
RESEARCH ARTICLE Open Access

Walk-weighted subsequence kernels for
protein-protein interaction extraction
Seonho Kim1*†, Juntae Yoon2*†, Jihoon Yang1*†, Seog Park1*†

Abstract

Background: The construction of interaction networks between proteins is central to understanding the
underlying biological processes. However, since many useful relations are excluded in databases and remain
hidden in raw text, a study on automatic interaction extraction from text is important in bioinformatics field.

Results: Here, we suggest two kinds of kernel methods for genic interaction extraction, considering the structural
aspects of sentences. First, we improve our prior dependency kernel by modifying the kernel function so that it
can involve various substructures in terms of (1) e-walks, (2) partial match, (3) non-contiguous paths, and (4)
different significance of substructures. Second, we propose the walk-weighted subsequence kernel to parameterize
non-contiguous syntactic structures as well as semantic roles and lexical features, which makes learning structural
aspects from a small amount of training data effective. Furthermore, we distinguish the significances of parameters
such as syntactic locality, semantic roles, and lexical features by varying their weights.

Conclusions: We addressed the genic interaction problem with various dependency kernels and suggested various
structural kernel scenarios based on the directed shortest dependency path connecting two entities. Consequently,
we obtained promising results over genic interaction data sets with the walk-weighted subsequence kernel. The
results are compared using automatically parsed third party protein-protein interaction (PPI) data as well as
perfectly syntactic labeled PPI data.

Background
Introduction
In recent years, biomedical research has been acceler-
ated by technological advances in biomedical science
and a surge of genomic data from the Human Genome
Project and a huge amount of new information has been
coming from the related research. In order to manage
the proliferation of biomedical data, databases such as
SWISS-PROT [1], BIND [2], MINT [3], and UniProt [4]
have been developed. However, since a majority of data-
bases still rely on human curators, substantial manual
efforts are required to cope with enormous collections
on biomedical research and publications. Thus, the
development of high-quality information extraction
tools that allow scientists and curators to quickly access
new discoveries is an important issue in bioinformatics.

Biomedical information extraction usually involves the
recognition of biomedical entities and pre-defined types
of facts, such as relations/interactions between the enti-
ties, through the analysis of raw textual data. While
there has been substantial progress in biomedical named
entity recognition, relation/interaction extraction is still
challenging since biomedical texts often contain com-
plex sentences with long-range relations, as shown in
Figure 1a.
One major approach to this issue is to adopt specific

types of matching rules or patterns as the core relation
discovery operation. The patterns are mainly repre-
sented in the form of sequences of words, parts-of-
speech (POS), or syntactic constituents [5,6]. Such pat-
tern-based relation extraction can provide an intuitively
easy methodology with high precision, but pattern forms
are too rigid to capture semantic/syntactic paraphrases
or long-range relations, which lead to low recall rates.
Thus, some works suggested more generalized pattern
learning methods to align relevant sentences [7-9].

* Correspondence: shkim@lex.yonsei.ac.kr; jtyoon@daumsoft.com;
yangjh@sogang.ac.kr; spark@dblab.sogang.ac.kr
† Contributed equally
1Department of Computer Science, Sogang University, Seoul, Korea
2Daumsoft Inc, Se-Ah Venture Tower, Seoul, Korea

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

© 2010 Kim et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:shkim@lex.yonsei.ac.kr
mailto:jtyoon@daumsoft.com
mailto:yangjh@sogang.ac.kr
mailto:spark@dblab.sogang.ac.kr
http://creativecommons.org/licenses/by/2.0

As an alternative, various kernel methods have been
employed to this relation extraction problem. Such
methods have, in particular, provided appealing solu-
tions for learning rich structural data such as syntactic
parse trees and dependency structures, which cannot be
easily expressed via the flat features. Kernels are nor-
mally designed to capture structural similarities between
instances based on the common substructures they
share. Mostly, the similarities between structures can be
efficiently computed in a recursive manner without
explicitly enumerating with feature vectors, which
enables us to avoid complex feature construction and
selection processes [9-14].

Motivation
This work expands on our previous kernel approaches
[13]. Previously, we had addressed problems of genic
and PPI extraction between biomedical entities with
four kernel methods: predicate kernel and walk kernel
(feature-based), dependency kernel (structure-based ker-
nel), and hybrid kernel (composite kernel of structure-
based and feature-based kernels). Each kernel captured
structural information in a different way to find the rela-
tionships between genes/proteins in a sentence. The
kernels are based on the shortest path connecting two
entities on the syntactic parse trees (dependency graph).
We explored the interaction learning problem in the fol-
lowing aspects: (1) efficient data representation, (2) what
semantic/syntactic features or substructures on the
shortest path linking interactive two entities are useful
for relation learning, and (3) how those structures can
be incorporated into kernels. The results revealed that
the walk kernel, one of the feature-based kernels,
showed a very competitive performance on Learning
Language in Logic (LLL) data [15], with an F-score of
77.5.
In the feature-based kernels, the syntactic substruc-

tures of relation instances were mapped to flat features.
For example, the walk kernel learned interactions
through v-walk and e-walk features on the shortest
dependency paths. In that kernel, a v-walk feature con-
sisted of (word1, relation, word2) and (POS1, relation,
POS2), and an e-walk feature was composed of (rela-
tion1, word, relation2) and (relation1, POS, relation2)
where a word/POS is a node and a syntactic dependency
relation between two nodes is an edge on the depen-
dency graph, as shown in Figure 1b and Figure 1c. The
dependency relation between a head and its dependent
was roughly represented with seven main functions of
relations: appos (apposition), comp_prep (prepositional
complement), mod (modifier), mod_att (attributive
modifier), neg (negation), obj (object) and subj (subject).
On the contrary, the structure-based kernel was repre-

sented by structural similarities between relation

instances (See Equation (3), (4)), instead of explicit fea-
ture enumerations. However, contrary to our expecta-
tion, the kernel based on structural isomorphism
between the shortest path graphs showed lower perfor-
mances than the feature-based kernel.
This study starts from the drawbacks of our previous

dependency kernel. It showed difficulties in handling the
following aspects: (1) e-walks, (2) partial match, and (3)
non-contiguous paths, and (4) different significance of
substructures. First, in the kernel, the structural similar-
ity between two relation instances was recursively cap-
tured by comparisons of v-walks (node-edge-node) on
their sub-graphs. In other words, v-walks (Figure 1b)
were compared, but e-walks (Figure 1c), one of the fea-
tures in the walk kernel, were not. However, according
to our experiments, the e-walk feature practically plays a
more important role in determining the relation than v-
walk. Second, fragments such as “subj (UP) stimulate“
or “subj (UP) stimulate obj(DN)“ shown in Figure 1e
were excluded in the substructure comparisons. Thus,
two subgraphs matched only when two root nodes and
their direct child nodes were the same and the depen-
dency relationships between them were the same. Such
a match is referred to as a complete path match. It con-
sists of a connected sub-graph with at least two words.
However, the cases where a series of node-edge-nodes
between two graphs are identical can be sparse. Thus,
we additionally consider fragment structures in the
learning framework, which are incomplete graphs like in
Figure 1e. This is referred to as partial path match.
Third, the kernel considered internally contiguous
dependency substructures on the shortest path. How-
ever, non-contiguous substructures can be important in
genic interaction. For example, a non-contiguous rela-
tion between two entities such as “simulate~comp_from
(DN) promoter“ in Figure 1g may have an effect on
genic interaction. This substructure is called non-contig-
uous path. Finally, the kernel counted all common sub-
graphs equally regardless of their importance, even
though some subgraphs have more useful properties for
learning than others. The kernel made no distinction
between the significances of structures. We tackle the 4
issues with the new kernels.

Research goal and differences from other recent
similar work
The first three substructures mentioned above can be
covered by general graph kernels [14,16]. However,
none of related studies treated the fourth issue from a
syntactic structure perspective. The main idea is that
each dependency structure has a potentially different
property and significance for relation learning according
to its type. Thus, we properly classify the substructures
that the directed shortest path encloses and distinctively

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 2 of 21

Figure 1 Substructures for kernels. A complex sentence with long range relations and substructures which are considered in each kernel are
shown. a) a sentence with long range relations (bold ®: shortest path), b) examples of v-walk, c) examples of e-walks, d) substructures
considered in previous dependency kernel, e) substructures considered in extended dependency kernel, f) substructures for spectrum kernel,
g) substructures for fixed-length subsequence kernel.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 3 of 21

incorporated them into kernels according to the types of
dependency substructures.
This point differs from other recent kernel approaches

that address the PPI extraction [9,11,14,16,17]. More-
over, our system can handle directed interactions that
the roles of entities are separated as agent and target,
while many PPI systems assume interactions to be
undirected [9,11,14,17-19].
Here, we first evaluate the effectiveness of different

dependency subpaths and revise the dependency kernel
so as to overcome the problems of complete subgraphs
and equal counting for all subgraphs. In order to treat
non-contiguous path substructures, we next introduce
string kernels that compare two instances (paths) in
terms of substrings they contain. Finally, we propose the
walk-weighted subsequence kernel which assigns differ-
ent weights according to the types of common sub-
strings between two shortest path strings. That is,
lexical subgraphs and morpho-syntactic subgraphs, e-
walk and v-walk, and contiguous and non-contiguous
dependencies are all differently handled by this kernel.
In the experiments, we evaluated our kernels on the 5
PPI corpora by [18]. In addition, we compared the per-
formances on human-annotated data and automatically
parsed data.

