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Abstract

Background: According to many field experts, specimens classification based on morphological
keys needs to be supported with automated techniques based on the analysis of DNA fragments.
The most successful results in this area are those obtained from a particular fragment of
mitochondrial DNA, the gene cytochrome c oxidase I (COI) (the “barcode”). Since 2004 the
Consortium for the Barcode of Life (CBOL) promotes the collection of barcode specimens and the
development of methods to analyze the barcode for several tasks, among which the identification of
rules to correctly classify an individual into its species by reading its barcode.

Results: We adopt a Logic Mining method based on two optimization models and present the
results obtained on two datasets where a number of COI fragments are used to describe the
individuals that belong to different species. The method proposed exhibits high correct recognition
rates on a training-testing split of the available data using a small proportion of the information
available (e.g., correct recognition approx. 97% when only 20 sites of the 648 available are used).
The method is able to provide compact formulas on the values (A, C, G, T) at the selected sites that
synthesize the characteristic of each species, a relevant information for taxonomists.

Conclusion: We have presented a Logic Mining technique designed to analyze barcode data and
to provide detailed output of interest to the taxonomists and the barcode community represented
in the CBOL Consortium. The method has proven to be effective, efficient and precise.

Background
In this paper we consider an automatic data analysis
method to perform the classification of specimens
through the analysis of a small portion of the genetic
information extracted from specimens. The method
proposed in this paper does not address the counterpart
of this problem, i.e. the problem of clustering a
collection of DNA sequences into groups which could

potentially correspond to biological species; such
approach has been widely adopted in many related
papers discussed below and is frequently based on the
search of tree-like structures that would be able to
convey also the taxonomic relations among the exam-
ined species. In [1] a wide discussion of the two
problems and the benefits and drawbacks in using
DNA sequences is addressed.
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Specimens classification methods based on a small DNA
subsequence are first proposed for least morphologically
distinguished species like archaea, bacteria, protists and
viruses [2-4] and then extended to higher organisms
[5,6].

In his first paper on this topic [7] Hebert uses DNA
Barcoding, a technique based on a short DNA sequence
from a small portion of the mitochondrial DNA (mt-
DNA), the gene cytochrome c oxidase I (COI), to be used
as a taxon “barcode”, that differs by several percent, even
in closely related species, and collects enough informa-
tion to identify the species of an individual. This
molecule, previously identified by [8] as a good target
for analysis, is easy to isolate and analyze and it has been
shown [9] that it resumes many properties of the entire
mt-DNA sequence. Since 2003 COI has been used by
Hebert to study fishes, birds, and other species [10,11];
one of the most significant results concerns the
identification of cryptic species among insect parasitoids
[12]. For sake of completeness we remind that another
mt-DNA subsequence (gene), Cytochrome b, was pro-
posed as a common species-level marker, while COI is
specific for animal species [13].

On the basis of these results the Consortium of Barcode
of Life (CBOL) was established in 2004. CBOL is an
international initiative devoted to developing DNA
Barcoding as a global standard for the identification of
biological species, and has identified data analysis issue
as one of the central objectives of the initiative. In
particular the Consortium proposed several key pro-
blems:

1. Optimize sample sizes and geographic sampling
schemes, as barcodes are not easy to measure, and
large samples are very expensive;
2. Consider various statistical techniques for assign-
ing unidentified specimens to known species, and for
discovering new species;
3. Stating similarity among species using character-
based barcodes and identify what are the character
based patterns of nucleotide variation within the
sequenced region;
4. Identify small portion of the barcode that are
relevant for species classification, as sequencing long
molecules is expensive (shrinking the barcode).

In this paper we deal with the last two items. We propose
a method that, given a sample, finds a small relevant
portion of the COI sequence that allows to distinguish
among the species that are present in the sample, and we
provide a character based pattern for each species (i.e. a
logic formula) that allows to precisely classify all the
individuals of the sample and individual whose species

is unknown (partially addressing also the second item of
the list). The method, already described and applied in
some other variants in previous work [14-17], is new for
this problem and does not provide explicitely a
taxonomic structure of the analyzed species.

The topic of shrinking the barcode is studied in [18],
where the authors determine how much sequence
information is required for identification and calculate
the probability of having species-specific barcode for
varied size fragments. They show that sequences of
among 100 and 250 sites are most of the time sufficient.
In [19] it is shown that while long sequences are needed
to obtain correct phylogenetic trees and to identify new
species, smaller sequences are sufficient to classify
specimens.

