accuracy. The results on two benchmark datasets, ASEdb and BID, show that this proposed method
yields significantly better prediction accuracy than those previously published in the literature. In addition, we also
demonstrate the predictive power of our proposed method by modelling two protein complexes: the calmodulin/
myosin light chain kinase complex and the heat shock locus gene products U and V complex, which indicate that our
method can identify more hot spots in these two complexes compared with other state-of-the-art methods.

Conclusion: We have developed an accurate prediction model for hot spot residues, given the structure of a protein
complex. A major contribution of this study is to propose several new features based on the protrusion index of amino
acid residues, which has been shown to significantly improve the prediction performance of hot spots. Moreover, we
identify a compact and useful feature subset that has an important implication for identifying hot spot residues. Our
results indicate that these features are more effective than the conventional evolutionary conservation, pairwise
residue potentials and other traditional features considered previously, and that the combination of our and traditional
features may support the creation of a discriminative feature set for efficient prediction of hot spot residues. The data
and source code are available on web site http://home.ustc.edu.cn/~jfxia/hotspot.html.

tributed by a small portion of the total number of amino
acids [4,5]. These amino acids are termed as hot spots

Background
Protein-protein interactions play a key role in cellular

function and form the backbone of most biological pro-
cesses [1-3]. Although the principles governing protein
interactions are not fully understood, it is well known
that most of the binding energy in an interaction is con-
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that appear to be clustered in tightly packed regions in
the center of protein interfaces, and are observed to be
crucial for preserving protein function and maintaining
the stability of protein association [5-8]. A popular sys-
tematic experimental technique for identifying hot spots
is through site-directed mutagenesis like alanine scan-
ning [9], which aims to evaluate the change in the binding
energy resulting from the mutations of protein side-
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chains to alanine within a protein interface. A database
collecting such experimental hot spots is Alanine Scan-
ning Energetics database (ASEdb) [10]. Another database,
i.e., binding interface database (BID), also contains exper-
imentally verified hot spots in protein-protein binding
interfaces extracted from the literature [11].

Due to the crucial role played by hot spots, their char-
acteristics have been extensively studied. Several works
have disclosed that the amino acid compositions are dif-
ferent between hot spot and non-hot spot regions [6].
Bogan and Thorn reported that hot spots are enriched in
Tyr, Trp and Arg due to their size and conformation.
They also found that hot spots are surrounded by ener-
getically less important residues that shape like an O-ring
to occlude bulk water molecules from the hot spots
[12,13].

On the other hand, Leu, Ser, Thr and Val residues [5,6]
are disfavored and essentially absent in hot spots despite
their importance for protein structures. Analysis of vari-
ous complexes has also shown that Asn and Asp are more
prevalent in hot spots than Gln and Glu [5,6], which
might be due to the differences in side-chain conforma-
tional entropy.

Furthermore, some studies indicate that the hot spots
are more conserved than non-hot spots [14,15]. Ma et al.
analyzed residue conservation in ten protein families and
found that hot spot residues are statistically correlated
with structurally conserved residues [16]. Another study
[17] illustrated that hot spots from different monomers
prefer to interact. The correlation between these cou-
plings and structural conservation was found to be
remarkable [18]. Keskin et al. [19] found that there is a
strong correspondence between experimentally identi-
fied hot spots and structurally conserved residues, which
can be explained by the observation that the hot spots are
located within densely packed regions. They also found
that the hot spots are surrounded by residues that are
moderately conserved. It has also been shown that hot
spots are related to central interface resides, which are
conserved in sequence alignments and are not exposed to
the solvent in protein complex [16].

Based on the studies on the characteristics of hot spots,
a number of computational methods have been devel-
oped to predict and identify hot spot residues from inter-
face residues. Generally speaking, these methods can be
split into two groups: energy-based methods and feature-
based methods. Some energy-based methods, such as
computational alanine scanning [20], use a free energy
function to calculate the effects of alanine mutations on
the binding free energy of a protein-protein complex.
Molecular dynamics simulations [21,22] can also be used
to estimate the free energy of association. Although these
methods give good predictive results, they are not appli-
cable in large scale hot spot predictions due to the high
computational cost and the difficulty in operation. On the
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other hand, the feature-based methods try to discrimi-
nate hot spots from the rest of the interface residues by
using sequence, structure or a combination of both struc-
ture and sequence information. Ofran and Rost [23] used
a neural network, based on local sequence environment
and evolutionary profile of residues, to identify hot spots.
Their method can directly predict hot spot residues from
protein primary sequences and suggests that the com-
monalities of hot spots have been imprinted clearly onto
amino acid sequences. Darnell et al. [24,25] introduced
two decision tree approaches to predict hot spots based
on shape-related features and biochemical contact fea-
tures, respectively. A combination of these two models
using a simple OR rule led to better prediction accuracy
than computational alanine scanning. Other feature-
based methods include those from Guney et al. [26] that
identify hot spots using solvent accessible surface areas
and residue conservation, and a similar one from
Tuncbag et al. [27] that present an empirical formula to
determine hot spots by combining solvent accessible sur-
face areas and statistical pairwise residue potentials. In a
more recent work, Cho et al. [28] applied a support vec-
tor machine (SVM) to predict hot spots with features
extracted from sequence, structure and molecular inter-
action information. Lise et al. [29] also employed SVMs
as classifiers with input features extracted from the basic
energetic terms that contribute to hot spot interaction.

