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Abstract

Background: The automated retrieval and integration of information about protein point
mutations in combination with structure, domain and interaction data from literature and databases
promises to be a valuable approach to study structure-function relationships in biomedical data
sets.

Results: We developed a rule- and regular expression-based protein point mutation retrieval
pipeline for PubMed abstracts, which shows an F-measure of 87% for the mutation retrieval task
on a benchmark dataset. In order to link mutations to their proteins, we utilize a named entity
recognition algorithm for the identification of gene names co-occurring in the abstract, and
establish links based on sequence checks. Vice versa, we could show that gene recognition
improved from 77% to 91% F-measure when considering mutation information given in the text.
To demonstrate practical relevance, we utilize mutation information from text to evaluate a novel
solvation energy based model for the prediction of stabilizing regions in membrane proteins. For
five G protein-coupled receptors we identified 35 relevant single mutations and associated
phenotypes, of which none had been annotated in the UniProt or PDB database. In 71% reported
phenotypes were in compliance with the model predictions, supporting a relation between
mutations and stability issues in membrane proteins.

Conclusion: We present a reliable approach for the retrieval of protein mutations from PubMed
abstracts for any set of genes or proteins of interest. We further demonstrate how amino acid
substitution information from text can be utilized for protein structure stability studies on the basis
of a novel energy model.

Background regulators, and are involved in cell mobility and commu-
Proteins carry out most cellular functions as they are act-  nication [1]. Proteins may interact briefly with each other
ing as building blocks for structures, enzymes, and gene  in an enzymatic reaction, or for a long time to form part
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of a protein complex. The interactions between proteins
are of central importance for almost all processes in living
cells, and are described by numerous distinct pathways in
databases such as KEGG [2]. Malfunctions or alterations
in such pathways can be the cause of many diseases, when
for instance the biosynthesis of involved proteins is
repressed or proteins are not interacting the way they
should. The latter can be due to structural changes in one
of the interacting proteins, caused by point mutations, i.e.
single wild type amino acid substitutions. Indeed, it is
already well known that such mutations are the cause of
many hereditary diseases. Thus the large-scale analysis of
point mutation data in combination with information
about protein interactions, protein structure, and disease
pathogenesis might facilitate the study of still unresolved
phenotypes and diseases. Despite the availability of
numerous biomedical data collections, valuable informa-
tion about mutation-phenotype associations is still hid-
den in non-structured text in the biomedical literature.
This knowledge can be extracted by text mining, stored in
a homogeneous data store, and integrated with already
available data from suitable databases. Combining all
data, new hypotheses can be formulated, such as the pre-
diction of phenotypic effects induced by mutations.

Genomic variation data have already been collected for
many years. Single nucleotide polymorphisms (SNPs),
which make up about 90% of all human genetic variation
and occur every 100 to 300 bases along the 3-billion-base
human genome [3], are available as large collections. Sin-
gle amino acid polymorphisms (SAPs) are often manually
extracted from literature and curated into databases, orig-
inating from wet lab experiments. Additionally, some
structures of such mutations may be revealed in crystal-
lography experiments and might eventually end up as dis-
tinct structures in the Protein Database PDB. Of particular
interest is the identification of mutations which have a
strong influence on the stability of proteins. Therefore, the
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biomedical literature can be systematically searched for
information about mutation-phenotype associations by
text mining, which may lead to new insights beyond
information in existing databases. For the text mined data
it is additionally possible to weight or prioritize informa-
tion according to publication date, the involved authors,
and journals. Consideration of such meta data can be rel-
evant for detecting that an already published assumption
has been proven wrong in a more recent publication, or
for determining whether a protein just recently attracted
interest or if the information is already available for years.
Furthermore, it is possible to receive a more detailed view
on a protein's characteristics, for example, if a certain
interaction only takes place under specific conditions, or
if an interaction is prevented by the conformational
change of a protein domain triggered by a point mutation.

