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Abstract

Background: To automatically process large quantities of biological literature for knowledge
discovery and information curation, text mining tools are becoming essential. Abbreviation
recognition is related to NER and can be considered as a pair recognition task of a terminology and
its corresponding abbreviation from free text. The successful identification of abbreviation and its
corresponding definition is not only a prerequisite to index terms of text databases to produce
articles of related interests, but also a building block to improve existing gene mention tagging and
gene normalization tools.

Results: Our approach to abbreviation recognition (AR) is based on machine-learning, which
exploits a novel set of rich features to learn rules from training data. Tested on the AB3P corpus,
our system demonstrated a F-score of 89.90% with 95.86% precision at 84.64% recall, higher than
the result achieved by the existing best AR performance system. We also annotated a new corpus
of 1200 PubMed abstracts which was derived from BioCreative II gene normalization corpus. On
our annotated corpus, our system achieved a F-score of 86.20% with 93.52% precision at 79.95%
recall, which also outperforms all tested systems.

Conclusion: By applying our system to extract all short form-long form pairs from all available
PubMed abstracts, we have constructed BIOADI. Mining BIOADI reveals many interesting trends
of bio-medical research. Besides, we also provide an off-line AR software in the download section
on http://bioagent.iis.sinica.edu.tw/BIOADI/.
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Background
Protein/gene name recognition (NR) [1,2], is one of the
most challenging tasks in biomedical text mining [3].
Solving the problem of NR will allow for more complex
text mining tasks to be addressed [4] as it is a prerequisite
for information extraction and advanced text mining
[3,5,6]. One of themain reasons of the challenging is high
variation of terms that are not explicitly reflected in
biomedical ontologies [7]. It is common that biological
entities can have several names. For example, PTEN and
MMAC1 refers to the same entity [8]. It was estimated that
one-third of biological terms are variants [9].

A number of important studies in this area include
GAPSCORE [10], which examines the appearance,
morphology and context of named entities before
applying a classifier trained using these features (59%
precision and 50% recall). ABNER [11] employed a
conditional random field model and achieved precisions
between 58.2% to 85.4% and recall between 53.9% and
79.8% for different target entities. Other groups had
attempted combinations of approaches to improve
precision [12-16].

Abbreviation recognition (AR) is related to NR and can
be considered as a pair recognition task of a terminology
(may be a phrase or an entity) and its corresponding
abbreviation from free text. In this manuscript, we
denote “LF” to mean “the long form of the term” and
“SF” to mean “the abbreviation or the short form of the
term”. Since the name of most protein and gene names
are rather lengthy, most researchers tend to abbreviate
their names in published manuscripts. As a result, AR can
serve as a precursor of a number of applications. For
example, building a term index of a text database to
retrieve articles of related interests [17] or to link text-
mined protein interaction networks [18-20]. Hence, it
seems plausible to use AR as a first-pass in NER. In the
simplest sense, AR may be used to assist term boundaries
of entity names in free text, such as reported in [21,22].

AR is generally considered as a simpler problem than
NER and had been shown by the performance of AR
systems [8]. For example, Stanford University’s Abbre-
viation Server [23,24] demonstrated 97% precision at
22% recall and 95% precision at 75% recall. AbbRE [25]
and the system by Schwartz et al. [26] achieved 96%
precision with 70% recall, and 96% precision with 82%
recall, respectively, while SaRAD system [27] reported
95% precision with 85% recall. More recently, Sohn et al.
[28] used a LF to SF matching algorithm similar to Yu
et al. [25] and reported 96.5% precision with 83.2%
recall. However, these performance measures are hardly
comparable because each system was tested on different
corpora [29]. Although both Chang et al. [23] and

Schwartz et al. [26] used the Medstract Gold Standard
Evaluation Corpus [30], each had made undisclosed
modifications to their test corpus [29], resulting in
difficulty in comparison. Nevertheless, Torii et al. [31]
performed a meta-study to compare the results of a
number of AR systems and found that the SF-LF
identified by each system is generally consistent with
previous reports. In general, these systems can achieve
excellent precisions but still have plenty of room for
improvement in terms of recall. Currently, Schwartz et al.
[26] and Sohn et al. [28] demonstrated the best AR
performance than other existing systems.