Although current feature-based methods achieve rela-
tive success for identifying hot spots in protein interfaces,
they are still at the primary stage. Up to now, the biologi-
cal properties that are responsible for hot spots have not
been fully understood. Consequently, the features previ-
ously identified as being correlated with hot spots are still
insufficient. In this paper, we present a new efficient fea-
ture-based method to identify hot spots in protein inter-
faces. Initially, we extracted a wide variety of features
from a combination of protein sequence and structure
information. We then performed feature selection to
remove noisy and irrelevant features, and thus improved
the performance of the classifier. After extensive feature
selection, nine individual-feature based predictors were
developed to identify hot spots using support vector
machines (SVMs). Finally, we employed an ensemble
classifier approach, which further improved prediction
accuracies of hot spots. To demonstrate its effectiveness,
the proposed method was applied to both the ASEdb and
BID benchmark datasets. Empirical studies show that our
method can yield significantly better prediction accuracy
than those previously published in the literature.

Methods

Datasets

Training Set

The training data set used in this study was extracted
from a set of 17 protein-protein complexes defined by
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Cho et al. [28]. It is composed of interface residues exper-
imentally mutated to alanine which have reported free
energy of binding (AAG) from the ASEdb database [10]
and the published data of Kortemme and Baker [20]. The
redundancy in this data set was further eliminated by
using the CATH query system with the sequence identity
less than 35% and the SSAP score less than or equal to 80.
We also removed protein chains for which we could not
obtain the corresponding Consurf-DB files [30] from the
original data set. A hot spot residue is defined as an inter-
face residue in the data set if its corresponding binding
free energy is higher or equal to 2.0 kcal/mol. The inter-
face residue with binding free energy less than 0.4 kcal/
mol is considered as non-hot spot, as described by
Tuncbag et al. [27]. Other interface residues with binding
free energy between 0.4 and 2.0 are excluded from the
training set in order to better discriminate. According to
the above definitions, we obtained 154 interface residues,
of which 62 residues are hot spots and 92 residues are
non-hot spots, as shown in Table 1 and Additional file 1.
Independent test set

An independent test set was extracted from the BID data-
base [11] to further assess the performance of our pro-
posed method. In BID, the relative disruptive effect of the
mutation is listed as either 'strong, 'intermediate’, 'weak'
or 'insignificant'. In our study, hot spot residues are
labeled as the ones with 'strong' mutations and others are
regarded as non-hot spots. Note that we used exactly the
same dataset as the one used in Cho et al. [28] for the
purpose of comparing our method with theirs, because
their method is currently the state-of-the-art in the field
of hot spot prediction based on protein structures.

Table 1: Training set of protein structures
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Feature representation

To build a predictor that can best distinguish hot spot
residues from non-hot spots, we performed an extensive
search so as to derive, optimize and evaluate features
based on the sequence and structure characteristics of
protein binding sites. These features (see Additional file
2) can be roughly divided into three groups: (i) Physico-
chemical features; (ii) Features based on protein tertiary
structures; and (iii) Residue-residue pairing preferences
at the interface, residue evolutionary conservation scores
and temperature factors.

Physicochemical features

Physicochemical features of an amino acid residue were
described by ten values: number of atoms, number of
electrostatic charge, number of potential hydrogen
bonds, hydrophobicity, hydrophilicity, propensity, iso-
electric point, mass, expected number of contacts within
14 A sphere, and electron-ion interaction potential. Pre-
vious works [31-34] suggest that these ten values corre-
late well with the interface properties of a protein. The
values of the ten physicochemical properties for each
amino acid can be found in Additional file 3. These values
were only related to the amino acid types and did not
contain any structural information.

Features based on protein structure

Structure-based features include accessible surface area
(ASA) [35], relative ASA (RASA) [36], depth index (DI)
[37,38], and protrusion index (PI) [39]. For ASA and
RASA, we obtained five residue attributes: total (sum of
all atom values), backbone (sum of all backbone atom val-
ues), side-chain (sum of all side-chain atom values), polar
(sum of all oxygen, nitrogen atom values) and non-polar

PDB First molecule Second molecule

lady Angiogenin Ribonuclease Inhibitor

la22 Human growth hormone Human growth hormone binding protein
lahw Immunoglobulin Fab 5G9 Tissue factor

1brs Barnase Barstar

1bxi Colicin E9 Immunity Im9 Colicin E9 DNase

1cbw BPTI Trypsin inhibitor Chymotrypsin

1dan Blood coagulation factor VIIA Tissue factor

1dvf Idiotopic antibody FV D1.3 Anti-idiotopic antibody FV E5.2
1fc2 Fc fragment Fragment B of protein A

1fcc Fc (IGG1) Protein G

1gcl Envelope protein GP120 CD4

1jrh Antibody A6 Interferon-gamma receptor
1vfb Mouse monoclonal antibody D1.3 Hen egg lysozyme

2ptc BPTI Trypsin

3hfm Hen Egg Lysozyme Ig FAB fragment HyHEL-10
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(sum of all carbon atom values). For DI and PI, we used
four residue attributes: total mean (mean value of all
atom values), side-chain mean (mean value of all side-
chain atom values), maximum (highest of all atom values)
and minimum (lowest of all atom values). The structure
information in both isolated monomer (unbound) and
complex (bound) form was calculated by PSAIA [36,40].
In addition, the relative changes in ASA, DI and PI
between the complex and monomer state of the residues
were also calculated as follows:

RcASA = ([ASA in Monomer| — [ASA in Complex]) / [ASA in Monomer]