Databases

Data on mutations have been collected for years, for
numerous species and by different organizations for
diverse purposes. There are many efforts to cope with the
data, which is being made available in a growing number
of databases. The Human Genome Variation society [4]
promotes the collection, documentation and free distri-
bution of genomic variation information. New mutation
databases are reported in the journal Human Mutation on
a regular basis. There are manually curated databases like
OMIM [5], UniProt Knowledgebase [6,7], and general
central repositories like the Human Gene Mutation Data-
base HGMD (now part of BIOBASE) [8], Universal Muta-
tion Database [9], Human Genome Variation Database
[10], or MutDB [11]. Besides these central repositories,
there are small specialized databases, such as the infevers
autoinflammatory mutation online registry [12], the
GPCR NaVa database for natural variants in human G
protein-coupled receptors [13], or the Pompe disease
mutation database with 107 sequence variants [14]. Table

Table |I: Mutation databases: Most of available mutation databases focus on mutations from human, or specific protein families (e.g. G
protein-coupled receptors). Some lack well-defined information on mutant phenotypes and only few link to interaction data. Half of

the databases also contain data retrieved by text mining methods.

Species  SNPs Protein mutations Diseases Phenotypes Interactions Text Mining
OMIM [5] human + + + + + -
HGMD [8] human + + + + - +
UniProtKB [6] various - + - + - +
HGVbase [10] human + - + + - -
HapMap [41] human + - - - -
dbSNP [42] 44 + + ) . ] ]
MutDB [11] human + + - - + R
GPCRDB [43] 18 - + - + - -
GPCR NaVa [13] human + + + + - -
CoagMDB [44] human + + - + - +
OSIRIS [45] human + - + - +
PolySearch [46] various + + + - + +
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1 compares available mutation databases in terms of their
scope and information content.

In contrast, unpublished SNPs normally make their way
into large locus specific data repositories. Since August
2006, there is a wiki based approach SNPedia http://
www.snpedia.com/index.php/SNPedia in contrast to clas-
sical databases collecting information on variations in
human DNA.

Text mining

Despite the availability of numerous biomedical data col-
lections, valuable information about mutation-pheno-
type associations is still hidden in non-structured text in
the biomedical literature. Hence, text mining methods are
implemented to automatically retrieve these data from the
18 millions of referenced articles in PubMed [15-19]. Text
mining aims to generate new hypotheses through the
automatic extraction and integration of information
spread over several natural language texts. One of the key
prerequisites for finding new facts (e.g. interactions or
mutations) is the named entity recognition (NER) in text
[20,21], the assignment of a class to an entity (e.g. protein),
as well as a preferred term or identifier, in case an entry in
a database, such as UniProt, or a controlled vocabulary like
the Gene Ontology (GO) [22] exists. For the task of named
entity recognition usually a dictionary is used, which con-
tains a list of all known entity names of a class (e.g.
human proteins) including synonyms. For the recogni-
tion of patterns (e.g. database identifiers like NM_12345)
regular expression can be defined. For the analysis of
whole sentences, Natural language processing (NLP) tech-
niques are used, which aim to understand text on a syntac-
tic and semantic level. This approach is often paired with
systems which are based on a set of manually defined rules
or which make use of (semi-)supervised machine learning
algorithms.

In recent years, there have been diverse examples for the
successful application of text mining to the mutation
retrieval task. Early examples are the automatic extraction
of mutations from Medline and cross-validation with
OMIM [23], and mining OMIM for phenotypic and
genetic information to gain insights into complex diseases
[24]. More recently, a concept recognition system based
on regular expressions was applied on mutation mining
task [25]. GraB for the automatic extraction of protein
point mutations using a graph bigram association [26]
was reported to reliably find gene-mutation associations
in full text. For identifying gene-specific variations in bio-
medical text, the ProMiner system developed for the rec-
ognition and normalization of gene and protein names
was integrated with a conditional random field (CRF)-
based recognition system [27]. As an answer to the diverse
approaches developed over the past years, a framework
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for the systematic analysis of mutation extraction systems
was proposed [28].

A growing number of groups are working on protein
mutations and their involvement in diseases. A recent
overview is given at [29]. Kanagasabai et al. [30] devel-
oped mSTRAP (Mutation extraction and STRucture Anno-
tation Pipeline), for mining mutation annotations from
full-text biomedical literature, which they subsequently
used for protein structure annotation and visualization.
Worth et al. [31] use structure prediction to analyse the
effects of non-synonymous single nucleotide polymor-
phisms (nsSNPs) with regard to diseases. Focusing on
Alzheimer's disease, Erdogmus et al. [32] developed
MuGeX to extract mutation-gene pairs, with estimated
91.3% recall, and precision at 88.9%. Lage et al. [33] real-
ized a human phenome-interactome network of protein
complexes implicated in genetic disorders by integrating
quality-controlled interactions of human proteins with a
validated, computationally derived phenotype similarity
score.