Schwartz et al. [26] used a 2-step algorithm for AR under
the assumption that the SF-LF must exist in the same
sentence. In the first step, identification of a possible SF-
LF pair is initiated by the presence of a pair of brackets. It
considered two cases - the LF is in the brackets or the SF
is in the brackets. If it is likely that the SF is in the
brackets, the second step is to search for the LF word
boundaries in the sentence by morphological features.
Sohn et al. also used brackets to initiate the process of AR
but ignored a list of common bracket-delimited struc-
tures, such as “(p < 0.05)”. This is followed by filtering
the potential SF-LF pairs using a set of pre-defined rules.

Our approach to AR is based on machine-learning and
exploits a novel set of rich features to describe properties
of a potential SF-LF pair. In addition, the difference
between our system and those of [26,28] is that we can
identify pairs with unused characters in the SF. For
example, “CA5” and “CA V gene”. Our system also
outputs the prediction probability to indicate the
confidence of each identified SF-LF pair. Tested on the
AB3P corpus [28], our system demonstrated a F-score of
89.90% with 95.86% precision at 84.64% recall. We also
annotated a corpus of 1200 PubMed abstracts which was
derived from BioCreative II gene normalization dataset.
On our corpus, our system achieved F-score of 86.20%
with 93.52% precision at 79.95% recall. Comparing to
existing available AR systems [26,28], our system out-
performed them on both corpora and performs about 14
times faster than the best AR performance system [28].
All resources can be found on our website. By applying
our system to extract all short form-long form pairs from
all available PubMed abstracts, we have constructed
BIOADI, the most comprehensive dictionary of biologi-
cal abbreviations online. Mining BIOADI reveals many
interesting trends of bio-medical research.

Methods
Preparation of training data
We annotated a corpus of 1200 abstracts from BioCrea-
tive II gene normalization dataset [32] by a single person
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for consistency and exploited it to develop an AR system.
Hence, we denote this annotated corpus as “BIOADI
corpus.” We followed the style and the annotation
guideline of AB3P corpus [28], in which SF and LF pairs
are separated by “|” (for example, “HSP” and “heat shock
protein” form “HSP|heat shock protein”) to annotate
each abstract. We focus on the following forms of SF-LF
pairs:

1. LF is in front of SF, and SF is in brackets or square
brackets, e.g. "HSP (heat shock protein)";
2. SF is in front of LF, and LF is in brackets or square
brackets, e.g. "heat shock protein (HSP)";
3. Both SF and LF are in brackets or square brackets
and separated by comma or semi-colon, e.g.” (HSP,
heat shock protein)”.

The SF-LF pairs adhered to one of these forms will be
annotated as potential SF-LF pairs. The BIOADI corpus
includes 1668 true SF-LF pairs and 145 synonym pairs
which are marked with “//” in the beginning of each pair.
The synonym pairs were not considered as valid SF-LF
pairs and ignored in the following experiments. Mean-
while, We also used the AB3P corpus for performance
evaluation. It contains 1221 true SF-LF pairs. Some of
them are synonym pairs, however.

Both positive and negative instances were required for
model training. In this study, annotated SF-LF pairs were
used as positive instances in training data, and negative
instances were automatically extracted from text. The
extraction of potential SF-LF pairs was similar to the
previous work [28]. However, constraints on character
lengths or word lengths of SFs were not set, but
numbered list indicators (e.g., (a), (b), (1a), (1b), (I),
(II)....) and common strings (“e.g.”, “and”...) were
filtered out. Potential SFs which do not contain any
alphabetic character or contain certain symbols (“=”,
“%”, “>” and “<”) were excluded. A potential LF can be
composed of up to ten consecutive words preceding a
potential SF in the same sentence, or in brackets or in
square brackets following a potential SF which means
that there are at most ten potential LFs of a potential SF,
of which one of them is correct. Each abstract was split into
sentences by “sentence and paragraph breaker” [33] before
the automatic AR process. All potential SF-LF pairs were
checked for existence in the list of positive instances. If not,
the pairs acted as negative instances in training data.