Most of the known methods for barcode analysis are
either based on the concept of distance between M-OTUs
(Molecular Operational Taxonomic Units), or character
based. An M-OTU is a terminal node (an organism) in
coalescent trees obtained by sequencing an informative
sequence of DNA. Among the distance based methods
we recall that one where M-OTUs are analyzed by first
creating M-OTU profiles (i.e. identifying those sites
where two unrelated individuals are unlikely to have
the same alleles) and then using the Neighbor Joining
(NJ) method [20] to obtain a phylogenetic tree (the NJ
tree), so that each species is identified as represented by a
distinct, non overlapping cluster of sequences in this
tree. The principle of the NJ tree is to find pairs of
M-OTUs that minimize the total branch length at each
stage of clustering of M-OTUs starting with a star-like
tree. A model-based, decision-theoretic framework based
on the coalescent theory, where both distance and the
posterior probability of a group are utilized is presented
in [21]. Finally, in [22] simulations to test the
performance of different methods based on sequence
comparison (BLAST and Genetic distance) are described.

Among character-based methods, we recall here the
method due to Kuksa and Pavlovic [23] and the one
proposed by Sarkar et al. [24,25]. In [23] string kernel
methods for sequence analysis are applied to the
problem of species-level identification based on short
DNA barcodes. This method does not require DNA
sequences to be aligned; sorting-based algorithms for
exact string k-mer kernels and a divide-and-conquer
technique for kernels with mismatches are proposed.
Similarity kernel allows to build accurate predictors and
to cluster unknown sequences. The Characteristic Attri-
bute Organization System (CAOS), proposed in [24,25],
is a method for discovering conserved character states
from cladograms (i.e., trees) or groups of categorical
information. CAOS identifies character states at each
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node in a phylogenetic tree, in a similar way that
attribute tests are identifies in decision tree algorithms.
The method first identifies diagnostic DNA sequence
changes in a data set, and then establishes those as rules
for the second function of the program that reads DNA
sequences from query specimens and assigns them to
their species. Other character based methods use neural
network [26] or Bayesian statistics [27].

The method proposed in this paper is a character based
method and is comprised of two steps. The first step is
feature selection, where the problem of selecting a small
number of relevant features is formulated as an integer
programming problem (a similar approach for feature
selection has been also adopted in [17]). The second step
is the identification of the logic formulas that separate
each class from all the others. Such task is accomplished
using the Lsquare system for logic mining, originally
described in [14].

The main benefit of this method with respect to other
more standard data mining approaches is its capability
to provide compact classification rules that possess
semantic information, since they identify, for each
species, the sites of the molecule, the alleles that are
characteristic of that species, and the propositional logic
formulas that link them.

The paper is organized as follows: after a brief introduc-
tion to the notation and definitions used in the paper, in
section “Shrinking the barcode”, we describe the features
selection model adopted, while in section “The extrac-
tion of separating logic formulas” we provide the reader
with a synthetic description of the logic mining method
Lsquare (further details are found in the related litera-
ture). Then, in section “Results and discussion” the data
set used and the results of the experiments are described.
Final remarks are the topic of section “Conclusions”.

Methods
We introduce the terminology adopted in the paper. We
assume that each individual (or specimen) is described
by its barcode, that in turn is composed of a fixed
number of m sites (approx. 650, in the case of COI).
Each individual belongs to one and only one species, or
class. The data set is composed of n individuals,
belonging to two or more classes; we refer to the sites
of the barcode also as features, when we are in a
mathematical setting. The i - th individual of the data
set is represented by the vector fi = (fi1, fi2,..., fim), where
fij Œ {A, C, G, T}; the data matrix is represent by the
sequence of vectors f1, f2,..., fn. Given this matrix
representation of the data set, when appropriate the
individuals may also be referred to as rows, while the

features as columns. The classification method adopted is
basically a two-class separation method, in the sense that
it identifies the logic formulas that separate the
individuals of one class in the data set from the
remaining individuals of the data set (such individuals
may belong to one or more classes). When needed, we
refer to the two classes to be distinguished as class A and
class B.