We compared the above mentioned mutation extraction
approaches with regard to their strengths and weaknesses.
MutationFinder is still used as a reference system for the
pure mutation extraction task, although it does not distin-
guish between mutations on the DNA and protein level,
and does not support grounding to genes. MuGeX finds
textual descriptions of mutations and distinguishes
between DNA and protein mutations, but their mutation
grounding relies only on proximity and does not consider
sequence information. The mutation grounding approach
used in mStrap considers sequence information, but
allows only mutation-protein pairs that co-occur in one
sentence and the mutation extraction approach relies on
simple regular expressions. Finally, GraB is a successful
approach which implements the grounding and disam-
biguation techniques discussed above, but might be com-
putationally too expensive for large data sets. Towards the
development of an automated system for the interpreta-
tion of structure-function relations in the context of
genetic variability data, we chose to design our own pro-
tein mutation retrieval system. We aim at a system, which
identifies and grounds protein mutations based on
sequence information and proximity at a high recall. On
the other hand we need a flexible system, that can be
applied to diverse biomedical questions and has moder-
ate computational requirements.

Methods

As we have motivated above, novel gene-disease associa-
tions or the influence of mutations on protein-protein
interactions can be discovered through combination of
data from literature and databases. Hence, we designed a
generic mutation centred approach that can be applied to
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any kind of genetic data for answering disease-centred
questions. As a prerequisite, we consider available high
quality data on protein point mutations from curated
databases and from peer-reviewed literature. For the latter,
we present a flexible approach for both the specific and
high-throughput retrieval of mutations. In detail, the fol-
lowing tasks have to be performed: (1) Identify genes/pro-
teins in abstracts. (2) From this subset of abstracts
consider only those which additionally contain informa-
tion about mutations. (3) Propose potential protein-
mutation pairs. (4) Filter proposed pairs by sequence
checks. (5) Utilize this information for the refinement of
the original gene/protein identifier.

Entity recognition

Gene normalization

This module allows for the automated named entity rec-
ognition of genes and proteins. Our approach performs
gene name disambiguation by using background knowl-
edge to match a gene with its context against the text as a
whole [34]. A gene's context contains information on
Gene Ontology annotations, functions, tissues, diseases
etc. extracted from the databases Entrez Gene and Uni-
Prot. A comparison of gene contexts against the text gives
a ranking of candidate identifiers and the top ranked iden-
tifier is taken if it scores above a defined threshold. This
approach has been recently extended for inter-species
gene normalization and achieves 81% success rate on a
mixed dataset of 13 species [35].

Mutation tagging

We implemented an entity recognition algorithm (Muta-
tionTagger) to automatically extract protein point muta-
tion mentions from PubMed abstracts. Wild-type and
mutant amino acid, as well as the sequence position of the
substitution are extracted by means of both a set of regular
expressions for pattern recognition of 1 or 3-letter-nota-
tions (e.g. E312A or Glu(312) — Ala), and rules for the
more complex identification of textual mutation descrip-
tions (e.g. Glu312 was replaced with alanine). Problems
concerning the full text representations (detecting the cor-
rect sequence position of the mutated residue and
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unraveling enumerations) have been addressed by addi-
tional extraction algorithms and the implementation of a
sequence check. An evaluation of our method on the test
data from MutationFinder [36] showed comparable suc-
cess rates of 88% F-measure for mutation mention extrac-
tion (see Table 2).

Mutation grounding

In the process of recognizing mutations in text the direct
association to specific proteins and genes remains a chal-
lenge. This is due to the fact that the abstracts of relevant
publications typically mention more than one mutation
or protein, respectively. Thus, a mutation - protein asso-
ciation purely based on their co-occurrence in one
abstract is not sufficient, as the consideration of all possi-
ble combinations of mutations and proteins would result
in a significant number of false positive predictions. The
problem becomes even more evident, when considering
that both gene and mutation tagging are imperfect,
achieving a precision of 80 to 90% each.