Feature extraction of SF-LF pairs
Before training and testing the model, it is a pre-requisite
applying to transform the pair into the form of a feature
vector. In order to construct features from raw data
(potential SF-LF pairs extracted from the previous step),

we defined four sets of features. The design of these
features was originated from [16], inspired by the
previous works [29,34] and carefully selected in our
tests. The detail is as the following:

• String morphological features of SF and LF

We had selected the following binary features to
describe the string morphology in order to extract
and represent the literal information and character
properties of each SF and LF. We had also used some
features to demonstrate the position and amount of
stop words in LFs. For example,

1. Is the first letter of the string uppercase?
2. Is the first letter of the string lowercase?
3. Are all characters of the string all uppercase?
4. Are all characters of the string all lowercase?
5. Does the first word of the LF use the first letter
of the SF (case-sensitive and insensitive)?
6. Is the first word of the LF a stop word (case-
insensitive)?
7. Is the first word of the SF a stop word (case-
sensitive)?
8. Does the string contain numbers?
9. Does the LF share the same numbers of the SF?
10. Does the string contain Greek alphabet?
11. Does the LF start with the SF?
12. Does the brackets or square brackets of the
string pair well?

We also applied the discrete binary features to
characterize the composition of each SF and LF,
including:

1. Is the number of stopwords in the LF = 1, 2, 3, 4...?
2. Is the length (in tokens) of the string = 1, 2, 3, 4...?
3. Does the string contain certain punctuation
symbol?
4. The character pattern of the SF: First, to convert
each consecutive uppercase or lowercase charac-
ters to “A” or “a” depending on whether they are
uppercase or lowercase. Second, to convert each
consecutive digits to “1”. Third, to prune off other
characters. This is followed by matching the
converted string to a specified pattern. For
example, the SF “Rb1” matches the pattern “Aa1”.

• LF tokens

We used space and punctuations as delimiters to
tokenize each potential LF into tokens. Each token
acted as a binary feature to represent token information
of the potential LF. We also applied token bi-grams as
binary contextual features of the potential LF.
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• Numeric features between SF and LF

We exploited this set of features to describe the
mapping of SF letters to LF letters and the calculation
of the character usage between SF and LF.

1. The number of characters of longest common
subsequence of the SF-LF pair divided by the SF
length (in characters) [35];
2. Same as 1 but with the string consisting of the
first character of all LF tokens (e.g. "protein kinase
C” forms “PKC”);
3. The size of sharing character set between the SF
and the LF divided by the size of character set of
the SF;
4. The size of character set of the SF divided by the
SF length (in characters);
5. The shortest LF of the SF-LF pair extracted by
Schwartz’s AR system [26] that is equal to the LF;
6. Same as 5 but ignoring numbers of the SF and LF
(e.g. "CA 5 gene” are transformed into “CA gene”);
7. Same as 5 but reversing both the SF and LF (e.g.
"CA 5 gene” are transformed into “eneg 5 AC”);
8. Same as 7 but ignoring numbers of the SF and LF
(e.g. "CA 5 gene” are transformed into “eneg AC”);

• Contextual features of SF-LF pair

We generated contextual information of each poten-
tial SF-LF pair from the tokens which precede the SF-
LF pair and are limited two tokens at most. Those
tokens acted as binary features respectively.
We also applied token bi-grams as binary contextual
features of the SF-LF pair.

The total number of each of set of features and the total
number of all features are listed in Table 1.