RcDI = (|DI in Complex] — [DI in Monomer]) / [DI in Complex|

RcPI = ([PIin Monomer| —[PI in Complex]) / [PI in Monomer|

As a result, we obtained 49 structural features. More
details can be found in the Additional file 2
Features derived from residue-residue pairing preferences at
the interface, residue evolutionary rate and temperature
factor
It has been shown that the pairwise residue potentials of
the interface residues may be useful for improving the
prediction of hot spots. For example, Tuncbag et al. [27]
used knowledge-based solvent mediated inter-residue
potentials [41] and solvent accessibility to identify com-
putational hot spots. They found that pairwise potential
is a major discriminative feature in hot spot prediction.
Here, we obtained features derived from protein interface
potentials according to their method. For more details
about the implementation of their algorithm, please refer
to the original paper [27,41].

Temperature factor is a measure of atomic thermal
motion and disorder. It was suggested that interface resi-
dues have lower temperature factors than the protein
exterior, which generally reflects the lesser flexibility of
the interfacial regions [42]. As a result, it has been used to
improve the prediction of protein-protein interaction
sites. Here, the temperature factor of Ca atom was used
to represent the flexibility of each residue and normalized
as follows:

NB, = (B, - B) / o(B) (4)

where B, represents the temperature factor of residue r,

B and o(B) are the mean and standard deviation of the

temperature factors of the chosen chain.
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Residue evolutionary rate is a conservation score to
quantify the evolutionary information. The residue con-
servation score represents a natural indicator to compare
the conservation level of any residue in a protein
sequence. Thus, the lower the value, the more conserved
the corresponding residue of the protein. In our experi-
ment, the evolutionary rate for each residue was obtained
using the Rate4Site algorithm [43], which is implemented
in the ConSurf-DB server [30].

Feature selection

Feature selection, more precisely feature subset selection,
aims at finding p features out of the original d ones
according to a selection criterion. Note that it is different
from feature extraction, where a d-dimensional feature
vector is projected to a p-dimensional subspace (e.g. prin-
cipal component analysis). Feature selection is an impor-
tant step in designing classifiers. With feature selection,
we can readily remove redundant and irrelevant features
to further improve the performance of a classifier. In this
work, 62 multifaceted features were generated as
described before. It is apparent that the models built
based on these large sets of features would overfit the
training data. Therefore feature selection needs to be per-
formed to generate robust and general prediction models.
In the present work, feature selection was performed
using the F-score [33], which assesses the discriminatory
power of each individual feature. The F-score was calcu-
lated as:

Xni—Xhi

F:| ni h1| (5)
Onitohi

where x,; and x;; are the averages of the non-hot

spots and hot spots, and 0, and o;; are the corresponding
standard deviations, respectively. In other words, the F-
score measures the separation of the means for two popu-
lations (hot spots and non-hot spots) in terms of their
variances, and it is very closely related to the F-statistics,
which is commonly used to evaluate the separation of the

means for two random variables.

Model construction

The classification model for predicting hot spots was
based on SVM [44], which is a class of effective super-
vised learning methods that demonstrate high prediction
accuracy whilst efficiently avoiding the overfitting prob-
lem [45]. In this study, the software LIBSVM [46] was
employed and the radial basis kernel function was
selected to build the SVM models [38,45]. As discussed
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by Tuncbag et al. [27], residues in the same or homolo-
gous binding interfaces generally can not be expected to
be independent. However, they found that the results of
10-fold cross-validation and the 'leave one protein com-
plex out' cross-validation show similar results. Therefore,
the SVM models were created with a set of default
parameters and executed with 10-fold cross-validation
for the training set. To further validate our models, the
performance was evaluated using the independent test
set from the BID.

Performance evaluation

To assess the performance of classification methods, we
adopted a number of commonly used measures: specific-
ity, recall, precision, accuracy and F1 score. These evalua-
tion measures were defined as follows:

Specificity = TN | (TN + FP) (6)
Recall=TP | (TP + EN) (7)
Precision = TP [ (TP + FP) (8)

Accuracy = (TP +TN) [ (TP + FP + TN + FN) (9)

F1 = 2 X Re call x Precision | (Re call + Pr ecision)

(10)

where TP, FP, TN and FN represent true positive (cor-

rectly predicted hot spot residue), false positive (non-hot

spot residue incorrectly predicted as hot spot), true nega-

tive (correctly predicted non-hot spot residue) and false

negative (hot spot residue incorrectly predicted as non-
hot spot), respectively.

Results and Discussion

The results in this section are presented in the following
order. First, we constructed a variety of 62 features from a
combination of protein sequence and structure informa-
tion, and identified the best nine top-ranking features for
predicting hot spots. Then, we compared the prediction
performance of different machine learning approaches,
and found that SVM is the most accurate predictor of
binding hot spots. Finally, we combined the individual-
feature based SVM predictors, and demonstrated that the
ensemble classifier of these single-feature SVMs can sig-
nificantly improve the predicted hot spot accuracy when

Page 5 of 14

compared with other methods based on the independent
test set.