We are aiming at an approach that disambiguates the rela-
tions of candidate mutations with proteins, and at the
same time filters out false positives from the underlying
mutation and gene recognition tasks. Approaches have
already been developed, which apply a word distance
metric for assigning a mutation to its nearest occurring
protein term, which is error prone, as matching mutation
and protein do not necessarily have to occur close to each
other in the abstract or even in the same sentence. The sta-
tistical approach GraB is a tool for the automatic extrac-
tion of protein point mutations using a graph bigram
association [26], achieving good results of up to 79% F-
measure for mutation-protein association but alone
would also not fulfil the second aspect of filtering out
false positives.

Sequence checks

Mutations are commonly described as the substitution of
a wild-type by a mutant amino acid at a given position.
Our method compares the wild-type residue as described
in a mutation mention with the UniProt/Swiss-Prot and

Table 2: Mutation retrieval task: Evaluation of precision (P), recall (R), and F-measure (F) on a benchmark set provided with the
MutationFinder algorithm. Our MutationTagger performs in general comparably to MutationFinder. Although MutationFinder shows
a slightly better overall performance, in the high recall mode MutationTagger extracts more mutations, which is desirable for the

subsequent grounding and gene normalization improvement task.

MutationTagger, ccision

MutationTagger, . MutationFinder

P R F P R F P R F
Extracted mutation mentions 0.970 0.807 0.881 0.914 0.856 0.883 0.984 0.819 0.894
Extracted mutations 0.956 0.786 0.863 0.870 0.845 0.857 0.975 0.807 0.883
Document retrieval 1.0 0.863 0.926 0.960 0.912 0.935 0.994 0.890 0.939
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PDB protein sequences for all candidate proteins. It is
important to incorporate sequences from both repositor-
ies, as the sequence numbering can differ and it is not
always evident from a publication's abstract, which the
authors are referring to. To map UniProt IDs to PDB and
vice versa, we used PDB cross-references in UniProtKB/
Swiss-Prot http://beta.uniprot.org/docs/pdbtosp and the
residue specific comparison between PDB and SwissProt
sequences http://www.bioinf.org.uk/pdbsws/ as provided
by Martin et al. [37]. Only associations between muta-
tions and proteins with matching amino acids are consid-
ered, whereas the score of mismatches is set to 0.
Matching pairs are scored based on their proximity,
favouring pairs that co-occur in the same sentence. We
assign the score to the gene — mutation pair, but also keep
track of the particular Swiss-Prot and/or PDB sequence
(including chain information) that matched to the muta-
tion. In the case of a shift between Swiss-Prot and PDB
sequences we calculate the correct numbering for the
shifted sequence utilizing the mapping table by Martin et
al. Through the consideration of both sequence and prox-
imity information, for each mutation exactly one gene
match is determined, even if more than one protein-muta-
tion pair is possible.

Annotation pipelines

The developed mutation retrieval pipeline can be accessed
through two different interfaces (see Figure 1), which offer
either a systematic or quick and flexible solution, depend-
ent on the annotation task. The following approaches
have been implemented:

Organism-centred approach (database)

All available mutations for a given organism will be
retrieved in one literature screening and stored in the
Mutation database. This approach relies on the large-scale
identification of gene mentions in PubMed abstracts,
which have to be compiled for organisms of interest prior
to a mutation screening. As of now, gene mention data is
available for Human, Mouse, Yeast, Rat, Fruit Fly, E. coli,
A. thaliana, C. elegans, Zebrafish, and H. pilori. However,
data for additional relevant organisms will be added on a
regular basis in the near future.

Protein-centred approach (on-the-fly)

It is possible to retrieve relevant data for a single gene or a
list of genes/proteins for any organism. For this purpose,
relevant documents are obtained via a keyword searches
from the PubMed library using the Entrez Programming
Utilities. Like for the large-scale identification of gene
mentions in PubMed abstracts in the organism-centred
approach, the result is a set of abstracts, which is subse-
quently processed by the MutationTagger.

http://www.biomedcentral.com/1471-2105/10/S8/S3
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Figure |

Mutation retrieval workflow. Workflow of mutation data
retrieval with MutationTagger. A: PubMed IDs of abstracts
mentioning proteins for given species are retrieved from a
local database (gene2pubmed), which contains the results of
our gene normalizing approach. Mutations are identified in
the abstracts and stored (mutation2pubmed). The gene and
mutation data is joined, filtered by sequence checks, and
stored (mutation2gene). B: For a queried protein or gene
relevant articles are retrieved from the Entrez database.
Mutations are identified in the abstracts, sequence checks
against the queried protein are performed, and the checked
mutation data is exported to HTML or SQL.