Model training and testing
To test the performance of different learning algorithms
in our feature set, we implemented four learning
algorithms, including Support Vector Machine, Naïve

Bayes, Logistic Regression and Monte-Carlo Sampling
Logistic Regression. We took advantage of MALLET [36]
to implement Naïve Bayes, Logistic Regression and
Monte-Carlo Sampling Logistic Regression and LIBSVM
[37] for SVM. In this study, LIBSVM was incorporated
into MALLET to simplify the pipeline of experiments on
various learning algorithms.

We also set a ruled-based filter in the post-processing
step to clean up some easily fixed mistakes to improve
the precision. The output SF-LF pairs were filtered by the
following rules generalized from the inside tests:

1. If the length of the SF (in characters) is equal to
one, the length of the LF (in words) must not be large
than one;
2. If the SF is equal to “s”, the first letter of the LF
must not be “S” or “s” (e.g. "substract(s)”);
3. The brackets and parentheses of the SF and LF
must pair well;
4. The LF cannot contain a semi-colon followed by a
space;
5. The number of punctuations in the SF normalized
by the length of the SF (in characters) must not be
large than 0.5;
6. The pairs of bracket or parenthesis are at most two
pairs;
7. The LF must not start with the SF;
8. The SF must not be a sequence or list indicator
(e.g., (a), (b), (1a), (1b), (I), (II)....);

Since Sohn’s and Schwartz’s AR systems are available
online, we were able to reproduce their systems at our
local site. Generally speaking, we used them without any
modification in the whole process of system evaluation
and comparison. We only made a necessary modifica-
tion in the part of input and output of Schwartz’s system
for handling the format style of the AB3P corpus.

Results and discussion
In this study, we used a machine learning approach to
SF-LF pair recognition instead of a rule-based approach
[26-28,38]. Four learning algorithms, Logistic Regres-
sion, Monte-Carlo Sampling Maximum Entropy, Sup-
port Vector Machine and Naïve Bayes, were tested.

Learning algorithms and feature sets analysis
We evaluated the performance of the learning algorithms
on both corpora (BIOADI and AB3P, as described in
Methods). The performance of each algorithm was
carried out using one corpus for model training and
the other for model testing, vice versa. As tabulated in
Table 2, our results showed that the F-scores of different
learning algorithms tested on the BIOADI corpus were

Table 1: Number of features of each feature set and total number
of all features generated in feature extraction

Feature Set(s) BIOADI corpus AB3P corpus

M 251 239
L 23601 25993
N 8 8
C 19264 20231

M + L + N + C 43124 46471

M, String morphological features; L, LF tokens; N, Numeric features; C,
Contextual features.
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between 64.54% and 86.22%. The performances on
AB3P corpus were between 85.03% and 89.90%. The
F-score difference among the learning algorithms trained
using the AB3P corpus was larger than using the BIOADI
corpus suggesting that pairs of SF and LF were more
irregular in the AB3P corpus (containing synonyms)
than in the BIOADI corpus. Our result also indicates that
logistic regression and support vector machine with RBF
kernel outperformed other algorithms in both precision
and recall on both corpora with our feature set. As the
precision of logistic regression being higher than SVM
with RBF kernel, the logistic regression algorithm was
used to develop our AR system.

We evaluated the four sets of features on the two corpora
with logistic regression. Table 3 presents the perfor-
mance of four trials on different combinations of four
sets of features on both corpora. The F-scores of these
trails range from 80.87% to 85.81% for the BIOADI
corpus and range from 86.88% to 89.90% for the AB3P
corpus. Comparing the trials with the highest F-score
with the lowest one on both corpora, the trails with all

features were four to five percent higher than the one
with only morphological set of features. They also
performed the best in both precision and recall on
both corpora. That suggests our feature set is robust and
reliable.

Comparison with previous works
We compared our system to Schwartz’s and Sohn’s
systems. Each system was trained with the AB3P corpus
before tested them with the BIOADI corpus and vise
versa. Medstract Gold Standard Evaluation Corpus for
evaluation [30] was not used as past results with the
corpus reported are all based on the different modifica-
tion version annotated by each team [29].