Assessment of feature importance

In previous studies, many features have been adopted to
improve the predictions of hot spot residues such as
accessible surface area (ASA), residue conservation, phys-
icochemical features, and computational alanine scan-
ning. In light of these studies, we first designed and
quantified a total of 62 multifaceted features from a com-
bination of protein sequence and structure information.
These features include: ten physicochemical characteris-
tics, residue pairwise potential (Pp) at the interface, resi-
due conservation (Rc), temperature factor (Tf), and 49
structure features based on ASA, depth index (DI) and
protrusion index (PI). Since one of our goals is to find a
more discriminative and smaller feature set for hot spot
prediction, we evaluated individual features in terms of
their discriminative power, as measured by the F-score
which was defined in the Feature Selection Section. The
E-score pinpoints the difference in multifaceted features
between hot spots and non-hot spots. The training set
was used to compute the F-scores. Figure 1 shows the
importance of 62 features and their contribution to the
discriminative quality (in descending order). As can be
seen, the most important features are those based on pro-
tein structure information, such as the ASA-based fea-
tures. Consistent with earlier finding [47], among the
features based on structure information, there is a drop in
the value of F-score when comparing unbound structures
with bound structures. This means that the features
derived from protein complex can provide better dis-
criminative power than the unbound structures. This
finding can be explained by the fact that the protein bind-
ing is usually subject to conformational changes. As a
result, the structure of the binding site can differ between
structures of the same protein with bound or unbound
chains. In the bound structure, the relevant side-chains
are in conformations that are in contact with another
protein chain, enabling the binding pocket more clearly
defined than that in the unbound structure. In other
words, the bound structure can provide additional
important information that is useful for predicting hot
spots.

As reported by Cho et al. [28], the relative change in
ASA upon complexation (RcASA, includes the relative
change in total, backbone, side-chain, polar and non-
polar ASA upon complexation) shows better discrimina-
tive power than the other corresponding ASA-based fea-
tures. For example, the F-score of relative change in total
ASA upon complexation (RctASA) is higher than both
the Unbound total ASA (UtASA) and Bound total ASA
(BtASA). We also found that the relative changes in DI
and PI upon complexation (RcDI and RcP], include the
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descending order) as measured by F-score. The meanings of the feature symbols are described in Additional file 2.
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relative change in total mean, side-chain mean, maximum
and minimal DI and PI upon complexation, respectively),
are better than the other DI-based and PI-based features
in their ability to discriminate hot spots from non-hot
spots. In addition, the side-chain information shows the
best discriminative power, with the F-scores of 0.82 (rela-
tive change in side-chain ASA upon complexation,
RcsASA), 0.69 (relative change in side-chain mean PI
upon complexation, ResmPI) and 0.55 (relative change in
side-chain mean DI upon complexation, RcsmDI),
respectively. The side-chains of amino acids are known to
be responsible for shaping different properties of individ-
ual amino acids and can thus endow the proteins with
unique structural and functional properties. In addition,
it is observed that the side-chain atoms constitute about
80% of the interface area of the average protein complex,
while the backbone atoms constitute only about 19% [48].
Therefore, the properties of side-chains contribute con-
siderably to the physicochemical properties of proteins.
Moreover, protein-protein complexation is determined
by inter-atomic interactions between monomers, of
which the interactions between side-chain atoms domi-
nate at the interface. It has been shown that interactions
between side-chain atoms are prominent among hot
spots [17]. These may explain why the side-chain infor-
mation plays an important role in the discrimination of
hot spots from non-hot spots.

Previous work indicated that there is a correspondence
between the hot spots and the evolutionarily conserved
residues [26]. However, in this study, we observed that
the residue conservation (Rc) score is less informative,
with the F-score of only 0.0538. This scenario is consis-
tent with the finding of Tuncbag et al. [27]. Although hot
spot residues are often conserved, many other residues
can be evolutionarily conserved as well, due to other
structural and functional constraints. Moreover, hot
spots are often surrounded by residues that are moder-
ately conserved [23]. Therefore, it is understandable that
the conservation score may not be a good discriminative
factor [27].

Interestingly, we found that residue pairwise potentials
(Pp), which have been previously adopted to enhance the
hot spot prediction [27], did not perform well in this
study. In addition, it was observed that another similar
sequence-based feature, the expected number of contacts
within 14 A sphere (Enc), also appears to be insignificant.
Previous works have suggested that residues with rela-
tively low temperature factors are mainly involved in pro-
tein binding. Hence, temperature factor is possibly useful
for improving the prediction performance of hot spots.
As can be seen from Figure 1, the temperature factor (Tf)
has the F-score of 0.4793. It is worth mentioning that the
differential distributions of the means separated by the
average standard deviations will result in an F-score of
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0.5, indicating that the temperature factor can only make
a minor contribution to distinguishing hot spots from
other non-hotspot residues.

Individual-feature based classifiers

After extensive feature selection, we selected nine best
top-ranking structural features with their respective F-
scores higher than 0.60: relative change in side-chain
ASA upon complexation (RcsASA), relative change in
total ASA upon complexation (RctASA), relative change
in polar ASA upon complexation (RcpASA), bound side-
chain RASA (BsRASA), relative change in side-chain
mean PI upon complexation (ResmPI), bound total RASA
(BtRASA), bound polar RASA (BpRASA), relative change
in total mean PI upon complexation (RetmPI) and bound
side-chain ASA (BsASA). These features belong to the
ASA-based and PI-based features. SVM classifiers were
then built to discriminate between hot spots and non-hot
spots based on these individual features.