Improvement of gene normalization

As described above, we defined the input set of docu-
ments for the organism-e mutation mining approach by
scanning the whole PubMed database for abstracts men-
tioning at least one gene or protein of a pre-defined spe-
cies. For this filtering step, we relied on the gene
normalization techniques of our gene normalizer, which
was applied to all PubMed abstracts in advance and has
shown 85% F-measure for human genes and slightly
lower for other species [35]. However, the gene normali-
zation proposes only one identifier per gene mention,
even if a set of different candidate identifiers was com-
puted. According to internal ranking mechanisms, only
the top scoring candidate is considered. This leads to a
possible scenario, where in some cases the correct identi-
fier is ranked lower and would be neglected for any subse-
quent data procession. In case of our mutation mining
algorithm, we assume that some mutations cannot be
associated to the correct protein, because the gene tagging
task already failed.

On the other hand, it should be possible to improve the
performance of both entity recognition techniques for
genes and mutations by combining the results. The idea is
to run both approaches with low precision thus receiving
a high recall, associate all genes to all mutations, and then
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consider the intersection of all combinations that fit.
Mutation and gene product are considered to be a valid
pair, if the wild-type residues at the mutated position in
the protein sequence and in the reported mutation match
(as described in section Sequence Checks). For all proposed
gene identifiers, protein sequences are obtained and
checked for compliance with the reported wild type
amino acid. The score of identifiers that show a match are
increased, which might lead to a re-ranking of the identi-
fiers for one gene entity. This could further improve the
original gene normalization approach for candidate enti-
ties which are reported to show a mutation.

Example

As shown in Figure 2 our gene normalizer identified CCP
(human crystallin, gamma D) with EntrezGene ID 1421
as the top candidate gene for abstract PMID 8142383.
MutationTagger identified a replacement of tryptophan
with glycine at position 191 as the only mutation men-
tioned in the paper. None of the protein sequences
retrieved for human CCP showed a tryptophan residue at
position 191, which means that this gene identifier was
not supported by mutation information. However,
besides human crystallin, there was also cytochrome-c
peroxidase in yeast (EntrezGene ID 853940) proposed as
an alternative identifier, which was ranked lower. As the
product of this gene showed a tryptophan residue at posi-
tion 191 (according to PDB sequencing) the score was
increased making it the new top candidate. Indeed, man-
ual curation of the corresponding literature confirmed,
that the only gene mentioned in the abstract is cyto-
chrome-c peroxidase in yeast.

"An analogous interaction may stabilize the developing positive
charge on the Trp-191 radical of the wild-type enzyme. While

the oxidation of imidazoles by the ferryl intermediate of
was neither expected nor observed, this study has defined the
structural determinants for small molecule binding to an artificially
created cavity near a heme center which is capable of generating
oxidized species at a potential of over 1 V, and these results will
guide future attempts for novel substrate oxidation by "

CCP [Human] Ccp1 [Mouse] CCP1 [Yeast]

GenelD: 1421 GenelD: 67269 GenelD: 853940

Seq: 1-174 Seq: .TNSVNSV... [Seq: ..EGPWIGAA..
Figure 2

Improvement of gene normalization. Example for gene
name normalization with the help of mutation mining. Ini-
tially, our gene normalizer proposed the human gene CCP as
its context fits the text best (abstract not fully shown). How-
ever, when comparing the recognized mutation at position
191 with the sequences of all three candidates, only CCP in
yeast contains the wild-type tryptophan at the specified posi-
tion (PDB entry). After checking the full text of this publica-
tion, we found that CCP indeed refers to the gene in
Saccharomyces cerevisiae.

http://www.biomedcentral.com/1471-2105/10/S8/S3

Results and discussion

Mutation database

We are establishing a mutation database, which is
intended to store all protein point mutations mentioned
in PubMed abstracts for all organisms of interest. We real-
ized an early version, comprising a MySQL database and
web-interface to access the data. It is envisaged to apply
the data on diverse biological problems, such as the detec-
tion of mutation centred gene-disease associations in
human.