The results are shown in Table 4. The F-scores of the
systems on the BIOADI corpus were between 85.12%
and 86.20%, while that on AB3P corpus were between
86.13% and 89.90%. The highest precision on both
corpora were achieved by Sohn’s system, but the highest
F-score and the highest recall on both corpora were

Table 2: Performance of various learning algorithms tested on the BIOADI corpus and the AB3P corpus

Training Corpus AB3P corpus BIOADI corpus
Test Corpus BIOADI corpus AB3P corpus
Learning Algorithm Precision Recall F-score Precision Recall F-Score

Naïve Bayes 0.9733 0.4828 0.6454 0.9784 0.7518 0.8503
Logistic Regression 0.9352 0.7995 0.8620 0.9586 0.8464 0.8990
MCMaximun Entropy 0.9320 0.7013 0.8004 0.9301 0.8066 0.8640
SVM (linear kernel) 0.9446 0.7808 0.8549 0.9619 0.8398 0.8967
SVM (RBF kernel) 0.9212 0.8103 0.8622 0.9256 0.8580 0.8906

Table 3: Performance of logistic regression classifier trained with different feature sets and tested on the BIOADI corpus and the AB3P
corpus

Training Corpus AB3P corpus BIOADI corpus
Test Corpus BIOADI corpus AB3P corpus
Feature Set(s) Precision Recall F-score Precision Recall F-Score

M 0.9155 0.7242 0.8087 0.9392 0.8082 0.8688
M + L 0.9153 0.7489 0.8238 0.9401 0.8207 0.8763
M + L + N 0.9260 0.7995 0.8581 0.9556 0.8398 0.8939
M + L + N + C 0.9352 0.7995 0.8620 0.9586 0.8464 0.8990

M, String morphological features; L, LF tokens; N, Numeric features; C, Contextual features.

Table 4: Performance of the AR systems tested on the BIOADI corpus and the AB3P corpus

Training Corpus AB3P corpus BIOADI corpus
Test Corpus BIOADI corpus AB3P corpus
System Precision Recall F-score Precision Recall F-Score

This study 0.9352 0.7995 0.8620 0.9586 0.8464 0.8990
Sohn et al. [28] 0.9482 0.7832 0.8578 0.9701 0.8356 0.8979
Schwartz et al. [26] 0.9416 0.7766 0.8512 0.9500 0.7883 0.8613
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achieved by our system. The F-score of our system was
three percent higher than Schwartz’s system on the AB3P
corpus. These results suggested that our system out-
performed Schwartz’s and Sohn’s systems.

We performed a significant test to measure the con-
fidence of our results. The null hypothesis is that our
system and another system performs equally well.
Applying the bootstrap test, we tested one system against
the another for F-score on both corpora with 1000
repetitions. The results are shown in Table 5. Compared
against Sohn’s system, our system won 810 in 1000
times of bootstrap tests on the BIOADI corpus, and won
619 times on the AB3P corpus. The p-values was less
than 0.001 in both conditions; thus, rejecting the null
hypothesis. Comparing against Schwartz’s system, our
system won 989 in 1000 times of bootstrap tests on the
BIOADI corpus, and won 1000 times on the AB3P
corpus. The p-values was less than 0.001, rejecting the
null hypothesis. Hence, our results suggested that our
system is an statistically significant improvement over
Schwartz’s and Sohn’s systems.

Learning curve analysis
We were interested in the influence of training data size
to the performance. We randomly selected 600 abstracts
as test data from each corpus, with the rest of the corpus
as training data. The models were trained using 10
randomly selected abstracts at the first iteration and

increased the training data size by 10 randomly selected
abstracts at each iteration. The system performance of
each iteration were recorded and averaged after five
repeated tests. The five tests used five different test data
which consisted of 600 randomly selected abstracts.
Schwartz’s and Sohn’s systems were tested as the control
groups in the experiment. Figure 1, 2 and 3 shows the
results on the two corpora and merged corpus (BIOADI
corpus + AB3P corpus).