The prediction performances of individual feature-
based SVM models are illustrated in Table 2, which were
evaluated based on 10-fold cross-validation and the inde-
pendent test set. We want to emphasize that as a robust
metric of classifier performance for problems with unbal-
anced classes, a better F1 score has to exceed the fre-
quency of hot spots observed in the data set that
represents the practical baseline of a random predictor.
As the training set consists of 62 hot spots and 92 non-
hot spot residues, the F1-score for any model should be
more than 0.40. For the independent test set with 127
mutated interface residues of which 39 residues are hot
spots, the F1-score should be larger than 0.31. As can be
seen in Table 2, the recall, precision and F1 scores of all
classifiers are respectively higher in ASEdb, but lower in
BID. Nevertheless, these classifiers provide significantly
better performance than the random models in both
ASEdb and BID (Note that ASEdb is the training set while
BID is the independent test set). The performance differ-
ence of these individual-feature based models on the two
distinct datasets possibly indicates the different natures
of these two datasets [27]. The hot spots in ASEdb are
defined as the residues for which alanine mutation causes
a significant increase in the binding energy of at least 2
kcal/mol. However, in BID, instead of using a single
threshold, alanine mutation data are divided into 'strong,
'intermediate’, 'weak' and 'insignificant' interactions, and
only 'strong' interaction strengths would be considered as
hot spots. In BID, the classifier based on the RctmPI fea-
ture has the highest F1 score (0.62), while the perfor-
mance of the classifier based on the RcsmPI feature was
the second. Although the classifiers based on RctmPI and
ResmPI were not the most effective in identifying hot
spots in ASEdb, they were superior to the majority of
classifiers based on individual features. These results
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Table 2: Prediction performance of individual-feature based SVM models
Feature Dataset Specificity Recall Precision  Accuracy F1 TP TN FP FN
RcsASA Training set 0.79 0.74 0.71 0.77 0.72 46 73 19 16
Test set 0.66 0.67 0.46 0.66 0.55 26 58 30 13
RctASA Training set 0.78 0.71 0.69 0.75 0.70 44 72 20 18
Test set 0.68 0.72 0.50 0.69 0.59 28 60 28 1
RcpASA Training set 0.78 0.79 0.71 0.79 0.75 49 72 20 13
Test set 0.70 0.59 0.47 0.67 0.52 23 62 26 16
BsRASA Training set 0.72 0.79 0.65 0.75 0.72 49 66 26 13
Test set 0.52 0.72 0.40 0.58 0.51 28 46 42 1
RcsmPI Training set 0.75 0.81 0.68 0.77 0.74 50 69 23 12
Test set 0.74 0.69 0.54 0.72 0.61 27 65 23 12
BtRASA Training set 0.72 0.69 0.62 0.71 0.66 43 66 26 19
Test set 0.56 0.72 0.42 0.61 0.53 28 49 39 1
BpRASA Training set 0.62 0.82 0.59 0.70 0.69 51 57 35 1
Test set 0.53 0.67 0.39 0.57 0.49 26 47 41 13
RctmPI Training set 0.76 0.73 0.67 0.75 0.70 45 70 22 17
Test set 0.78 0.67 0.58 0.75 0.62 26 69 19 13
BsASA Training set 0.61 0.81 0.58 0.69 0.68 50 56 36 12
Test set 0.61 0.59 0.40 0.61 0.48 23 54 34 16

indicate that RctmPI and RcsmPI play vital roles in iden-
tifying hot spots. The protrusion index (PI) quantifies the
extent to which a residue protrudes from the surface of a
protein. Pintar et al. [39] suggested that the identification
of protruding, or highly convex regions in proteins is
important in the analysis of interfaces in protein-protein
complexes. Wu et al. [49] also found that the interface
residues tend to protrude from the surface. These analy-
ses explain why the classifiers based on PI perform well.
In addition, in accordance with some other recent stud-
ies, the classifiers based on the conventional ASA features
such as RctASA also have high prediction accuracy.

It was previously shown that a protein-protein interface
is generally more solvent accessible and protruding than
other parts of a protein's surface [50]. Li et al. [51] ana-
lyzed the geometrical features of interfacial residues and
found that the complemented pockets and protruding
residues are enriched in hot spots as the most important
geometric features in protein interfaces. By means of
expelling water molecules, the two component chains
protrude deeply into one another in protein interfaces so
that the complementary pockets of one chain bind to
their corresponding protruding residues from the partner
chain, and eventually, bind to protect each other from the
solvent. In conclusion, both the protrusion index (PI) and
accessible surface area (ASA) are the important features
to distinguish hot spots from non-hot spots (Table 2).

It is well known that SVM is supposed to have more
prediction power based on multiple features rather than

individual properties. To further explore this possibility,
we also tried multi-feature-based SVMs to predict hot
spots. We have normalized these features with the mean
and standard deviation of the sample set [28] before
inputting them into SVM to build the classifiers. Firstly,
the two best features, RcsASA and RctASA, were selected
to construct a multi-property predictor, and then other
features were added one by one to SVM in decreasing
order of F-score to construct a series of multi-feature pre-
dictors. The prediction results for the multi-feature pre-
dictor with different combinations are shown in
Additional file 4. As can be seen, the prediction perfor-
mance of the multi-features predictor increases from 0.56
to 0.60 when the number of properties increases from 2
to 5. A slight decrease in performance from 0.60 to 0.58 is
observed when the number of properties increases from
5t0 9. The results indicate that the performance based on
multiple features (maximum F1 = 0.60) was lower than
the SVM classifiers based on individual features RcsmPI
(F1 = 0.61) and RctmPI (F1 = 0.62). One possible reason
might be that there exists correlation among these fea-
tures (Table 3). For example, the correlation coefficients
among the majority of the ASA-based features are larger
than 0.60 and the correlation coefficient between the fea-
ture RetmPI and ResmPI is larger than 0.90. Therefore,
we used the individual-feature based classifiers as our
final models to infer hot spot residues in protein inter-
faces.
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Comparison of different classifiers based on the same
feature set