Related works
In general, a deeper linguistic representation is known
to support information extraction well if its accuracy is
guaranteed. Thus, many researches related to relation
extraction have used shallow or full syntactic analysis. In
particular, words between two entities are considered to
carry important information regarding relationships
between the entities. Furthermore, structural informa-
tion of a sentence affects the relation learning. However,
the use of a whole sentential structure can generate
noise in learning since all constituents in a sentence
actually do not concern an interaction between two
entities. Thus, we need to restrict the structure for
interaction learning to directly or indirectly relevant
ones to two entities. One of the ways is to use the
shortest path between two entities on a syntactic graph.
As an alternative to the shortest path approach, [14]

suggested the all-dependency-paths kernel to identify
protein/gene interactions. In order to extract correct
interactions, they represented a parse tree of a sentence
with a dependency graph and considered dependencies
outside the shortest path connecting two entities as well
as dependencies on the shortest path. They assigned a
weight of 0.9 to the edges (dependencies) on the short-
est path and a weight of 0.3 to other edges. Conse-
quently, the weighting scheme helps emphasize the
dependencies on the shortest path without excluding
dependencies other than the shortest path. Thus,

potentially relevant words outside of the shortest path
can be included in the kernel.
However, [12] reported that subtrees enclosed by the

shortest path between two entities still describe their
relation better than other subtrees, even though the
representation can miss important words outside the
shortest path in some cases, as pointed by [14].
As a feature-based approach, [11] used various syntac-

tic path features, which are encoded with SVM. They
used the predicate argument structures obtained by a
head-driven phrase structure grammar (HPSG) parser
and a dependency parser, and word context features
related to words before, between, and after two interact-
ing NEs.
On the other hand, some works considered only shal-

low linguistic information concerning word context fea-
tures without using structural information by parsing.
[9] expressed a relation between two entities by using
only words that appear in fore-between, between, and
between-after the entities. They utilized neighboring
words and their word class sequences to discover the
presence of a relation between entities. [17] extended
[9]’s work.
[16] proposed the composite kernel, which combines

previously suggested kernels: the all-paths-dependency
kernel of [14], the bag-of-words kernel of [11], and the
subset tree kernel of [20]. They used multiple parser
inputs as well as multiple kernels. The system is the
current state-of-the-art PPI extraction system on various
PPI corpora. They also boosted system performance by
adopting the corpus weighting concept (SVM-CW) [21].
Recently, the BioNLP 2009 shared task considered

more detailed behaviours of bio-molecules [22] as com-
pared to previous PPI researches. The main task
required the recognition of bio-molecular events, event
types, and primary argument concerning the given pro-
teins. The 8 event categories such as gene expression,
transcription, protein catablolism, phoshorylation, locali-
zation, binding, and regulation were considered and the
best result in the task was 51.59% (F-score).

Data representation
In this work, we represent a parsed sentence as a depen-
dency graph in which the nodes denote words/POS and
edges denote types of dependency relations between the
nodes. We constrict an essential structure for modeling
of a relationship between two entities to the directed
shortest dependency path that connects them on the
sentential graphs. However, to cover some limitations of
the shortest path representation as pointed in [12] and
[14], single paths that consist of two NEs and a single
direct syntactic dependency of a coordinating conjunc-
tion between them are extended. It is sometimes insuffi-
cient to determine the relation only with the shortest

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 4 of 21

path because of cases such as “NE1 conj_and NE2“ when
two NEs are joined by a conjunction. In fact, most cases
have no interactions except some cases that co-occur
with binding, association, recombinant, or interaction
contexts. Thus, the single shortest paths are extended to
contain predicated-head or clue context words in the
path such as “interaction between ~ and~”, “association
between ~ and ~”, and “recombinant ~ and ~” by find-
ing the immediate head of NE and the head of its head.
In addition, we add the negation mark before a predi-
cate on the path when a negation expression occurs
around the predicate. Besides, predicate and direction
information to each edge of a graph are added, which
can help identify directed relations, as shown in Figure
2. This representation is different from those in recently
published other works that encode relations with the
shortest path descriptions between entities [9,12]. It can
be efficient and informative for learning.

Directed shortest dependency path
In order to represent an interaction instance with the
shortest traversal path between two entities on the parse
graph, we used Dijkstra’s algorithm [23]. We first trans-
formed the dependency graph to an undirected graph
which allows the edges to be traversed in any direction
because every syntactic relation is toward the syntactic
head. However, to preserve the original directions of the
relations on the graph, we assign a dependent-head edge
with “UP” and conversely, “DN” for a head-to-depen-
dent edge. Furthermore, the shortest path string is
defined as a sequence of words or parts-of-speech (POS)
connected by directed dependency relations, as shown in
Figure 2b. The presence of the “PRED” label for a word
on the path indicates that the directions of the left or
right edges connected to the word are changed. This
often occurs in predicative words. Since a key compo-
nent of semantic relation determination is to identify
the semantic arguments filling the roles of predicates,
such predicate markers can be an informative feature on
predicate argument structures for a given sentence. Fig-
ure 2b visualizes the shortest dependency path linking
“ywhE“ and “sigF“. It is reused as its path string form
(Figure 2c) for string kernels and as a dependency list
form (Figure 2d) for the dependency kernel. The lexica-
lized dependency path string consists of words and their
dependency relations. We also consider the syntactic
dependency path string, which consists of POS and their
dependency relations, incorporating direction and predi-
cate information. Likewise, a POS dependency list con-
tains pairs of POS and the syntactic relations between
the POS and their direct child nodes’ POS. For each
node on a graph, the word dependency list contains
pairs of nodes and the syntactic relations between the
nodes and their direct child nodes. The labels of all NE

pair instances are represented in word order with “TA”
(target-agent), “AT” (agent-target) and “O” (no interac-
tion). Figure 2e shows some instances derived from the
sentence Figure 2a.

Kernel methods
For the relation learning, we basically adopt a kernel
approach. Kernel means a similarity function that maps
a pair of instances to their similarity score. That is, the
kernel K over an object (feature) space X can be repre-
sented with a function K: X × X ® [0, ∞]. Thus, objects
of kernel methods are expressed by a similarity matrix.
In general, a kernel can be easily computed using inner
products between objects without explicit feature hand-
ling. Thus, it can be operated well on a rich structured
representation which has a high dimensional feature
space such as graph or tree.
In this work, a genic relation pair for kernel functions

is represented by the shortest dependency path between
two NEs on the syntactic graph. Thus, the proposed
kernels compute structural similarities in various ways
according to the substructures that two dependency
paths contain. Each kernel defines meaningful substruc-
tures differently.