Shrinking the barcode
The identification of a subset of relevant features among
a large set is a typical problem in Data Analysis and Data
Mining, often referred to as feature selection. Among the
different approaches, the idea of formulating the feature
selection problem as a mathematical optimization
problem where the number of selected features is to be
minimized under some constraints has received some
attention in the literature, and proven to be effective in
many situations. In [28] the authors adopt such an
approach for the selection of TAG SNPs; the mathema-
tical model adopted turns out to be a linear problem
with binary variables whose structure is well known in
the combinatorial optimization literature as the set
covering problem. Several similar models where also
treated in [29], where large set covering models where
proposed (a.k.a. the test cover problems). The main
drawback of this approach, and of the many variants that
have been then proposed, lays in the fact that it uses one
constraint of the integer programming problem for each
pair of individuals of the data set that belong to different
classes. Such fact implies a rapid growth of the
dimension of the problem, and thus its intractability
for large sizes, that then requires the use of non optimal
solution algorithms.

In this paper we adopt an alternative approach,
characterized by:

a. the use of a different method to construct the
constraints of the optimization problem, that results
in a problem size that grows only linearly with the
size of the data;
b. the use of a different objective function, that
maximizes a lower bound on the discriminating
power of the solution over all the individuals of the
training data.

Such formulation can be solved in reasonable time with
exact optimization algorithms, but very good quality
solution can be found also with fast heuristics developed
ad hoc; this is the case of the GRASP method used in this
paper and described in [17].

Such approach is based on a very simple idea.
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For the time being, we assume the individuals to belong
to only two classes, class A and class B. Given a feature fj,
we define PA(j, k) and PB(j, k) be the proportion of
individuals where feature fj has value k (for k Œ (A, C, G,
T)) in sets A and B, respectively. If PA(j, k) > PB(j, k) (resp.
PB(j, k) > PA(j, k)), then the presence of fj with value k is
likely to characterize individuals that belong to class A
(resp. B). To better qualify the strict inequality between
PB(j, k) and PA(j, k) we introduce an additional
parameter l > 1, and then define, for each feature j
and for each individual i in class A the vector dij as
follows.

While, for individuals i in class B, the value of dij will be:

In the practical application the parameter l directly
influences the density of the matrix composed of dij and
can be adjusted to obtain a reasonable value for the
density itself (say 20%).

According to this definition, we intuitively assume that
the number of ones in vector d.j is positively correlated
with the capability of feature fj to discriminate between
classes A and B. We would then like to select a subset of
the features that exhibits, as a set, a good discriminating
power for all the individuals considered, so that we may
use more features combined together to build rules that
perform a complete separation between A and B.

The purpose of the feature selection model is then to
select a given and small number of features that,
collectively, guarantee a good discriminating power for
all the individuals of the data sets. This can be formally
stated asking to select a given number of features (say, b)
that maximize the minimum of the discriminating
power over all the individuals.

We define the binary decision variable xj = {0, 1} with
the interpretation that xj = 1 (resp. xj = 0) means that
feature j is selected, (resp., is not selected). The binary
integer optimization problem can then be defined as
follows:

(1)

We bring to the attention of the reader the fact that b is a
parameter of the problem, and not a variable. The
optimal solution of the above problem would then
select the b features that guarantee the largest discrimi-
nating power over all the individuals in the data. Despite
the problem has been described with straight-forward
arguments, it can easily be shown that its optimal
solution amounts to identify the feature set of a given
size that maximize the additive class entropy of its
individuals. Besides, the number of variables of the
problem is given by the number of features (m), and the
number of rows by the number of individuals (n),
keeping the size of the problem in a linear relation with
the size of the data. The problem is anyway difficult to
solve, and for large sizes approximate solution methods
may be needed if one is not to resort to heavy and often
expensive commercial solvers for integer programming.
The use of an efficient heuristic method allows the
current implementation of the methods described in
section “The BLOG software system” to be freely
distributed for the purposes of the CBOL Consortium.

Once an optimal set of b features is selected, these are
used by the logic mining tool Lsquare to extract the
separating formulas, as described in the next section.

The extraction of separating logic formulas
Lsquare is a learning method that operates on data
represented by logic variables and produces rules in
propositional logic that classify the individuals in one of
two classes. The appropriateness of Lsquare for specimens
classification is motivated by the fact that it uses a logic
representation of the description variables, that are to all
extents logic variables, and of the classification rules,
that are logic formulas in Disjunctive Normal Form
(DNF). Such property enables to analyze the classifica-
tion results also from the semantic point of view, as the
classification rules determined by the method express
combination of the features that can be appreciated by
domain experts and may bring to light useful knowledge
in an easily understandable format.