Figure 1 shows the results of three AR systems tested on
the BIOADI corpus. In the figure of precision versus the
training data size, at first the precision is below the lines
of Schwartz’s and Sohn’s systems and fluctuates inten-
sely. However, the range of the fluctuation decreases as
the size increasing and the curve gets close to the line of
the precision of Schwartz’s system at 94%. There is not
much difference of precision among these systems. In the
figure of recall versus training data size, the recall of our
system is higher than other systems’ recall even when the
system was trained by a small size of training data. The
range of oscillation also decreases when the size of
training data increases. The recall in the last iteration
(trained by 600 abstracts) was three percent higher than
Sohn’s system and four percent higher than Schwartz’s
system. We observed the same trend in the figure of
F-score versus the size of training data. At first, the
performance was not much different among the systems.
After using more training data, our system shows the

Table 5: Significant tests among the AR systems on the BIOADI corpus and the AB3P corpus

BIOADI corpus AB3P corpus
Comparing with Sampling Won P-value Sampling Won P-value

Sohn et al. [28] 1000 810 < .0001 1000 619 < .0001
Schwartz et al. [26] 1000 989 < .0001 1000 1000 < .0001
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Performance versus training data size tested on the BIOADI corpus.
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advantage of machine learning based AR system by
improving its performance.

Figure 2 shows the same experiment but using the AB3P
corpus for testing. In this case, our system also
performed better in recall and F-score. Unexpectedly, in
this case, a difference between the results obtained from
the corpus is that our precision was better than
Schwartz’s system. It indicates that training with a
consistently annotated corpus (i.e., BIOADI corpus) is
useful to improve AR performance.

In addition, to test the influence of data size in a large set
of training data, we merged both corpora to form a new
dataset which contains 2450 unique abstracts. Figure 3
shows that the trends in precision, recall and F-score
were similar to the results in Figure 1 and Figure 2. As the
data size increases, it is expected that our machine

learning-based approach will continue to improve while
no improvement will be observed for rule-based systems.

Computational cost analysis
Due to the rapid increase of biomedical articles, the
throughput of an AR system is important for dealing
with large quantities of articles. Hence, we were
interested in comparing the processing speed of three
systems. The test platform is on a computer with Intel
Core Quad CPU 2.4 GHz, 5 gigabytes of RAM and 32bit
Linux system. The test time is defined as the elapsed CPU
time between program invocation and termination. We
tested the systems on four data sizes (1200, 1250, 2450
and 5000 PubMed abstracts with 240918, 229501,
470419 and 988828 tokens, respectively). The test
results are shown in Table 6. The fastest system on all
corpus size was achieved by Schwartz’s system. It only
took 3.318 seconds to deal with 5000 abstracts.
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Performance versus training data size tested on the AB3P corpus.
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Performance versus training data size tested on the merged corpus (AB3P corpus + BIOADI corpus).

BMC Bioinformatics 2009, 10(Suppl 15):S7 http://www.biomedcentral.com/1471-2105/10/S15/S7

Page 7 of 10
(page number not for citation purposes)



Although our system took 45.506 seconds to deal with
that size of abstracts, it was more than 14 times as fast as
Sohn’s system, which took 630.917 seconds to process
the data. On a larger scale, 17,551,169 PubMed abstracts
stored in our local database were processed. Our system
completed the whole process in 15 hours, suggesting that
the efficiency of our system is acceptable to deal with large
quantities of text for other text-mining applications.