Results and discussion
Train and test data
We performed experiments on extracting gene and pro-
tein interactions from two different data sets, automati-
cally parsed and perfectly parsed data sets. First of all,
we used the LLL 05 shared task data for individual eva-
luation of the kernels that we proposed in this work.
The dataset provides dependency syntactic information
and directed interactions annotated with agent and tar-
get roles. The LLL basically used the Link Grammar
Parser [24] for syntactic analysis and the parsed results
were manually corrected. Thus, it is a clean data set.
The dependency analysis produced by the parser was
simplified to 27 grammatical relations. The typed depen-
dencies are shown in Figure 1. The task provides a sepa-
rate test set and external evaluations through the web
server http://genome.jouy.inra.fr/texte/LLLchallenge/
scoringService.php. The task information is available at
http://genome.jouy.inra.fr/texte/LLLchallenge/ and
further details about the data set are described in [15].
The proposed kernels are also evaluated using the 5

PPI corpora which put together by [18] for comparative
evaluations on diverse corpora. Many recent studies that
addressed PPI task used the corpora as default bench-
marks. The corpora consist of AIMed, BioInfer, IEPA,
HRPD50, and LLL 05. For syntactic dependency infor-
mation, we used the converted version by [18] which
contains fully automated dependency parsing results, as
shown in Figure 3. The corpora were parsed with

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 5 of 21

http://genome.jouy.inra.fr/texte/LLLchallenge/scoringService.php
http://genome.jouy.inra.fr/texte/LLLchallenge/scoringService.php
http://genome.jouy.inra.fr/texte/LLLchallenge/

Charniak and Lease parser [25] and the parsed results
were transformed into the collapsed Stanford depen-
dency scheme. As shown in Figure 3, they contain infor-
mation regarding entities such as proteins/genes/RNA/
chemicals, interaction pairs between entities, tokens, and
syntactic dependencies between tokens in a unified for-
mat, which enable all 5 corpora to be easily integrated
into a system. The typed dependencies were represented
with 55 grammatical relations. Details about the corpora

and their characteristics can be found in [18]. The con-
verted corpora are available at http://mars.cs.utu.fi/PPI-
Corpora/.
In case of the converted corpora, we confine interac-

tion extraction to the NE pairs that [18] considered.
The example size of each corpus is shown in Table 1.
Meanwhile, in case of original LLL data, 464 NE pairs
on the training set are used to train the kernels and 330
NE pairs on the test set are classified. We first

Figure 2 Data Representations. The shortest path representation between NE pairs and the shortest path string are visualized. a) dependency
graph for the given sentence, b) shortest dependency path between ywhE and sigF, c) lexicalized dependency path string (up) & syntactic
dependency path string (down), d) Word dependency list (up) & POS dependency list (down), e) shortest path string instances of the sentence a).

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 6 of 21

http://mars.cs.utu.fi/PPICorpora/
http://mars.cs.utu.fi/PPICorpora/

Figure 3 Examples of Typed Dependencies. The dependency information considered in the converted corpora by [18] is shown. The entity,
“calcium-sensing receptor” forms separate tokens. Thus the relations marked with * should be reorganized.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 7 of 21

constructed an NE dictionary and identified all interac-
tion pairs of NEs occurring in the dictionary. Among
them, the pairs, whose interactions were not stated as
genic interactions, were used as negative examples
because LLL provides only interactive pairs.
Both the perfectly parsed and third party auto-parsed

data sets are analyzed into typed dependency forms.
However, two syntactic analyses for relative clauses are
remarkably different from each other. In addition, the
converted corpora have much more dependency types
than LLL and some typed dependencies on the corpora
are redundant. For example, there is no clear-cut dis-
tinction between the pronominal relation types, “amod“
(adjectival modifier), “nn“ (nominal modifier) and
“dep“(dependent).
To clarify perfectly parsed LLL dataset and auto-

parsed LLL dataset, we will refer to the former as “LLL”
and the latter by [18] as “converted LLL”. “Converted
corpora” is short for the dependency-parsed 5 corpora
by [18].

Preprocessing for the third party automated inputs
Using the converted corpora, it is quite difficult to
directly retrieve syntactic dependencies for the following
reasons: (1) multiple syntactic relations and (2) self cycle
relations between two nodes exist, and (3) NE tag infor-
mation is not reflected in the parsed results, as shown
in Figure 3. Self cycle here means that an edge (x, y)
and its inverted edge (y, x) coexist between two nodes, x
and y.
In case of (3), each word of an NE corresponds to an

individual terminal node and constitutes syntactic rela-
tions with other words. In fact, this is a main drawback
of the converted data, which causes erroneous results. It
requires an additional pre-processing to eliminate or
join unnecessary syntactic relations connected to NE
words. That is, NE words are grouped again from the
converted results and dependency relations relating NE
words are readjusted. In this process, multiple syntactic
relations can come out again. In addition, some named
entities are embedded in other named entities.
Embedded (nested) named entities refer to the cases in
which one entity contains another. In such cases, two

entities share the same dependency structure but the
interaction results should be different because one of
them participates in an actual interaction. This presents
one of the difficulties in the aspect of learning. Figure 4
shows some interaction examples containing embedded
entities. In Figure 4a, the longest entity is the interactive
entity. On the contrary, in Figure 4b, the embedded
(shortest) entity is involved in the interaction. Thus,
embedded NEs disturb a normal learning process by
making it difficult to detect real interactive NEs. We
included all embedded entities in the training and test
data for comparisons with other systems.
To address the above problems, we performed a rough

disambiguation process. Table 2 summarizes the num-
bers of multiple relations, self cycle relations, operations
needed for grouping NE words, and sentences including
nested NEs with respect to 5 corpora. For example, the
converted AIMed includes 104 multiple relations and
309 self-cycle dependencies to be removed. Also, 114
out of 1,954 sentences contain embedded entities. Cur-
rently, extra pre-processing such as tag fixing and sen-
tence splitting used in other works [14,16] was not
performed in this study.

Learning and evaluation method
Each kernel is combined with SVM. The LIBSVM 2.84
package [26], which allows multi-class classifications and
user-defined kernels, is used for SVM learning. In this
study, we define our own kernels and set the C value as
1,000 for the best F-value. In addition, each kernel is nor-
malized corresponding to the kernel space as follows [27]:

K s t
K s t

K s s K t t
(,)

(,)
(,) (,)

 (1)

Extraction performances are evaluated by the F-score.
As mentioned before, we can check the performance
over the LLL test data through an external evaluation.
On the contrary, separate test sets and external evalua-
tion schemes are not provided to the other 4 corpora.
Thus, the proposed kernel is evaluated by the 10-fold
document-level cross-validation used in many recent
works [9,11,14,17]. We adopt the same data splitting
and evaluation strategy as the study. Also, if the same
protein name occurs multiple times in a sentence, the
interactions are identified over each occurrence. How-
ever, self interactions that a single protein interacts with
itself are regarded as negative, whereas in many other
works, self interactions are not considered as candidates
and removed prior to evaluation.

Experimental Results
In this paper, we proposed 5 different kernels. We first
investigated structural significances depending on

Table 1 Example size of the 5 converted PPI corpora by
[18]

Corpus Positive Examples negative All examples

AIMed 1,000 4,834 5,834

BioInfer 2,479 7,174 9,653

HPRD50 163 270 433

IEPA 335 482 817

LLL 164 166 330

The sizes of training corpora are shown.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 8 of 21

Figure 4 Embedded Entities. Some interaction examples are given regarding embedded entities. a) the longest entity is the interactive entity,
b) the embedded entity is involved in the interaction.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 9 of 21

substructure types with our previous walk kernel. Then,
for accurate assessments, each kernel’s performance was
evaluated with the clean dataset, LLL. As a result, the
walk-weighted subsequence kernel, which yielded the
best performance, was selected for further experiments.
We performed the walk-weighted subsequence kernel
over the converted LLL data to figure out how the use
of automatic parsed data affects the performance of the
kernel in comparison with the clean dataset. Finally, the
walk-weighted subsequence kernel was evaluated over
the 5 converted PPI corpora.
Table 3 shows that the walk kernel operating with

only e-walk information achieved a promising result on
the 73.8 F-score, which indicates that e-walk informa-
tion works better than v-walk in relation learning. This
structural property was incorporated as prior knowledge
in the extended dependency kernel. In addition, the ker-
nel was modified to consider more extensive structural
comparisons by allowing partial dependency path
matches and counting the matches differently according
to their types. As a result, the previous dependency ker-
nel was significantly improved from 60.7 to 69.4 in F-
score. However, there was still low since the kernel

counts only the matches that preserve direct dependen-
cies. Thus, we newly introduced string kernels, which
could handle non-contiguous dependencies. From the
spectrum kernel to the walk-weighted subsequence ker-
nel, substructure types to be considered are incremen-
tally augmented and the kernels gradually perform more
comprehensive comparison of substructures enclosed by
two shortest dependency strings.
As indicated in Table 3, even the spectrum kernel,

which is the simplest string kernel, showed a better
result than the dependency kernel. However, the fixed-
length subsequence kernel showed a good performance,
but the gap-weighted subsequence kernel, whose subse-
quence was penalized by its spread extent on strings,
was unsatisfactory. The discounting by distance gap was
not effective. Similarly, gap weighting for non-contigu-
ous subsequences was not good as with the walk-
weighted subsequence kernel. The best result was
obtained with the walk-weighted subsequence kernel
where their substructures were differently weighted
according to their significance levels for learning. In the
kernel, we classified string types into contiguous e-walk,
contiguous v-walk, and non-contiguous subsequences
and assigned different weights to each of them. The sys-
tem performance was improved by 5% with the walk-
weighted subsequence kernel over the original LLL data,
as compared to the previous walk-based kernel (Table
3). According to the results by the LLL evaluation ser-
ver, action-type interactions and negative interactions
were recognized better in the walk-weighed subsequence
kernel than in the previous walk-based kernel. We
finally chose the walk-weighted subsequence kernel for
further experiments.
Next, in order to compare the above result with ones

on the data set made in an automatic way, we per-
formed the same experiment over the converted LLL
data using the walk-weighted subsequence kernel. For
this, the kernel was trained on automatic-parsed LLL
training data and then tested on automatic-parsed LLL
test data. Table 4 shows the results evaluated by the
LLL scoring server. Those were evaluated in terms of
directed interactions. Consequently, the performance
dropped to 68.5, which represents a 13.6% decrease in
F-score, as compared to the use of perfectly parsed data.