The classification rules are determined using a particular
problem formulation that amounts to be a well know
and hard combinatorial optimization problem, the
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minimum cost satisfiability problem, or MINSAT, that is
solved using a solver based on decomposition and
learning techniques [30]. The DNF formulas identified
have the property of being created by conjunctive clauses
that are searched for starting from those that cover the
largest portions of the training set. Therefore, they
usually are formed by few clauses with large coverage
(the interpretation of the trends present in the data) and
several clauses with smaller coverage (the interpretation
of the outliers in the training set).

From the practical standpoint, the problem of finding a
separating DNF for A and B is solved sequentially,
identifying at each iteration a conjunctive clause that
holds True for the largest non-separated subset of A and
False for all B. Termination of the process is guaranteed
by some property of the method (see [14]). Each
iteration is in turn formulated as a logic optimization
problem, that we briefly describe here. Basic notions of
propositional logic are given for granted and can be
found in [14]; below we summarize the two main steps
of the method.

First, we expand the selected features into 4 different
logic variables, each one associated with the presence or
absence of one the 4 nucleotides in the given position.
For example, vjA with value True indicates that in
position j is present nucleotide A, and False otherwise.
For simplicity, assume that all these logic variables are
sequentially indexed from 1 to M, and referred to as vj.
Thus, vj = True for individual i means that, for that
individual, a certain position exhibits a certain nucleo-
tide.

Second, we formulate a MINSAT problem whose
solution identifies one of the CNF clauses that will
form the final DNF formula. To do this, we introduce
two additional types of logic variables:

• pj and qj, linked with the vjs as follows: vj is chosen
in the clause with value True if pj = True and qj = False;
vj is chosen in the clause with value False if pj = False
and qi = True, and vj is not chosen in the clause if pj =
qj = False;
• ei, associated with each individual i of class A, that
are forced by the constraints to assume value False if
the clause identified by the solution holds True for i,
and False otherwise.

Also, define as the set of indices of the features that
appear in individual i of class A with value True; and,
symmetrically define as the set of indices of the
features that appear in individual i of class A with value
False. Analogously define and .

Consider now the following MINSAT problem, whose
solution is determined by an assignment of the logic
variables pj and qj and ei such that all the logic
constraints are satisfied and the sum of costs of the
variables that hold True is minimized:

(2)

It can be verified that the solution of problem (2)
identifies a CNF clause on the vj and that the set A’ = {i Œ
A|ei = False} is the largest portion of A that can be
separated from B by a simple CNF clause. In fact, we
have that: vj belongs to the clause with value True if pj=
True and qj = False; vj belongs to the clause with value
False if pj = False and qj = True; and, finally, that vj is not
present in the clause if pj = qj = False. Using this
information, we can formulate a second MINSAT
problem where we select, amongst all separating clause
that separate A’ from B, the one that uses the least
number of literals (e.g., the most compact clause):

(3)

A more detailed description of the system and of its
other components can be found in the related papers
[14-16].

The BLOG software system
The above mentioned methods have been integrated in a
data mining software designed specifically for barcode
analysis applications, the BLOG system (Barcoding with
LOGic formulas).

The aim of the system is to identify logic rules that are
able to recognize the species (in the following also
referred to as class) of a specimen by analyzing its
barcode sequence. A consistent effort in developing
BLOG has been devoted to the import of files from
different data format, to the control of the analysis flow,
and to the production of output that are in line with the
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typical styles and interests of the scientific communities
that use barcode or, more in general, DNA and RNA
data, to extract classification rules from training data and
to assess their quality.

The standard input of the program is a FASTA format
file of barcode sequences containing the training and
the testing set. The FASTA format is an internationally
agreed upon format for nucleotide or peptide
sequences. It is converted into an internal format
named DMB that provides all the information needed
for the analysis in an efficient format specifically
designed for the adopted algorithms. In DMB, the
data set is represented by a set of files each containing a
specific portion of the complete information; each file is
preprocessed, and a coherency and integrity control step
on the data is performed before the real analysis starts.
The main files that compose the DMB format are four,
and contain respectively the data matrix (file .matrix),
the class label and textual description for each specimen
(file .classes), the identification number and the textual
label for each column or locus (file .collabels) and,
finally, the code and the description of each specimen
(file .rowlabels).

The main outputs of BLOG are:

• The predicted class for each specimen with attached
a measure of the confidence associated with such
prediction;
• For each class in the training set, the logic formulas
that have been extracted from data and are used to
predict the class of the specimens; each formula is
completed with a measure of its accuracy;
• The usual classification statistics (confusion matrix,
average and variances of error rates obtained with
different sampling strategies).