To populate the database, in a first step the PubMed cor-
pus is filtered for abstracts mentioning at least one gene or
protein using the named entity recognition algorithm as
described in section Gene normalization. Currently, data
for 10 model organisms is available: Human, Mouse,
Yeast, Rat, Fruit Fly, E. coli, A. thaliana, C. elegans,
Zebrafish, and H. pilori. This led to a set of 1,564,124
abstracts proposing more than 3 millions of potential pro-
tein candidates. In the second step, the mutation extrac-
tion system is applied on this corpus and the retrieved
information is transferred into the database. In total,
240,057 mutation mentions were found in 68,983
abstracts. Subsequently, for all candidate genes found in
these abstracts, the corresponding sequences are obtained
and checked for compliance with the wild type amino
acid at the position of the mentioned mutation. Out of
451,474 potential protein — mutation pairs 106,360 are
supported by sequence checks (59,991 if multiple men-
tions of the same mutation in one abstract are counted as
one) in contrast to 345,114 (188,878) mutations which
have not passed the sequence filter. In summary, from all
240,057 mutation mentions initially identified by the
algorithm 100,681 (42%) could be supported by gene
associations based on sequence check. These data were
retrieved from 30,458 (44%) out of 68,983 abstracts in
total. Figure 3 shows the content of the database for the
different species and compares the text mining results
with mutation data retrieved from UniProtKB. We made
the mutation data for the ten model organisms available
in GoGene [38] at http://www.gopubmed.org/gogene.

Improvement of gene normalization

We evaluated our approach on two different tasks: pure
identification of a mutation in a text, and the identifica-
tion of correct mutation-protein pairs. An evaluation of
our method on the test data from MutationFinder [36]
showed comparable success rates of 88% F-measure for
pure mutation mention extraction (see Table 2). The test
set comprises 508 abstracts which are manually annotated
with point mutations. 183 out of 508 abstracts contain at
least one mention of a point mutation. It should be noted
that the annotation does not contain any information
about genes or proteins. Our approach (MutationTagger
in recall mode) found in 166 of 183 abstracts mutations,
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Figure 3

Mutation database content. Mutations and their genes extracted from text for ten model organisms. A: For each organism
the number of distinct genes (red) and genes with mutations (orange) extracted from PubMed abstracts are shown. From the
6,000 distinct mutated genes found in total, more than half were human (3,170) which corresponds to 25% of all extracted
human genes. B: The distribution of text mined mutations across organisms. More than 70% of all mutations reported in liter-
ature abstracts are from human. C: The Venn diagram shows text mined mutations (blue) in comparison to variant (green) and
mutation (orange) annotations from UniProtKB as of version 1.47: information for additional 26,981 mutations was obtained

through text mining.

whereas 7 additional abstracts were wrongly predicted to
contain mutation information. On the mutation level,
776 out of 907 mutation mentions were identified along-
side 73 false positives. We found 33 correct mutations
more than MutationFinder. The higher false positive rate
is in regard to the mutation grounding task secondary, as
we could observe that most of the falsely predicted muta-
tions are discarded in the subsequent filter check. To
assess the mutation grounding and gene name normaliza-
tion improvement as motivated in the Methods section,
we run our gene normalization approach on the 183
abstracts that contained mutations. We were able to iden-
tify gene mentions of any of the 10 supported species in
22 abstracts. It should be noted that the majority of the
183 abstracts contained genes from species that are not yet
supported by our approach. In the initial run, the gene
name normalizer identified in 17 of 22 abstracts (77%)
the correct gene as the top ranked candidate. However,
after the gene tagging refinement by applying the muta-
tion-sequence filter to all candidate genes, in three more
papers genes were identified correctly replacing the false
top candidate. The following genes could be correctly

identified after re-ranking: Cytochrome c peroxidase of
yeast in PubMed abstract 8142383 (see also Figure 2),
human TP53 in abstract 11254385, and human amylase
alpha in abstract 15182367. This led to the correct nor-
malization of all genes in 20 out of 22 (91%) abstracts.
For the remaining two publications, the correct genes
could not be identified, as they belong to species which
are not yet supported by our system. The abstracts became
part of our validation subset, as the gene normalizer
falsely predicted mouse genes. However, these genes were
subsequently not supported by the sequence checks and
the proposed identifiers were ranked below the threshold.
Showing no gene identification at all, these abstracts
turned from the two "false positives" into "true nega-
tives". The results on the test set indicate that our ground-
ing approach performs reliably and can improve gene
name normalization. In contrast to our approach of first
performing sequence checks and using proximity as sec-
ondary information, most related grounding mechanisms
do either not consider sequence information like MuGeX
[32], or utilize it only as secondary information after prox-
imity like mSTRAP [30]. In addition, we consider both
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UniProt and PDB sequences for sequence checks, as both
are used by authors when describing mutations in the lit-
erature. Sequence checks are surprisingly specific already
for single mutations, with increasing precision for double
and triple mutants. However, the presence of some
orthologous proteins in one abstract complicates the
grounding of mutations.