Table 3 Performances of our kernels (LLL)

Kernel Performance

PRE REC F-M

walk kernel [13] 72.5 83.3 77.5

dependency kernel [13] 58.6 62.9 60.7

v-walk kernel 51.4 66.6 58.0

e-walk kernel 71.9 75.9 73.8

extended dependency kernel 62.6 77.7 69.4

spectrum kernel 64.6 77.7 70.5

fixed-length subsequence kernel 72.5 83.3 77.5

gap-weighted subsequence kernel 68.4 72.2 70.2

walk-weighted subsequence kernel 79.3 85.1 82.1

The performances of kernels we suggested are shown. All kernels were
trained and tested over clean data set (LLL training and test) and accessed by
LLL external evaluation server.

Table 4 Results of our kernel on LLL and the converted
LLL by [18]

Corpus Precision Recall F-M

Converted LLL 68.5 68.5 68.5

LLL 79.3 85.1 82.1

Our walk-weighted subsequence kernel was trained on automatic-parsed LLL
training data and then tested on automatic-parsed LLL test data. The result
was evaluated by the LLL scoring server. It was compared with the result over
clean LLL training/test set.

Table 2 Pre-processing

LLL AIMed BioInfer IEPA HPRD50

a) 77 1,954 1,100 486 145

b) 1,707 36,388 25,337 11,571 2,796

c) 14 172 249 67 11

d) 20 342 230 49 16

e) 70 1,859 2,243 487 121

f) 0 115 44 0 0

The numbers of multiple relations, self cycle relations, operations (eliminate/
join relations) for grouping NE words, and sentences including nested NEs,
which need a pre-processing, are summarized with respect to 5 corpora.

a) total number of sentences, b) total number of syntactic relations, c) number
of multiple syntactic relations, d) number of self-cycle syntactic relations, e)
number of operations for grouping NE words, f) number of sentences
including nested NEs.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 10 of 21

The walk-weighted subsequence kernel was also eval-
uated over the other 4 converted PPI corpora as shown
in Table 5. It achieved an average F-score of about
67.46. In particular, the extraction performances over
AIMed and BioInfer were relatively low compared to
other corpora. Since, the two corpora include nested
entities (Table 2) and their distributions of negative
and positive examples are very unbalanced (Table 1),
the performances were comparatively low although the
two are large sized corpora in contrast to other
corpora.
Consequently, the proposed kernel showed a bit low

recall as compared to its precision on the automatic
parsed datasets. In particular, recall rates were much
lower over the AIMed and BioInfer. One of the main
causes for low recalls might be inaccurate dependency
representations on the converted corpora. As mentioned
before, there were various difficulties including the con-
verted data in experiments. Although we performed a
rough disambiguation pre-processing to remove (1) mul-
tiple dependency categories, (2) unnecessary syntactic
relations according to grouping named entity words,
and (3) cycle relations from the converted corpora,
some dependency relations were still ambiguous, which
is a critical factor for training. The difficulties are sum-
marized in Table 2. Thus, the performance can be
enhanced by using other syntactic parser which is well
adapted for this domain.
Although performance comparisons among systems

would be more reliable than the LLL dataset since the
4 benchmark PPI corpora are much larger to show an
advance and robustness of an approach, further dis-
cussions on the evaluation set and experimental set-
tings will be necessary. Without benchmark test
dataset and external evaluation, it is difficult to
directly compare performances between approaches
since there are substantial differences according to the
data set used for training and testing, whether to
include self interactions, preprocessing, or the data
splitting strategy used in cross-validation. According
to [11], the F-score on AIMed could increase up to
18% with a random splitting from a pool of all gener-
ated NE pairs.

Comparisons with other systems
Table 6 shows comparisons with other systems that
were trained and tested on the perfectly parsed LLL
dataset. The systems were all accessed by the LLL exter-
nal evaluation server. In the experiment, our system out-
performed other systems. [28] applied sequence
alignment and finite state automata to generate syntactic
patterns for identifying genic interactions. [29] proposed
the Markov Logic model to create a set of weighted
clauses on the discourse representation structure which
can classify pairs of interactive NEs. [6] created candi-
date relations from dependency parse trees by applying
a small number of rules.
Table 7 shows performance comparisons over AIMed

with other systems. In the table, all systems except [9]
used syntactic information by automated parsers. It is
interesting that [9] achieved very competitive results in
precision merely based on neighboring words context of
entities. They did not exploit any structural information.
On the other hand, the work of [11] using both syntac-
tic and word context information showed a bit low
recall as compared to its precision. [14] applied syntactic
information to a graph kernel by considering dependen-
cies outside of the path as well as dependencies on the
shortest path between two entities. However, the preci-
sion was relatively lower than those obtained by other
systems. [16] presented a composite kernel of previously
suggested kernels. They combined the all-paths- depen-
dency kernel by [14], the bag-of-words kernel by [11],
and the subtree kernel by [20]. The system employed

Table 5 Results on the 5 converted PPI corpora by [18]

Corpus Positive
Examples

negative All
examples

Precision Recall F-M

AIMed 1,000 4,834 5,834 61.42 53.26 56.59

BioInfer 2,479 7,174 9,653 61.84 54.24 57.58

HPRD50 163 270 433 66.67 69.23 67.82

IEPA 335 482 817 73.73 71.81 72.88

LLL 164 166 330 76.90 91.15 82.44

Our walk-weighted subsequence kernel was evaluated on 5 PPI corpora. We
used the dependency parsed corpora by [18] for dependency information.

Table 6 Performance comparison with other systems
(LLL)

PPI system Method Precision Recall F-M

[6] rule based 68 78 72

[8] sentence alignment & FST 50.0 53.8 51.8

[13] walk kernel 72.5 83.3 77.5

[29] Markov logic model 65.0 72.2 68.4

Our system walk weighted subsequence
kernel

79.3 85.1 82.1

The comparisons with other systems, which were accessed by LLL task’s
external evaluation, are shown.

Table 7 Performance comparison with other systems
(AIMed)

PPI system Positive
examples

All
examples

Precision Recall F-M

[9] 1,000 65.0 46.4 54.2

[11] 1,068 5,631 64.3 44.1 52.0

[14] 1,000 5,834 52.9 61.8 56.4

[16] 1,000 5,834 55.0 68.8 60.8

Our system 1,000 5,834 61.4 53.3 56.6

The performances on AIMed of recent approaches were compared.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 11 of 21

tag fixing and sentence splitting as preprocessing, and
used the outputs of two parsers, Sagae and Tsujji’s
dependency parser and Miyao and Tsujii’s Enju parser,
which were retrained using the biomedical GENIA Tree-
bank corpus. The system showed the current state-of-
the-art results over other corpora as well as AIMed.
Surprisingly, the recalls of the system were very high
even in tricky corpora such as AIMed and BioInfer.
Table 8 shows comparison with other systems over

the 5 PPI corpora. [18] presented the results over the
converted 5 corpora using “RelEx” [6], a full parsing-
based relation extraction system [18]. Their evaluation
environment was not specifically described in the paper
but they conducted the “RelEx” system on the same
parsed corpora as that used in our system. Except
HPRD50 domain, our kernel worked better than the sys-
tem under the same syntactic information. The LLL
extraction task shown in Table 8 is simpler than one in
the original LLL challenge. They all performed 10-fold
cross-validation on the LLL training set for evaluation
and performances were assessed in terms of undirected
interaction extraction.
Table 9 shows averages of recalls, precisions and F-

scores of the systems shown in Table 8 with respect to
all the 5 PPI corpora. Notable is that the average preci-
sion of our system was higher than that in the other PPI
extraction systems with a similar setting (i.e. the best F-
value).
In conclusion, with respect to both the clean and con-

verted LLL, we found increases in performance as com-
pared to other systems. On the other hand, for the rest
of fully automatically parsed corpora, we could not
show significant improvements in F-score over other
systems. As in many other researches, the extraction
performances on AIMed and BioInfer, were worse than
those on the other 3 corpora. In particular, recall rate
requires further research to complement imperfect syn-
tactic analyses derived from automated systems in the
real world and insufficient information of the shortest
path representation.
However, precisions of the proposed kernel were quite

competitive in both clean dataset, and automated third-
party datasets. As shown in the experiments, our
approach worked better than other system under the

same syntactic information environment or when accu-
rate syntactic features were provided. Thus, the perfor-
mance of the kernel is expected to be enhanced by the
syntactic parser adapted for this task.