Additional output used to interpret the results is also
provided:

• The name of each specimen in the test set followed
by a list of the similar specimens in the training set
and the accuracy measure of the classification of the
test specimen (file .bdp1). For example, the following
line:
EF539303; DQ108243, DQ108244, DQ108245,
DQ108246, DQ108251, EF539302, DQ108252;
100%.

declares that the specimen with code EF539303 in the
test set is recognized to belong to the same class as
the specimens DQ108243, DQ108244, DQ108245,
DQ108246, DQ108251, EF539302, and DQ108252;
besides, the logic formulas that assert such similarities

are able to classify all the test individuals of this class
without error (with precision 100.0%).

• The logic formulas associated with each class; a
sample of such output is given in Table 1 below, where
the formulas associated with 4 species are described.
The formulas are formed by a limited number of
statements that identify the value (A ,C, G, or T) that
the given position of the barcode needs to have to
satisfy the formula; the following Coverage indicates
the number of specimens recognized by that formula.

TheBLOGsystemhasbeendevelopedusing aPipes andFilters
architecture [31], which provides a structure for computing
streams of data. Each computational analysis or data
manipulation is done by a separate module, or filter. The
newdata is transferred through pipes between the connected
modules. The basic computational modules of the system
have beenwritten inANSI C, while a high level web interface
can be used to design and interactwith the analysis stream. It
runs both under Windows and Linux environments.

The flow diagram of BLOG in Figure 1 shows a schematic
view of the architecture by representing the system flows
and the fundamental modules.

We provide below a description of the BLOG modules:

• The Sampling module divides the original data files
into two or more random samples, according to the

Figure 1
BLOG flow chart. The flow chart of the BLOG software
system.

Table 1: Logic Models Extracted from Data

SPECIES CLAUSE(S) COVERAGE

Lonchofilla thomasi v83 = t 19
Molossus molossus v344 = t 11
Rhinofilla pumilio v64 = t 20
Sturnira tildae v616 = g 8
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sampling strategy that is requested by the user. The
system implements standard Percentage Split and
Cross-Validation; the sampling is designed to take
into account, if required, the class distribution, and
to perform a required number of repetitions of the
sampling step. The created samples are stored in an
incidence matrix with the individuals on the rows
and the samples on the columns, that is then passed
to the next module.
• The Cresample module starts from the sampling
matrix and creates the required samples in an
expanded DMB format to be used by the following
modules; when more samples are to be analyzed, this
module is called within a loop.
• Makeclasses is then used to identify the different
values that each column may assume. This step is of
particular importance when the data is in numerical
form, and thus it is required to properly define, for
each variable, two or more intervals by means of
which a numerical variable can be considered a
nominal, or logic, one. For the barcode application
the identification of the value is straight-forward, as
they will correspond to the 4 allelic values that can
appear on the sites of the barcode, i.e., A, C, G, and T.
Nevertheless, this module allows for the introduction
and the proper processing of missing values, when
present.
• The Discretize module is in charge of creating a new
data matrix where each original value is mapped into
a numerical code representing the corresponding
interval, or value, that appears in the original matrix.
• The Creasc module takes as input the training file in
DMB format and creates the optimization problem
described in section “Shrinking the barcode”.
• The Grasp module then executes the Grasp solution
algorithm (see for reference [17]) to solve, for a given
value of b, the optimization problem created by the
Creasc module. The solution of the problem consists
in a list of the b features selected.
• The Feature Selection then projects the samples from
their original space into the new, smaller space,
defined by the selected features. Such projection
affects in the same way the training and the testing
samples.
• The Crealogic module creates the MINSAT problem
described in section “The extraction of separating
logic formulas” in the specific input format required
by the logic solver Lsquare, that is then called for each
different species to create the classification logic
formulas.
• The final module, called Evaluation, integrates all
the results that have been obtained, in each experi-
ment, by different loops over the classes and over the
repetition of the experiments, and creates the output
files for the final interpretation of the results.

A standard application of BLOG is structured in the
following way. For each species, or class, s, a 2-class
classification problem is defined, where class A contains
the individuals of species s, and class B the individuals of
the other species. The training data is used to formulate
the feature selection problem described in section
“Shrinking the barcode”, and to identify the optimal
set of features for different values of the parameter b.
The Lsquare system is used to identify logic formulas
based on the selected features, to separate the indivi-
duals in class A from those in class B. The formula for
species s is saved, and the above is iterated for all the
species. At the end of this process, we have the logic
formulas - one for each class - and apply these formulas
to the individuals of the training and testing splits. If an
individual is recognized as positive by the formula of
species s, we declare its predicted class to be s and then
verify if such prediction is correct. When an individual is
recognized as positive by more than one formula (or by
none of them) we register such an event as a recognition
error.