On-the-fly vs. database approach

We evaluated the results of the two approaches (database
and on-the-fly) for human Aquaporin-1, as part of the sta-
bility analysis of protein membranes (see Section Applica-
tion). Precision of the on-the-fly approach is expected to
be lower, as the document retrieval part is relying on the
more general free text queries through Entrez ESearch util-
ity. We chose this approach to be independent of our gene
normalization approach, which so far only supports 10
model organisms. Indeed, in comparison to the unique
20 mutations found by the organism-centred approach, 9
additional mutations were found querying for "(Chip28
OR Aquaporin-1) AND human". All of these additional
mutations turned out to be false positives, actually
appearing in Aquaporin-2 or 4. This supports the good
precision of our gene normalization approach. We found
out, that a slightly modified query "(Chip28 OR
"Aquaporin-1") AND human" did not produce false pos-
itives and conclude, that query building might not work
fully automated but needs human interaction. Similar
problems could be observed, when short gene names or
synonyms were part of queries and could be overcome by
removing them from the query. On the other hand, this
supports the good precision of our gene normalization
approach.

Application

Predicting effects of mutations based on sequence

Integral membrane proteins play an important role in all
organisms, especially as transporters. Due to their striking
importance, mutations in membrane proteins are known
to be the cause of many hereditary diseases, such as cystic
fibrosis, or retinitis pigmentosa. The reason are often con-
formational changes in proteins, which may lead to mal-
function of a whole protein complex. Unfortunately,
identified structures for membrane proteins are still rare.
For this reason, we used a coarse grained model presented
by [39] considering sequence information to assess the
influence of mutations on protein structure.

The approach considers the solvation energy, which is
based on the probability distribution for each amino acid
within the integral part of a membrane protein to be fac-
ing the lipids of the membrane or the neighbouring pro-
teins. The amino acid specific property "inside" or
"outside" reflects the orientation of the amino acid side
chains with respect to the centre of mass of the neighbour-

http://www.biomedcentral.com/1471-2105/10/S8/S3

ing residues. For a given mutation in an integral part of a
membrane protein, the approach compares the solvation
energies for wild-type and mutant residues. If the energies
differ significantly, a destabilizing effect is predicted, espe-
cially if the energies are changing from negative to positive
or vice versa.

To quantify the ability of this model to predict the influ-
ence of mutations on the stability of membrane proteins,
we compared already examined and published effects of
mutations with the predictions of the sequence based
model. For this purpose, we screened the literature for sin-
gle point mutations reported for five membrane proteins
from the family of G protein-coupled receptors (bacteri-
orhodopsin and halorhodopsin from Halobacterium sali-
narum, bovine rhodopsin, Na+/H+ antiporter from
Escherichia coli, and human aquaporin-1). As described in
section Results and Discussion, Protein-centred approach and
Figure 1B, articles relevant for these proteins were identi-
fied by searching PubMed via the NCBI Entrez Program-
ming Utilities. Abstracts for each protein were queried by
the protein and gene name including the synonyms as
derived from the corresponding PDB/UniProt entry.

The MutationTagger was applied on these five sets of
abstracts for the extraction of mutation information. The
application of sequence checks brought the results down
to a reasonable number of proposed mutations, which
were presented as HTML documents and subsequently
manually curated. In the manual curation phase, we only
considered publications where a clear relationship
between a single point mutation and stability or stability
related function was described. Double or multiple muta-
tions were not considered, if the determination of a direct
relation between the reported effect and one of the muta-
tions was not possible. If an appropriate mutation was
found in the literature, we compared the solvation ener-
gies of both wild-type and mutant residues, which were
calculate according to [39], to decide, if the mutation is
stabilizing, slightly stabilizing, slightly destabilizing, or
destabilizing.