Error analyses
In this section, we discuss the types of interactions that
remain to be recognized and filtered out and how to
improve the performance of the proposed walk-weighted
subsequence kernel by analyzing errors. For conveni-
ence, we assumed the interactions to be undirected. In
Figure 5, 6, and 7, “N“ (negative) indicates that the pair
has no relation and “P“ (positive) accounts for a pair
that has a relation. Figure 5 and 6 show some false
negative interactions to be recognized.
First, many interactions regarding nested entities were

filtered out. In fact, nested named entities are commonly
encountered in biomedical text. For example, they
account for 16.7% of all named entities of GENIA cor-
pus. Currently, we allow all entities on nested entities.
For instance, “IFN-gamma“ and “IFN-gamma SCI“ in
Figure 5a are both considered. However, only one of
them generally participates in an actual interaction. As
mentioned earlier, since nested entities have the same
structural and contextual information but prediction
results need to be different, they prevent a proper learn-
ing. This can be one reason for the low performance.
Thus, we need to restrict either the longest NE or the
shortest NE for performance improvement.
Second, interactions related to single dependency

shortest paths were filtered out. The single dependency
shortest path implies one that is composed of two enti-
ties and a direct dependency between them, such as
“NE_conj_and_NE“ or “NE_conj_or_NE“. In this case, we

Table 8 Performance comparison with other systems (5 PPI corpora)

PPI system AIMed BioInfer HPRD50 IEPA LLL

P R F P R F P R F P R F P R F

[14] 52.9 61.8 56.4 47.7 59.9 52.9 63.4 65.8 63.4 69.6 82.7 75.1 72.5 87.2 76.8

[16] 55.0 68.8 60.8 65.7 71.1 68.1 68.5 76.1 70.9 67.5 78.6 71.7 77.6 86.0 80.1

[18] 40 50 44 39 45 41 76 64 69 74 61 67 82 72 77

Our system 61.4 53.3 56.6 61.8 54.2 57.6 66.7 69.2 67.8 73.8 71.8 72.9 76.9 91.2 82.4

Our walk-weighted subsequence kernel was compared with other recent systems which were evaluated on 5 PPI corpora.

Table 9 Comparison of average performances

PPI system All 5 PPI corpora

P R F

[14] 61.22 71.48 64.92

[16] 66.86 76.12 70.32

[18] 62.2 58.4 59.6

Our system 68.12 67.94 67.46

The average recalls, precisions and F-scores of the systems shown in Table 8
were computed with respect to all the 5 PPI corpora.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 12 of 21

need further information other than the paths to
retrieve correct interactions. To ensure sufficient infor-
mation for relation extraction, we expanded the single
dependency shortest paths. For instance, the shortest
path between “BMP-2“ and “BMPR-1A“ in Figure 5b
represented as “NE/NE_prep_for(DN)_NE/NE“ requires
contextual information outside the path such as “bind-
ing“ to identify their interaction. In particular, the

interactions of coordinated entities were often unde-
tected because they commonly involve parsing errors.
For the pairs of coordinated entities such as “BMP-2“
and “BMPR-II“ (4, 12) and “BMP-2“ and “ActR-II“ (4,
14) in Figure 5b, the distant useful words such as “bind-
ing“ were still excluded in the shortest path, although
the paths were extended to consider the surrounding
contexts. After all, a more elaborate strategy for path

Figure 5 Types of False Negative Examples. Some false negative interactions to be recognized are shown. The NE pairs relating a) nested
entities and b) single dependency shortest paths are the examples.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 13 of 21

Figure 6 Types of False Negative Examples (cont.). a) parsing errors, b) negations, and c) the cases which need information other than a
sentence cause false negative interactions.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 14 of 21

Figure 7 Types of False Positive Examples. Some false positive interactions to be filtered out are shown. The error types can be classified into
a) and d) need more context, b) negation, and c) related words are not found on the shortest path.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 15 of 21

extension with respects to single dependency path and
coordination handling is required as future work. The
path links that have no predicate should be
reconsidered.
Third, some interactions are undetected due to par-

sing errors. In the biomedical domain, complex sen-
tences containing coordination, apposition, acronym,
clause dependency, or long dependency structures are
very common. For instance, the first pair, “FGF-2“ and
”FGFR1” (18, 22) in the sentence of Figure 6a was not
found due to incorrect dependency analysis in the form
of “nn(FGFR4-32, FGFR1-27)”. It implies that other sup-
plementary information is required in addition to the
shortest path representation to compensate for parsing
errors often caused by the complicated coordination,
apposition structures in biomedical texts. One way to
reduce these can be efficient sentence splitting.
Our system still failed to identify some interactive pairs

that occur with negation expressions. In Figure 6b, it cor-
rectly handled the negative pairs such as “MMP-1” and
“TIMP-1” by negation processing but missed out interac-
tion pairs such as “gelatinase A” and “TIMP-1” (17, 25),
“gelatinase B” and “TIMP-1” (19, 25). Further studies
should be performed in this negation processing. Finally,
some cases need information other than a sentence, as
shown in Figure 6c. In the sentence, the system cannot
recognize the pair of “cyclinA” and “cdk2” (2, 4).
Figure 7 shows some types of false positive interac-

tions that remain to be filtered out. In Figure 7a, the
pair of “phosphatidylinositol (PI) 3-kinase” and “CD5”
actually has no relation but our system recognized it as
an interaction pair because of the substructure of “inter-
acts/VBZ_PRED prep_with(DN)”. It needs a much
broader context including “we investigated whether~”
for the correct extraction. Figure 7b shows a pair exem-
plifying a negation expression. In the sentence, the sys-
tem detected all pairs as interactive pairs, but some
pairs should have been filtered out. Our negation pro-
cessing method could not cover the context of “but not
with”.
Figure 7c shows the interactions that are not detected

with information on the shortest path alone. The short-
est path in the sentence did not represent the context of
“is not necessary”. That is, words representing the inter-
actions did not exist on the shortest path. Likewise, the
interaction in Figure 7d should be filtered out. It
requires a broad context such as “interaction with 14-3-
3 proteins”. It is one of the difficult cases to be filtered
out.

Discussion and future work
A more detailed investigation of other dependency par-
sers applied in PPI studies [11,16,19] should be per-
formed in our future research. Although, according to

the work of [19], 1% absolute improvement in parsing
leads to 0.25% improvement in PPI extraction accuracy,
it is quite important to obtain reliable syntactic informa-
tion in the systems that fully depend on syntactic infor-
mation without considering the bag-of-words context
information. The critical point in biomedical text par-
sing is how well a parser handles coordination, apposi-
tion, and relative clauses which often cause erroneous
results in PPI learning. In addition to a further improve-
ment in parsing accuracy, the strategy for the shortest
path extension should be improved to supplement
incorrect syntactic analyses. Likewise, the method for
the pairs, including nested entities and negation expres-
sions, should be enhanced.
So far, we restricted the research to focus on struc-

tural kernels by using dependency information on the
shortest path. However, the combination with the bag-
of-words kernel can be a backup to compensate for the
imperfect syntactic analyses derived from automated
systems in the real world and insufficient information of
the shortest path representation by including the neigh-
boring words. The bag-of-context words kernel can
improve recall rates. Additionally, studies on string ker-
nels are possible because there can be a wide variety of
string kernels depending on how the subsequences are
defined.

Conclusions
We presented kernel methods defined on the shortest
dependency path for genic relation extraction. The
dependency path between two NEs, which consists of
the connections between words, is highly lexicalized. In
this study, we started off with four drawbacks of our
previous work in terms of e-walks, partial path matches,
different significance levels of structures and non-con-
tiguous paths and presented the revisions for the depen-
dency kernel, variants of string kernels, and the walk-
weighted subsequence kernel to effectively handle the
drawbacks. The proposed kernels were experimented on
the LLL shared task data and 5 PPI corpora. We
achieved good performances only with substructures
represented on the shortest path between entities.