Analysis of mis-identification cases
In the analysis of false-positive (FP) pairs produced by
our system, the common FP pairs are due to partial
match which has also been reported by previous works
[26,28]. For example,

• “PPIs|pump inhibitors” rather than “PPIs|proton
pump inhibitors"
• “CCR5|chemokine receptor 5” rather than “CCR5|
C-C chemokine receptor 5"

Other common types of the pairs missed by our system
include out of order match (e.g., NGL-1|netrin-G1
ligand) and partial match (e.g., Pol II|RNA polymerase
II). There is another type of false-negative pairs reported
[26,28], which are with unused characters in the SF. Most

of them has been removed in the process of AR for false-
positive reduction. However, we kept them and identi-
fied them with model prediction correctly. For example,
our system can identify:

• “CA5|CA V gene"
• “FTH1|ferritin heavy-chain gene"

BIOADI
To construct a comprehensive biological abbreviation
dictionary, we identified SF-LF pairs from 17,551,165
PubMed abstracts. The final AR system for this purpose is
trained by the BIOADI corpus. Therefore, we expect that its
F-score can reach about 90%. We did not include the AB3P
corpus because it contains some inconsistent synonyms, as
mentioned earlier. A total of 8,306,789 SF-LF pairs were
identified. These SF-LFpairs are groupedas1,687,063unique
SF-LF pairs. Most of the SFs are 3 to 6 character long. Table 7
lists the top 20 most common abbreviations used in the
scientific community. Although it is not possible to draw any
conclusions with regards to research trends by an analysis of
common abbreviations, a number of interesting observa-
tions can be made. Firstly, HIV (human immunodeficiency
virus) and HCV (hepatitis C virus) are the only 2 viruses on

Table 6: Testing time (in seconds) of three AR systems testing on different size of PubMed abstracts

Testing Size of Abstracts (Tokens)
System 1200 (240918) 1250 (229501) 2450 (470419) 5000 (988828)

This study 13.355 13.316 25.059 45.506
Sohn et al. [28] 159.292 135.254 292.343 630.917
Schwartz et al. [26] 0.873 0.897 1.598 3.138

Table 7: Top 20 most frequent SF-LF pairs extracted from 17,551,165 PubMed abstracts

Rank Short Form Long Form Frequency Class

1 CI confidence interval 36142 Statistical Measure
2 PCR polymerase chain reaction 26951 Experimental Technique
3 NO nitric oxide 25229 Medical Relevance
4 CT computed tomography 20084 Experimental Technique
5 HIV human immunodeficiency virus 20027 Virus Studied
6 LPS lipopolysaccharide 20027 Experimental Technique
7 OR odds ratio 19914 Statistical Measure
8 MRI magnetic resonance imaging 19396 Experimental Technique
9 IL interleukin 16934 Medical Relevance
10 CNS central nervous system 15915 Medical Relevance
11 BMI body mass index 15614 Clinical Observation
12 RA rheumatoid arthritis 14221 Medical Relevance
13 AD Alzheimer's disease 14103 Medical Relevance
14 PKC protein kinase C 13958 Medical Relevance
15 ELISA enzyme-linked immunosorbent assay 13946 Experimental Technique
16 CSF cerebrospinal fluid 13815 Medical Relevance
17 DA dopamine 11297 Medical Relevance
18 BP blood pressure 10991 Clinical Observation
19 MR magnetic resonance 10973 Experimental Technique
20 HCV hepatitis C virus 10944 Virus Studied
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the list. HCV/HIV co-infection is known to be a serious
medical condition and there are a number of journals (such
as Journal of Acquired Immunodeficiency Syndrome)
devoted to HIV research. In addition, ELISA is a common
serological technique for detecting anti-viral antibodies
suggesting viral infection, including that of HIV. Secondly,
CT andMRI scans are commonly usedmedical procedures in
the diagnosis of AD (Alzhemier’s disease) and RA (rheuma-
toid arthritis). Clinically, BMI (body mass index) and BP
(blood pressure) are important physiological parameters
linked to obesity and can be easily measured. Odds ratio
(OR) is a commonly reported statistical parameter in
epidemiology and since medical conditions appears to
dominate this list, it is not surprising to find OR here as
well. PCR (polymerase chain reaction) remains a useful
molecular technique in many areas of research and it is no
wonder that Professors Kary Mullis and Michael Smith were
awarded the 1993 Nobel Prize in Chemistry for its
development. Confidence intervals (CI) are reported in
nearly all statistical measure; hence, it is not surprising to be
grabbing the top seat in this list.