Darnell et al. [24] indicated that the SVM-based model is
considerably worse than the decision tree and Bayes Net
models. In this study, in order to identify the best
machine learning technique suitable for predicting hot
spots in protein interfaces, we comprehensively evaluated
the performances of SVM, Bayes Net, Naive Bayes, RBF
Network, Decision Tree and Decision Table classifiers.
All these algorithms except SVM were implemented
using the Weka package [52] with the default parameter
configuration. The performance comparison of the
RcsASA feature based machine learning classifiers using
10-fold cross-validation and the independent test set is
listed in Table 4. It can be seen that SVM outperformed
the Decision Tree and Bayes Net in terms of the F1 score
based on the ASEdb dataset, with the F1 score increasing
by more than 0.12 and 0.10, respectively. Moreover, it also
outperformed RBF Network and Decision Table with the
F1 score increasing by more than 0.05 and 0.10, respec-
tively. When compared with Naive Bayes based on the
ASEdb dataset, the F1 score of SVM is only 0.02 smaller
than that of Naive Bayes. Nevertheless, when tested on
the BID dataset, the F1 score of SVM is much higher than
those of Decision Tree, Decision Table and Bayes Net,
with AF1 score of 0.21, 0.20 and 0.20, respectively. In
addition, SVM has at least comparable performance with
Naive Bayes and RBF Network on the BID dataset. It is
worth mentioning that we have also tried machine learn-
ing methods based on other features and still got the sim-
ilar performance (data not shown). The main reason for
the performance difference of our method and previous
studies is probably due to the application of the novel fea-
tures in our method. All the above findings indicate that
SVM gives better predictive performance compared with
Bayes Net, Decision Tree and Decision Table. And it also
performs comparably to Naive Bayes and RBF Network.
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Ensemble classifier for hot spot prediction

In this study, different models were further combined by
majority voting in order to improve the final prediction
performance. We compared the classifier number used
for each model and the results on the independent test set
are shown in Table 5. When all the individual feature
based classifiers are used, the model achieves a perfor-
mance of 57%, as measured by the F1 score. Using classi-
fiers based on seven individual features with the F1 score
more than 0.50 as the base classifiers, we were able to
achieve a slightly better accuracy. A large and significant
increase in prediction performance was achieved by com-
bining only three individual feature based classifiers with
the F1 scores higher than 0.59. From Table 5, we can see
that the majority voting rule based model correctly pre-
dicts 72% of hot spots, as compared with 67% for the best
individual feature RctmPI based model. However, the
majority voting model loses some precision and specific-
ity relative to the RctmPI based model, but increases the
recall on the other hand. In other words, more positive
hot spots are predicted with a slight lower percentage of
true negatives. Each single-feature based model can cor-
rectly predict a different subset of hot spots. In summary,
we conclude that our ensemble model for predicting hot
spots achieved a satisfactory performance.

Comparison with other methods

In this section, we further compared our method with
other methods. Our final prediction model is called APIS,
an acronym of "A combined model based on Protrusion
Index and Solvent accessibility". Table 6 summarizes the
performance comparison of different methods on the
same independent test set. Among these approaches,
Robetta [20] and FOLDEF [53] are alanine scanning
methods, while KFC [24,25] and MINERVA [28] are
knowledge based methods. Both our method and MIN-
ERVA showed high success rates in contrast to the other
three methods. The F1 scores for our method and MIN-

Table 3: The correlation coefficients among the nine best top-ranking features

Feature RcsASA RctASA RcpASA BsRASA RcsmPlI BtRASA BpRASA RctmPI BsASA
RcsASA 1.0000 0.9714 0.7168 -0.8382 0.8582 -0.8454 -0.6826 0.8007 -0.7866
RctASA 1.0000 0.7733 -0.8234 0.8609 -0.8632 -0.7299 0.8357 -0.7931
RcpASA 1.0000 -0.6201 0.6752 -0.6364 -0.6932 0.6770 -0.5972
BsRASA 1.0000 -0.7052 0.9555 0.7933 -0.6724 0.9239
RcsmPI 1.0000 -0.7477 -0.6730 0.9536 -0.6601
BtRASA 1.0000 0.8563 -0.7084 0.8966
BpRASA 1.0000 -0.6640 0.7465
RctmPI 1.0000 -0.6399
BsASA 1.0000




Xia et al. BMIC Bioinformatics 2010, 11:174
http://www.biomedcentral.com/1471-2105/11/174

Page 10 of 14

Table 4: Evaluation of the hot spot prediction using different machine learning classifiers based on the RcsASA feature

Classifier Dataset Specificity Recall Precision  Accuracy F1 TP TN FP FN

SVM Training set 0.79 0.74 0.71 0.77 0.72 46 73 19 16

Test set 0.66 0.67 0.46 0.66 0.55 26 58 30 13

Bayes Net Training set 0.79 0.56 0.65 0.70 0.60 35 73 19 27

Test set 0.85 0.28 0.46 0.68 0.35 11 75 13 28

Naive Bayes Training set 0.75 0.81 0.68 0.77 0.74 50 69 23 12

Test set 0.58 0.72 0.43 0.62 0.54 28 51 37 1

RBF Network Training set 0.85 0.63 0.74 0.76 0.67 39 78 14 23

Test set 0.76 0.62 0.53 0.72 0.57 24 67 21 15

DecisionTree Training set 0.87 0.53 0.73 0.73 0.62 33 80 12 29
(J48)