Methods
To handle the problems of the prior structural kernel,
we first examined the effectiveness of each main feature
for the walk kernel which showed the best performance
in our previous work, and then modify the dependency
kernel so that it can accept the features of the walk ker-
nel and partial path matches.
In the modified version, we treat each type of sub-

structures with different importance.
For this, we classify the types of substructures into

several categories and enhance the learning performance

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 16 of 21

by allowing different weights or counts according to the
types of common dependency substructures that two
relation instances share. Next, we treat the shortest path
strings as strings and introduce some string kernels
such as the spectrum kernel, subsequence kernel and
gap weighted kernel. Finally, we suggest the walk
weighted subsequence kernel, which can model not only
the previous problems, but also non-contiguous struc-
tures and structural importance not covered by the pre-
vious kernels.

Walk types
We start the kernel modification with the re-considera-
tion of walks properties. In the walk kernel, the struc-
tural information is encoded with walks of graphs.
Given v Î V and e Î E, a walk can be defined as an
alternating sequence of vertices and edges, vi, ei, i+1, vi+1,
ei+1, i+2, ..., vi+n-1. It begins with a vertex and ends with a
vertex, where V and E are a set of vertices (nodes) and
edges (relations), respectively. We took into considera-
tion walks of length 3, vi, ei, i+1, vi+1, among all possible
subsets of walks on the shortest path between a pair of
NEs. We called it v-walk. Likewise, we defined e-walk
which starts and ends with an edge, ei, i+1, vi+1, ei+1, i+2.
It is actually not a walk defined in the graph theory, but
we take e-walk to capture contextual syntactic structures
as well. We utilized both lexical walks and syntactic
walks for each of the v-walks and the e-walks. The lexi-
cal walk consists of lexical words and their dependency
relations on a lexical dependency path like Figure 2c,
and the syntactic walk, of POS and their dependency
relations, on a syntactic dependency path, respectively.
With this walk information, we can capture structural
context information. This path-based walk representa-
tion is easy to incorporate structural information to the
learning scheme because a path reflects the dependency
relation map between words on it.

Different properties of two walks
In this work, we focus on different structural properties
of v-walk and e-walk. The v-walk shows a labeled rela-
tionship from a head to its modifier. Thus, it is related
to a direct dependency relationship between two words
or POS. On the other hand, e-walk describes the
immediate dependency structure around a node. If a
node is a predicate, then it has a close connection with
the sub-categorization information which is important
in semantic role labeling task for discovering the predi-
cate-argument structure for a given sentence.
In Figure 2c, the e-walk of “sub(UP)-control-comp_by

(DN)” shows the argument structure of the predicate
verb, “control”. In this case, one entity fills the “subject”
argument of “control” and the other entity directly or

indirectly fills the “comp_by” role. If an instance holds
such dependency structure with respect to the predicate
of “control”, it is very likely that two NEs in the struc-
ture have a genic relation. The semantic relations
among predicates and their modifiers are clearly helpful
for relation extraction. According to [28], the F-score
was improved by 15% when incorporating semantic role
information into the information extraction system.
Thus, we evaluated each walk type’s contribution to

the interaction extraction. For this, we conducted the
experiment by restricting the walk kernel to operate
with a single walk type. As shown in Table 3, we could
achieve a quite competing result only with e-walk infor-
mation. Clearly, this result demonstrates that e-walk
contributes more to the overall similarity for relation
learning than v-walk since it is related to semantic role
information. However, the e-walk style structural infor-
mation is excluded in the previous dependency kernel,
which is one of the reasons for the low performance.
Therefore, such information should be considered as
prior knowledge, and be regarded as more significant
structures, among the subpaths.

Modified dependency kernel
The dependency kernel directly computed the structural
similarity between two graphs by counting common
subgraphs. However, our previous dependency kernel
rigorously focused on v-walk, so the direct dependencies
between pairs of nodes and e-walk style structural infor-
mation was excluded. Two nodes match when the two
nodes were the same and their direct child nodes and
the dependency types from the nodes to their direct
child nodes matched. Thus, we extend the kernel by
allowing the possibility of partial matches besides e-walk
with an extra factor ensuring that the partial matches
have lower weights than complete path matches.
In the extended dependency kernel, partial matches

such as single word/POS matches and node-edge or
edge-node matches are counted, as well as v-walks.
Moreover, the matches are all differently weighted.
Before we explain the matching function, we will intro-
duce some notations. For each node x, word(x) is the
word at a certain node and POS(x) is the POS of the
node. childrenw(n) denotes word dependency list of
word n and childrenp(p) refers to POS dependency list
of POS p. childrenw(n) is the set of (relation, word) pairs
which are direct modifiers of n. In a similar way, chil-
drenp(p) is the set of (relation, pos) pairs which are
direct modifiers of POS p. In addition, scw(n1, n2) and
scp(p1, p2) denote the set of common dependencies
between two subgraphs rooted at n1 and n2, and POS p1
and p2, respectively. We can define the sets of common
dependencies between two graphs as follows:

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 17 of 21

sc n n x y relation x children n

relation y
w w(,) {(,) |(,) (),

(,)
1 2 1 

 cchildren n word x word y

sc p p x y relation
w

p

(), () ()}

(,) {(,) |(
2

1 2


 ,,) (),

(,) (), () (

x children p

relation y children p POS x POS y
p

p



 
1

2))}

(3)

That is, (x, y) can be an element of the set of scw(n1,
n2) only when the direct child nodes of two parent
nodes, x and y, are the same word and have the same
dependent relation with their parents n1 and n2 as well.
For subcategorization information, subcatw(x) is used to
refer to the sub-categorization pair of a word x which is
composed of the left and right edge of it. That is the
same information with e-walk. The matching function
Cw(n1, n2) is the number of common subgraphs rooted
at n1 and n2.
The similarity is recursively computed over their com-

mon dependency child word pairs in the set scw(n1, n2),
starting from root nodes. As a result, we can calculate
Cw as follows:

   if word n word n and sc n n and subcat n subcatw w w() () (,) {}1 2 1 2 1() (()n

then C n n

else if word n word n and children
w

w

2

1 2

1 2

3 0(,) .

() ()


  (() {} () {}

(,) .

()

n or children n

then C n n

else if word n

w

w

1 2

1 2

1

1 0

 


 wword n or children n or children n

then C n n
w w

w

() () {} () {}

(,)
2 1 2

1 2

 


  
0 0

1 2 1 2 1

.

() () (,) {}else if word n word n and sc n n and subcat nw w()) ()
  

subcat n

then C n n C x y
w

w x y sc n n ww

2

1 2 1 2
1 5(,) (. *((,)(,) (,)  

  

2 1

1 2 1 2

))

() () (,) {}else if word n word n and sc n n and subcatw w(nn subcat n

then C n n C x y
w

w x y sc n n ww

1 2

1 2 1 2
2

) ()
  (,) ((,))(,) (,) 1

(4)

In order to count common subgraphs with consider-
ing their structural importance, the matching function
was devised. In the definition, if the set of common
dependency child word pairs is empty but the two
nodes have the same sub-categorization value, then the
matching function returns 3.0. If there is no child of n1
or n2 but two nodes are the same words, then Cw(n1,
n2) returns 1.0. In case that there is no child of n1 or n2
and two nodes are different words, Cw(n1, n2) returns 0.
The last two definitions recursively call Cw with respect
to their common dependency word pairs in the set scw
(n1, n2) but Cw is weighted with a larger value if the two
nodes share the same subcategorization information.
Such isomorphism between two graphs is identified in

terms of common POS dependencies in addition to
common word dependencies. In the similar way, Cp(p1,
p2) is applied for common POS dependency subgraphs
rooted at POS p1 and p2. However, in case of syntactic
dependency path, the subcategorization information is
excluded as follows:

   else if pos p pos p and sc p p and subcat p subcap p() () (,) {}1 2 1 2 1() tt p

then C p p

else if pos p pos p and sc p p

p

p

p

()2

1 2

1 2 1 2

1 0(,) .

() () (,



 )) {}

(,) (,) (

 

  

and subcat p subcat p

then C p p
p p

p x y sc pp

() ()1 2

1 2 1,,) (. * ((,)))p pC x y
2

1 0 2 1 

(5)

Since Cw and Cp have different properties that Cw is
related to lexical and Cp, to morpho-syntactic sub-
graphs, Cw is more weighted than Cp. Finally, the depen-
dency kernel evaluates the similarity of two graphs by
the composition of syntactic dependencies and lexical
dependencies as follows:

K d d C n n C p pD w
n N n N

p
p P p P

(,) (,) (,)
, ,

1 2 1 2 1 2

1 1 2 2 1 1 2 2

 
   
  (6)

The formula (6) enumerates all matching nodes of two
graphs, d1 and d2. It is a summation of common word
dependency subgraphs and common POS dependency
subgraphs between two graphs.
As a result, the F-score was improved from 60.4 to

69.4 on LLL dataset (Table 3), compared with the pre-
vious dependency kernel. The uses of partial path match
and subcategorization information were helpful but the
result is still worse than that by the walk kernel. In
order to maintain direct dependency structures, this ker-
nel excluded the non-contiguous sub-paths on the
shortest path which can be important in the relation
learning. Thus, we introduce string kernels to handle
such non-contiguous subpaths.