One of the complexity of SF and LF is that a single SF can
have multiple LF, depending on context. For example,
APC can have many different meanings, as illustrated in
Table 8. It may be interesting to note that 3 of the top 5
are related to cell cycle control (adenomatous polyposis
coli; anaphase-promoting complex) which are known to
be relevant in cancer research and colon cancer (adeno-
matous polyposis coli; argon plasma coagulation).
Antigen-presenting cells is widely known to be an
important key to acquire immunity. Activated protein
C is an important component in blood clotting pathway
and may be interacting with warfarin, a widely used drug
to manage deep-vein thrombosis and widely known for
its extensive interactions with other medical drugs.
Hence, it is not surprising to see a large occurrence of
these terms in the literature. However, it also suggests
that reading biomedical literature requires a good
understanding of these terms in order to prevent
ambiguity. Despite the contextual complexity, the
extracted LF-SF pairs may be used to support future
research, such as the development of named entity
recognition systems or abbreviation disambiguation.

Our web site http://bioagent.iis.sinica.edu.tw/BIOADI/
provides freely access to two online services and two off-
line tools. Online services include (1) SF-LF Search
Service and (2) SF-LF Identification Service, whereas off-
line tools include (1) an off-line abbreviation recogni-
tion tool and (2) an abstract fetching script. SF-LF Search
Service helps users to quickly retrieve all of the SF-LF
pairs in our database. Query results are listed as 20
records per page and ordered by the number of PubMed
IDs of each pairs so that users can easily find out the
most popular ones. To see in which PubMed IDs the SF-
LF pair can be found, users can click on the document
picture under the “PubMed” column to generate a
“PubMed ID box.” For those SF-LF pairs having too
many PubMed IDs to be fully displayed in the box, users
can click on the “PubMed Resource” to see the whole list
of PubMed IDs. By using the search service, users can
find different subtypes of SFs or LFs and thereby come
upon extra PubMed IDs that they can not find through
regular literature search. Secondly, “SF-LF Identification
service” provides real-time AR service. In the identifica-
tion service section, users can use the text area for text
inputs such as abstracts or manuscripts, whereas another
input box is for PubMed ID. After receiving the
submission of inputs, the system will return identified
SF-LF pairs and scores for each pairs. The higher the score
is, the better the identification can be trusted. If the input
is a PubMed ID, the result table will also show a
hyperlink to PubMed at the bottom. In the download
section, we provide all of the SF-LF pairs in our database
with two helpful tools: (1) Off-line Abbreviation
Recognition Tool and (2) Abstract Fetching Script. The
off-line abbreviation recognition tool can automatically
do AR on a given text file and generate SF-LF pairs and
their score to the output file. Since it is a JAVA
application, it can run on any platform and serve as a
SF-LF identification component in any pipeline of
analysis. The abstract fetching script is a Perl script and
can be used to massively download abstracts through the
Web Service of PubMed database for given PubMed IDs.
To ensure the stability of our web site, all scripts and
layout of the web site have passed tests on different
browsers, different platforms, and even mobile devices.

Conclusion
Our system demonstrated 93.5% precision and 80.0%
recall, giving a F-score of 86.2%, which statistically
significantly outperformed the existing best performance
AR system. At the same time, our system runs suffici-
ently fast to handle the entire set of PubMed abstracts.
This suggests that a machine learning approach to
abbreviation recognition gives not only good perfor-
mance as good as a rule-based system, but also satisfying
execution.

Table 8: Top 5 long-form occurrences for the abbreviation
"APC"

Long Form Frequency

antigen-presenting cells 2077
adenomatous polyposis coli 1108
activated protein C 924
anaphase-promoting complex 254
argon plasma coagulation 152
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