Test set 0.84 0.28 0.44 0.67 0.34 1 74 14 28

Decision Training set 0.79 0.56 0.65 0.70 0.60 35 73 19 27
Table

Test set 0.85 0.28 0.46 0.68 0.35 11 75 13 28

ERVA are 0.64 and 0.52, respectively, while the other
methods have F1 scores in the range of 0.34~0.40. There-
fore, the MINERVA and our method can effectively dis-
tinguish between hot spots and non-hot spots. Our
method can correctly predict hot spots from the data set
with recall = 0.72 and precision = 0.57. This means that
our method can correctly predict 72% of the true hot
spots for this data set (recall), and 57% of the predicted
hot spots are identified as true hot spots (precision).
MINERVA efficiently identified non-hot spots (specific-
ity = 0.90), while it could not correctly identify most hot
spots (recall = 0.44). The F1 score of our model is 12 per-
centage points higher than that of MINERVA (the
detailed comparison of the two methods can be found in
Additional file 5). From these analyses, we can see that
our method gives remarkably better prediction perfor-
mance in comparison to other available prediction
approaches.

Since the method utilized in our experiments are quite
similar to the work by Tuncbag et al. [27], it is reasonable
to compare our APIS method with their method. How-
ever, it is not straightforward to make a direct compari-
son. For example, we note that on the BID-derived
dataset of Tuncbag, the reported F1 score of the Robetta
method is 0.60, which is substantially higher than that

obtained on our BID-derived dataset (F1 = 0.40). There-
fore, to further evaluate the robustness of our method,
additional experiments were performed (see Additional
file 6) based on the BID-derived dataset of Tuncbag. The
comparison results are given in Additional file 6: Supple-
mental Table S8, which clearly shows that the perfor-
mance of our method outperforms the other methods to
a greater extent, especially the recall value. A higher
recall generally means a better prediction of the positive
classes and it is thus helpful for the identification of hot
spot residues in practical applications. At the same time,
we want to emphasize that, although APIS achieves this
high recall at the expense of some precision compared
with Tuncbag's method, the F1 score indicates that an
adequate balance is still achieved between the two mea-
sures (the detailed comparison of the two methods can be
found in Additional file 5).

One point that should be emphasized in evaluating the
significance of hot spot residue prediction is the limited
availability of experimental data set of alanine mutations.
Both the ASEdb and BID datasets are relatively small and
obsolete. The paucity of the experimental data available
may cast doubts on the effective relevance of the features
that are used to improve the prediction. Lise et al. [29]
pointed out that the BID may be unsuitable for assessing

Table 5: Evaluation of hot spot prediction using the majority voting method based on the independent test set

Classifier number Specificity Recall Precision Accuracy F1 TP N FP FN
9 (all) 0.67 0.69 0.48 0.68 0.57 27 59 29 12
7 (F1>0.50) 0.68 0.69 0.49 0.69 0.58 27 60 28 12
3(F1>0.59) 0.76 0.72 0.57 0.75 0.64 28 67 21 1
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the power of a hot spot prediction method. As a result,
there is a need to establish a substantially larger bench-
mark dataset of hot spots and non-hot spot residues from
current literature to draw better conclusions as to what
are the major determinants of hot spots and non-hot
spots [23,27].

Case studies

To further illustrate the effectiveness of our approach
APIS for identifying hot spot residues, we present two
examples that are predicted by APIS, MINERVA and KFC
using VMD software [54].

The first example is calmodulin/myosin light chain
kinase complex [55]. Calmodulin (CaM, pdbID: lcdl,
chain A) is a calcium-binding protein expressed in all
eukaryotic cells [56]. CaM can bind to and mediate a
large number of enzymes and other proteins by Ca2+.
Among the enzymes to be stimulated by the calcium-
calmodulin complex are a number of protein kinases such
as myosin light chain kinase (MLCK, pdbID: 1cdl, chain
E). Experimentally verified hot spot residues in 1cdlAE
interface are F92_A, W800_E, G804_E, 1810_E, R812_E
and L813_E. Moreover, F12_A, F19_A, K799_E, K802_E,
R808_E and G811_E are found experimentally to be non-
hot spots. As a comparison, our method can correctly
predict the whole set of hot spots, while KFC only cor-
rectly predicts three hot spots and MINERVA identifies
four hot spots (Figure 2, Additional file 7). In addition,
our method can also correctly predict three out of the six
non-hot spots, which are F12_A, K799_E and G811_E. As
a contrast, KFC and MINERVA can identify four non-hot
spot residues (F12_A, K799_E, K802_E and G811_E), and
five non-hot spot residues (F19_A, K799_E, K802_E,
R808_E and G811_E), respectively. Although KFC and
MINERVA obtained a higher number of non-hot spots,
they can identify fewer hot spots. Altogether, 9 out of the
12 residues can be correctly predicted by APIS.