String kernels
In this section, we will look at the string kernels from
various structural perspectives. First of all, we will briefly
introduce concepts and notations for string kernels. The
string kernel was first addressed in the text classification
task by [30]. The basic idea is to compare text docu-
ments by means of substrings they contain: the more
substrings in common, the more similar they are. A
string is defined as any finite sequence of symbols
drawn from a finite alphabet and string kernels concern
occurrences of subsequences or substrings in strings. In
general, for a given string s1 s2...sn, a substring denotes a
string, sisi+1...sj-1sj, that occurs contiguously within the
string, while a subsequence indicates an arbitrary string,
sisj...sk whose characters occur contiguously or non-
contiguous.
So far, we re-represented the shortest path strings

with meaningful substructures such as walks. In this
work, we also project the shortest path string like Figure
2c to a string itself and directly compare the strings. On
the basis of our data representation, nodes and edges of
a shortest path string correspond to alphabets of a
string. That is, a finite alphabet set, consists of word or
POS and dependency relation symbols of shortest path
strings and string kernels operate on the shortest path
strings. The kernels consider both lexical shortest path
string and syntactic shortest path string. We gradually
enlarge the kernels to perform a more comprehensive
comparison between the two shortest path strings, from

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 18 of 21

the spectrum kernel to the weighted subsequence
kernel.

Spectrum kernel
First, we performed string comparisons with a simple
string kernel. One of the ways to compare two strings is
to count how many p-length contiguous substrings they
have in common. It is called the spectrum kernel of
order p or p-spectrum kernel. We borrowed the nota-
tion from [27]. Such bag- of-characters representation is
the most widely used in natural language processing.
However, the major shortcoming is the structural sim-
plicity that all features represent only local information.
In Equation (7), Ks(s1, s2) denotes the number of com-
mon p-substrings between two shortest path strings, s1
and s2.

K s s K s i i p s j j p

K

s p

j

s p

i

s p

(,) ((:), (:))
| || |

1 2 1 2

1

1

1

1 21

  


 



 



pp s t
if s t

otherwise
(,) 





1

0

(7)

The string s(i: i + p) means the p-length substring si...
si + p of s. In this work, we fixed the order of spectrum
as 3 and summed Ks of lexical dependency path string
and Ks of syntactic dependency path string for the com-
mon substring counting. With this kernel, we can con-
sider the substructure as shown in Figure 1f. As a result,
we achieved the F-score of 70.5 on LLL data (Table 3).
In spite of its structural simplicity, the result was quite
promising. It was better than the performance of the
extended dependency kernel. We could obtain a reason-
able performance only with contiguous dependencies on
the shortest path string.

Fixed-length subsequence kernel
In the spectrum kernel, substructures such as “stimula-
te_obj(DN)~comp_from(DN)”, which has gaps between
them, is excluded in the structural comparison. In order
to cover the substructures, we tested the subsequence
kernel that the feature mapping is defined by all contig-
uous or non-contiguous subsequences of a string. Unlike
the spectrum kernel, the subsequence kernel allows gaps
between characters. That is, some characters can inter-
vene between two matching subsequences. Thus, this
kernel can explain the substructures like Figure 1g. The
substructure of “stimulate-obj(DN)~comp_from(DN)” can
match phrases such as “stimulate-obj(DN)-any other
noun-comp_from(DN)” which use other nouns instead of
“transcription”. The advantage of the kernel is that we
can exploit long-range dependencies existing on strings.
Likewise the spectrum kernel, we reduce the dimension
of the feature space by only considering fixed-length

subsequences. This kernel is defined via the feature map
from the space of all finite sequences drawn from to the
vector space indexed by the set of p-length subse-
quences derived from A. We will define Ap as the set of
all subsequences of length p. We denote the length of
the string, s = s1s2...s|p| by |p|. Also, u indicates a subse-
quence of s if there exist an index sequence i = (i1...i|u|)
with 1 ≤ i1 < ... <i|u| ≤ |p| such that uj = si for j = 1, ..., |
u|. We use a boldface letter i to indicate an index
sequence i1...i|u| for a string and the subsequence u of a
string s is denoted by u = s[i] for short. That is, u is a
subsequence of s in the position indexed by i and equals
to s s si i i u1 2


| | .

Then, the feature coordination function ju(s) is used
to denote the count of how many times substring u
occurs as a contiguous and non-substring in the input
string s. Ip is the index sequences set of length p. ju

p(s)
indicates the count of how many times substring u of
length p occurs. Consider two strings, s and t to be
compared that have the same length p, where the fea-
ture space is generated by all subsequences of length p
derived from shortest path strings to be classified. Then,
the overall inner product between them can be
expressed as follows:



   

u

u u u

u

s u s u A

K s t s t s

p p

p
p

Ap

() |{ : ()}|,

(,) (), () ()

  

   



i i

uu

u s tu

i j I I s t

tp

Ap

p P

()

(,): () ()

(,) : () ()





 

  




1

1

i j i j

i j

(8)

We choose 3 as the length parameter p. Despite the
positive aspect of the subsequence that it considers non-
contiguous subsequences as well as contiguous sub-
strings, the performance was not satisfactory. It has
improved over the spectrum kernel to some extent, but
it was the same value with the walk kernel as F-score
77.5 on LLL which showed the best result in our pre-
vious study.

Gap-weighted fixed length subsequence kernel
In the subsequence kernel, all substructures are equally
counted. It does not matter whether the subsequence is
continuous, non-continuous or how spread out the
occurrences of subsequences are. Thus, the gap-
weighted subsequence kernel is tested so as to reflect
degree of the contiguity of the subsequence to the sub-
sequence kernel. In this kernel, two substructures of
“stimulate-obj(DN)-transcription” and “stimulate~
comp_from(DN)-promoter” have different weights. For
the purpose of tuning the weight to reflect how many
gaps between characters there are, a decay factor,

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 19 of 21

l(0 <l ≤ 1) is introduced. It can penalize non-contiguous
substring matches. That is, the further apart the begin-
ning and the end in a substring are, the more it is pena-
lized. Contiguous substring matches are assumed to be
coherent and affect more the overall meaning of shortest
path string. The feature coordination function is chan-
ged into a weighted count of subsequence occurrences
as follows:

 u
l

u s

u u

s

l i i i i

()

() (())

()

: []

| | | |



   

 i

i i

i i1 11 

(9)

The count is down-weighted by the total length of
gaps. l(i) denotes the span length of indices i, i|u| -i1+1.
The similarity value between two subsequences are
decreased by the factor of l(i) and l(j), reflecting how
spread out the subsequences are. The inner product
between two strings s and t over Ap is a sum over all
common fixed-length subsequences that are weighted
according to their frequency of occurrence and lengths.

K s t s tu

u

u
l

u s

l

u tu

p

A Ap

(,) () () ()

: ()

()

: ()

   
  
     i

i i

j

j jpp

pA


 



 l l

u tu su

() ()

: (): ()

i j

j ji i

(10)

That is, this kernel function computes all matched sub-
sequences of p symbols between two strings and each
occurrence is weighted according to their span. In gen-
eral, a direct computation of all subsequences becomes
inefficient even if we use a small value of p. For an effi-
cient computation, the dynamic programming algorithm
by [30] was used. In this paper, we will not explain the
details about the efficient recursive kernel computation
method. We set the lambda as 0.5 and the index set is
fixed as U = A3 (three node or edge phrases on the short-
est path string). If we choose l as 1, the weights of all
occurrences will be 1 regardless of l. In that case, the ker-
nel is equivalent to the fixed length subsequence kernel
that identically counts all common subsequences as 1. As
a result, the F-score (70.2) was lower than the subse-
quence kernel even though this kernel can offer a more
comprehensive weighting scheme depending on the
dependency distance of each subsequence. The inclusion
of gap weighting to substrings was not much effective.

Walk-weighted fixed length subsequence kernel
In order to improve the gap-weighted subsequence ker-
nel, we devise the walk-weighted subsequence kernel
which can handle structural properties differently in
addition to the consideration of contiguous and non-con-
tiguous substring. Like the gap-weighted subsequence
kernel, this kernel assigns different weights for each

subsequence. However, it assigns the weights of subse-
quences not by the lengths of gaps, but by their type. We
set more weights to contiguous subsequences than to
non-contiguous subsequences since they are coherent
and can affect more the overall meaning of shortest path
string. Also, e-walks get more weights than v-walks so
that highlight semantic role information. Similarly, this
kernel also considers subsequences of length 3.