Example

Mutation T93P for bovine rhodopsin was reported to lead
to a conformational change of the protein [40]. Consider-
ing the two solvation energies of wild type Threonine (-
0.66 a.u.) and mutant Proline (0.08 a.u.) a destabilizing
effect can be predicted, although both amino acids are
actually classified as neutral. Without the change of sign
from - to +, only a slightly destabilizing effect would have
been hypothesized.

Relevance
We were able to show the ability of our mutation mining
approach to retrieve publications containing mutation
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Table 3: Influence of mutations as predicted by the solvation energy based approach compared with the literature. For each of the five
protein structures in the first column, we listed the text mined protein point mutations and the manually extracted effect of this
mutation as reported in the literature. We compared these effects with the stability change prediction by our model and evaluated if

these were in compliance. In 71% of the cases a change in function or stability is correlated with interaction energy.

Protein name

Mutation in literature

Effect as reported in literature

Stability change

Compliance

Bacteriorhodopsin G113Q destabilized slightly destabilizing yes
PDB: lbrr
UniProt: P02945
GIlI3L destabilized destabilizing yes
Gl16Q destabilized slightly destabilizing yes
Gllé6L destabilized destabilizing yes
1117F destabilized slightly destabilizing yes
117A destabilized stabilizing no
MI145F still active destabilizing no
Halorhodopsin H95A destabilized slightly destabilizing yes
PDB: lel2
UniProt: P16102
H95R destabilized slightly stabilizing no
R108Q not functional slightly destabilizing yes
T203V less active destabilizing yes
Rhodospin T93P misfolded destabilizing yes
PDB: 188
UniProt: P02699
T94l night blindness destabilizing yes
CII0F r. pigmentosa destabilizing yes
clioy r. pigmentosa destabilizing yes
CI10A r. pigmentosa slightly destabilizing yes
EI22Q still active slightly destabilizing no
EI22D still active slightly destabilizing no
EI22A slightly destabilizing
EI22R no retinal binding slightly destabilizing yes
CI85A wrong disulfide slightly destabilizing yes
GI188R misfolding slightly destabilizing yes
SI86A incr. activation energy slightly destabilizing yes
C187Y r. pigmentosa destabilizing yes
CI87A r. pigmentosa slightly destabilizing yes
N310C less activity slightly destabilizing yes
M317C less activity slightly destabilizing yes
Antiporter Al130C slightly stabilizing
PDB: 1zcd
UniProt: P13738
DI33A not functional slightly destabilizing yes
H225P less activity destabilizing yes
H225C less activity none no
G303C not functional slightly destabilizing yes
Aquaporin N42A still active slightly destabilizing no
PDB: 1hé6i
UniProt: P29972
A73M not functional slightly stabilizing no
Y186F conduct water slightly destabilizing
Y186A no water conductance stabilizing
Y186N no water conductance stabilizing
Cl189M less activity slightly stabilizing no
C189S still active slightly stabilizing yes
H209A still active slightly destabilizing no
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information for given proteins at a good precision. Due to
the quick and precise retrieval of mutation data we were
able to assess the soundness of the coarse grained model
for the prediction of stabilizing regions in membrane pro-
teins. For any of these five membrane proteins, 25 out of
35 mutational effects reported in the literature correlate
with the predictions based on the solvation energy (see
Table 3). These cases suggest a relation between mutations
and stability issues in membrane proteins. It should be
noted that none of these mutations were annotated in the
UniProt and PDB databases.

Conclusion

We developed a rule- and regular expression-based
approach that allows for the retrieval of protein point
mutations from the whole PubMed database specifically
for any given protein. This flexibility makes it a powerful
tool for immediately finding relevant data for follow-up
studies, as we showed in the application on five mem-
brane proteins. In addition, MutationTagger can be uti-
lized for the species-wide identification of mutations in
proteins mentioned in PubMed. We started to set up a
mutation database which allows for systematically query-
ing mutation related information, and finding relevant lit-
erature for subsequent studies. The sequence checks
applied on identified mutations and candidate proteins
have been proven to be an efficient, yet not sufficient filter
for mutation-protein associations. The filter shows good
sensitivity but improvable specificity, especially regarding
the species level. Furthermore, we were able to show that
mutation information from literature can even further
improve the quality of the gene normalization algorithm,
which already showed very good results.
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