Another example is heat shock locus gene products U
and V (HslUV) complex [57]. As a bacterial homolog of
the eukaryotic proteasome, the HsIlUV complex is com-
posed of the heat shock locus gene products V (HslV)
protease and the heat shock locus gene products U
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(HslU) ATPase. HslU (pdbID: 1g3i, chain A) is a molecu-
lar chaperone that facilitates the degradation of target
proteins. When HslU binds to its cognate protease HslV
(pdbID: 1g3i, chain G), the proteolytic activity of HsIV is
enhanced one or two orders of magnitude. HslU has
experimentally determined six hot spots in its binding
sites to HslV. These hot spots gather locally and form a
hot region. Our method can correctly predict four of
these six residues to be hot spots (R441, F442, 1443 and
L444), while KFC predicts all six residues as non-hot
spots and MINERVA only identifies F442, 1443 and L444
as hot spots correctly (Figure 3, Additional file 7). D438
and L439 are not predicted to be hot spots by all these
three methods, suggesting that mutations of these two
residues might contribute to protein destabilization.

These prediction results clearly demonstrate that the
potential of APIS in identifying more hot spot residues
than other methods at the given thresholds, with little
compromise in precision (as the F1 scores indicate). In
conclusion, it was shown in computational experiments
that the proposed method outperforms two other state-
of-the-art methods.

Conclusion

Hot spots are residues comprising only a small fraction of
interface residues yet contributing significantly to the
binding free energy. In this study, we propose a new effi-
cient method to computationally determine hot spots in
the protein interface, given the structure of a protein
complex. Both the new features based on the protrusion
index and the traditional features based on solvent acces-
sibility of interface residues are used as the input to SVM
classifiers. Our analysis implies that solvent occlusion is
an indispensable factor to define a hot spot residue, but
not sufficient itself. We also show that residue conserva-
tion and temperature factor do not have significant
effects on hot spot prediction when used as individual
features alone. Interestingly, residue-residue pair poten-
tials, which were found to be effective in previous studies,
could not significantly improve the prediction of hot spot
residues. Our results show that residue occlusions from
solvent and protrusion index are the main discriminative

Table 6: Performance comparison with different methods based on the independent test set

Method Specificity Recall Precision F1 AF1
Robetta 0.87 0.33 0.52 0.40 **
FOLDEF 0.88 0.26 0.48 0.34 -0.06
KFC 0.85 0.31 0.48 0.37 -0.03
MINERVA 0.90 0.44 0.65 0.52 +0.12
APIS (this work) 0.76 0.72 0.57 0.64 +0.24

The highest value in each column is shown in bold.
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Figure 2 The visualization of prediction results for chain A (white) and chain E (blue) of protein complex 1CDL using (a) APIS, (b) KFC, and
(c) MINERVA. The following color scheme is used: true positives (known hot spots predicted correctly) in red, true negatives (actual non-hot spots
predicted correctly) in yellow, false positives (non-hot spots predicted as hot spots) in green, false negatives (known hot spots not predicted correctly)
in purple. In this case, 9 of 12 residues are correctly predicted by our method.

features in hot spot prediction. The performance of our
approach was firstly evaluated using the 10-fold cross-
validation and further validated using an independent
test set from the BID dataset. The experimental results
show that our APIS approach can provide favourable or
at least comparable performance compared with all the
previous methods and complement the experimental
techniques that were developed to identify hot spots.

4%(.1@ AR

53%:
(, i@

f&ﬁﬁg&

A
; / A1)
&\ ] -t

(a) (b) (c)

Figure 3 The visualization of prediction results for chain A (white)
of protein complex 1G3I (Chain G not shown) using (a) APIS, (b)
KFC, and (c) MINERVA. Red residues are actual hot spots predicted
correctly, purple residues are actual hot spots not predicted correctly.

Although the final best model is based on solvent
accessibility and protrusion index of interface residues,
novel characteristic features that better describe the dif-
ferent energetic contributions of the interface residues
can be easily incorporated into our prediction system to
further improve the prediction performance of hot spots.
Researchers who are interested in finding new features of
hot spot residues could use the APIS model to character-
ize the roles of their features. APIS would also benefit
from these new features on the other hand. In our future
work, we will offer an online web interface through which
our APIS approach can be implemented to computation-
ally identify potential hot spots.

Additional material

Additional file 1 Alanine mutated interface residues in the training
dataset. The dataset contains 62 hot spot residues and 92 non-hot spot
residues.

Additional file 2 Summary of the features used in this study. These
features can be roughly divided into three groups: (i) physicochemical fea-
tures; (i) features based on protein tertiary structures; and (iii) residue-resi-
due pairing preferences at the interface, residue evolutionary conservation
scores and temperature factors.



http://www.biomedcentral.com/content/supplementary/1471-2105-11-174-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2105-11-174-S2.DOC

Xia et al. BMIC Bioinformatics 2010, 11:174
http://www.biomedcentral.com/1471-2105/11/174

Additional file 3 Physicochemical features. Values of the ten physico-
chemical features are contained in this file.

Additional file 4 The average prediction results of multi-property
SVMs for different number of properties based on independent test
set. The feature RcsASA, RCtASA, RcpASA, BsRASA, ResmPl, BERASA, BpRASA,
RctmPl and BsASA were added one by one to construct a series of multi-
property SVMs according to the corresponding F-scores.

Additional file 5 Comparison of methodologies. The methodological
difference between our method and the other two previous methods of
Tuncbag et al. (2009) and Cho et al. (2009).

Additional file 6 Performance based on the Tuncbag et al. dataset
assembled from BID. Table S6: Performance of individual-feature based
SVM models; Table S7: Evaluation of hot spot prediction using the majority
voting method; Table S8: Performance comparison with different methods.
Additional file 7 Performance on the test set (BID). Detailed prediction
results for the protein structures obtained with our method.
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