 

 

u
p

u

u s

p

p u
p

u

u
p

s u

K s t s t

if l an

p

() ,

(,) () ()

()

: ()

 












i i

i





3 dd then e walk

else if l and then
u(%) . ()

() (%)!

i

i i
1

1

2 0 3 0

3 2 0

  
 


uu

u
l

u s

u

v walk

else l i i i i

 

    



2 0

11 1

. ()

, () ((()

: []

| |  i

i i

i i  || |))u

(11)

The formula (11) means that the kernel assigns 3.0 for
common contiguous e-walk substrings, 2.0 for common
contiguous v-walk substrings. For non-contiguous sub-
sequences, they can be penalized by gap-weights, but
the performance was the best when we set the lambda
to 1.0. Thus, in our experiments, 1.0 was also allocated
to non-contiguous subsequences regardless of their gap.
The significance values can take into account the types
of substructures and we experimentally set the signifi-
cance values for the best F-value.
As a result, this kernel showed the best performance

(F-score 82.1) for the extraction of genic relation on the
LLL data. This result demonstrates that the use of care-
fully designed weighted string kernels in terms of types
of common subsequences is very effective on learning of
a structured representation.

Acknowledgements
This work is supported by the BK21 program of the Ministry of Education
and Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (2009-0070211).

Author details
1Department of Computer Science, Sogang University, Seoul, Korea.
2Daumsoft Inc, Se-Ah Venture Tower, Seoul, Korea.

Authors’ contributions
SHK and JTY carried out PPI studies and suggested overall idea of this
manuscript, and the system design. They performed the experiments and
analyzed the results. JHY and SP participated in the system design and
helped to draft the manuscript. All authors read and approved the final
manuscript.

Received: 22 April 2009 Accepted: 25 February 2010
Published: 25 February 2010

References
1. Boeckmann B, Bairoch A, Apweiler R: The SWISS-PROT protein

knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res
2003, 31(1):365-70.

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 20 of 21

http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract

2. Bader GD, Betel D, Hogue CWV: BIND: the Biomolecular Interaction
Network Database. Nucleic Acids Res 2003, 31(1):248-250.

3. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-
Citterich M, Cesareni G: MINT: A Molecular INTeraction Database. FEBS
Letters 2002, 513(1):135-140.

4. Bairoch A, Apweiler R, Wu CH: The Universal Protein Resource (UniProt).
Nucleic Acids Res 2005, 33:D154-9.

5. Ono T, Hishigaki H, Takagi T: Automated Extraction of Information on
Protein-protein Interactions from the Biological Literature. Bioinformatics
2001, 17(2):155-161.

6. Fundel K, Küffer R, Zimmer R: RelEx - Relation extraction using
dependency parse trees. Bioinformatics 2006, 23(3):365-371.

7. Huang M, Zhu X, Hao Y, Payan DG, Qu K, Li M: Discovering patterns to
extract protein-protein interactions from full texts. Bioinformatics 2004,
20(18):3604-3612.

8. Hakenberg J, Plake C, Leser U, Kirsch H, Rebholz-Schuhmann D: LLL05
Challenge: Genic Interaction Extraction - Identification of Language
Patterns Based on Alignment and Finite State Automata. Proceedings of
LLL. Bonn, Germany 2005, 38-45.

9. Bunescu R, Mooney R: Subsequence kernels for relation extraction.
Proceedings of the 19th conference on Neural Information Processing Systems.
Vancouver, Canada 2005.

10. Culotta A, Sorensen J: Dependency Tree Kernels for Relation Extraction.
Proceedings of ACL Barcelona, Spain 2004, 423-429.

11. Sætre R, Sagae K, Tsujii J: Syntactic Features for Protein-Protein
Interaction Extraction. Proceedings of LBM, Singapore 2007, 6.1-6.14.

12. Zhou G, Zhang M, Ji DH, Zhu Q: Tree Kernel-based Relation Extraction
with Context-Sensitive Structured Parse Tree Information. Proceedings of
EMNLP and CNLL Prague, Czech Republic 2007, 728-736.

13. Kim SH, Yoon JT, Yang JH: Kernel approaches for Genic Interaction
Extraction. Bioinformatics 2008, 24(1):118-126.

14. Airola A, Pyysalo S, Bjöne J, Pahikkala T, Ginter F, Salakoski T: A Graph
Kernel for Protein-Protein Interaction Extraction. Proceedings of BioNLP.
Columbus, USA 2008, 1-9.

15. Aubin S: Challenge LLL Syntactic Analysis Guidelines. Technical reports,
Université Paris Nord 2005.

16. Miwa M, Sætre R, Miyao Y, Ohta T, Tsujii J: Protein-protein interaction
extraction by leveraging multiple kernels and parsers. International
Journal of Medical Informatics 2009, 78:e39-e46.

17. Giuliano C, Lavelli A, Romano L: Exploiting Shallow Linguistic Information
for Relation Extraction from Biomedical Literature. Proceedings of the 11th
Conference of European Chapter of the Association for Computational
Linguistics, Trento, Italy 2006, 401-408.

18. Pyysalo S, Airola A, Heimonen J, Bjrne J, Ginter F, Salakoski T: Comparative
Analysis of Five Protein-protein Interaction corpora. BMC Bioinformatics
2008, 9(Suppl 3):S6.

19. Miyao Y, Sagae K, Sætre R, Matsuzaki T, Tsujii J: Evaluating Contributions of
Natural Language Parsers to Protein-protein Interaction Extraction.
Bioinformatics 2009, 25(3):394-400.

20. Moschitti A: Making Tree Kernels practical for Natural Language
Learning. Proceedings of the Eleventh International Conference on European
Association for Computational Linguistics (EACL) Trento, Italy 2006, 113-120.

21. Miwa M, Saetre R, Miyao Y, Tsujii J: A Rich Feature Vector for Protein-
Protein Extraction from Multiple Corpora. Proceedings of EMNLP, Singapore
2009, 121-130.

22. Kim J, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09 Shared
Task on Event Extraction. Proceedings of the BioNLP Workshop, Boulder, USA
2009, 1-9.

23. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algorithms.
Dijkstra’s algorithm MIT Press and McGraw-Hill, Second 2001, 595-601.

24. Sleator D, Temperly D: Parsing English with a Link Grammar. Proceedings
of IWPT, Tilburg, The Netherlands 1993, 277-291.

25. Lease M, Charniak E: Parsing biomedical literature. Proceedings of IJCNLP
Jeju, Korea 2005, 58-69.

26. Hsu C, Chang C, Lin C: A practical guide to vector classification. 2003
[http://www.csie.ntu.edu.tw/~cjlin/libsvm/].

27. Shawe-Taylor J, Cristianini N: Support Vector Machines and Other Kernel-
based Methods. Cambridge University Press 2000, Chapter 11.

28. Harabagiu SM, Bejan CA, Morarescu P: Shallow Semantics for Relation
Extraction. Proceedings of IJCAI, Edingurgh, Scotland 2005, 1061-1066.

29. Riedel S, Klein E: Genic Interaction Extraction with Semantic and
Syntactic Chains. Proceedings of LLL, Born, Germany 2005, 69-74.

30. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C: Text
Classification using String Kernels. Journal of Machine Learning Research
2002, 419-444.

doi:10.1186/1471-2105-11-107
Cite this article as: Kim et al.: Walk-weighted subsequence kernels for
protein-protein interaction extraction. BMC Bioinformatics 2010 11:107.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kim et al. BMC Bioinformatics 2010, 11:107
http://www.biomedcentral.com/1471-2105/11/107

Page 21 of 21

http://www.ncbi.nlm.nih.gov/pubmed/12519993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12519993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11238071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11238071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17142812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17142812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19501018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19501018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18426551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18426551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073593?dopt=Abstract
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Abstract
	Background
	Results
	Conclusions

	Background
	Introduction
	Motivation
	Research goal and differences from other recent similar work
	Related works
	Data representation
	Directed shortest dependency path
	Kernel methods

	Results and discussion
	Train and test data
	Preprocessing for the third party automated inputs
	Learning and evaluation method
	Experimental Results
	Comparisons with other systems
	Error analyses
	Discussion and future work

	Conclusions
	Methods
	Walk types
	Different properties of two walks
	Modified dependency kernel
	String kernels
	Spectrum kernel
	Fixed-length subsequence kernel
	Gap-weighted fixed length subsequence kernel
	Walk-weighted fixed length subsequence kernel

	Acknowledgements
	Author details
	Authors' contributions
	References