Results and discussion
The software has been tested on two data sets provided
by the Consortium for the Barcode of Life and one
obtained directly from the GenBank Nucleotide Data-
base.

The first data set was provided by the Consortium for the
Barcode of Life in the 2006 Conference; it is composed
of 1700 barcode sequences coming from individuals
belonging to 150 different species. Each fragment
contains between 648 and 690 sites (or nucleotides).
Each sequence is extended to 690 sites for reaching the
same length; initial and final gaps, if present, are
handled by our algorithm (the special character 0 is
used). This is a selection of barcode datasets extracted
from BOLD (Barcode Of Life Database), which is based
on real barcodes. The species are intentionally hidden by
the Consortium and are only denoted by an incremental
number. The choice of this data set is motivated by the
following arguments:

• The species are not equidistributed: every species is
represented, on the average, by 10 specimens, but
there are some classes with limited available speci-
mens, that make the problem harder (small training
subsets);
• The variety of data from many species makes it hard
to identify the specimen class.

The experiments have been conducted according to the
previous described scheme (2-class classification pro-
blem):
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• The data is split into training and testing data,
adopting a proportion of 80% or 85% or 90% as
training (the remaining being used for testing);
• For each species s:
- a 2-class classification problem is defined, where
class A contains the individuals of species s, and
class B the individuals of the other 149 classes.
- the training data is used to formulate the feature
selection problem described in section “Shrinking the
barcode”, and to identify the optimal set of features for
different values of the parameter b (10, 15, and 20).
- The Lsquare system is used to identify logic
formulas based on the selected features, to separate
the individuals in class A from those in class B.

At the end of this process, we have 150 logic formulas -
one for each species - and apply these formulas seperately
to the individuals of the training and of the testing splits.

The scheme is then repeated for different random splits
of the data in training and testing.

The results are summarized in Table 2, that reports a row
for each of the experiments that have been conducted.
The values of b (10, 15, or 20) and the corresponding
value of a obtained from the optimal solution of the
feature selection problem are listed in columns 1 and 2;
column 3 contains the percentage of data used for testing
(10% or 15% or 20%). In the last 2 columns are reported
the percentage of error obtained on the training and on
the testing data, respectively.

The overall error rate decreases, as is to be expected,
when a larger training set is used, due to the fact that the
information used to extract the formulas is larger and the

formulas are therefore more accurate. In the same way,
we note that experiments with fewer features (where b =
10) are less precise than those with more features; to any
extent, for the largest values of b used (20), the error
rates are very small also when the testing data used is
larger (20%). This means that the system is able to
extract good formulas using only 20 of the 648 sites that
are present in the barcode. Moreover, when comparing
the error rates obtained on the training set with those
obtained on testing we note a very little decay in the
performances, thus highlighting the good generalization
capabilities of the formulas and the important role of the
barcode data for species discrimination.

It is of interest to check the frequency by which the different
features (barcode sites) appear in all the formulas that have
been identified for the different random splits. We identify a
group of sites that appear with particularly high frequency
(i.e., are present in many of the formulas obtained by the
method) that are likely to be those whose combination best
expresses the difference among the 150 species considered:
such sites are in position 100, 106, 470, 469, 544, 637, 331
of the barcode.

The logic formulas are indeed very compact, and very few
of them are composed of more than one CNF clause;
such clauses are composed of few (usually 3, but never
more that 5) literals (i.e., combination of a feature and
its value). In Table 3 we report as an example a list of the
separating formulas for the first 5 species of the 150
available for one of the experiments with the corre-
sponding correct coverage (cc) and wrong coverage (wc):

The example of the interpretation of the formulas for a
subset of the analyzed classes is given in Table 3:

• First line of Table 3: if nucleotide in position 100 of the
barcode has value C, nucleotide in position 346 has value
A, nucleotide in position 499 has value T and nucleotide
in position 502 has value A then the species is 1 with
correct coverage of 100% and wrong coverage of 0%.
• Second line of Table 3: if nucleotide in position 82 of the
barcode has value T, nucleotide in position 238 has value T
and nucleotide in position 502 has value C, then the species is
2 with correct coverage of 77% and wrong coverage of 0%.

The second data set was provided by the Consortium for
the Barcode of Life and is composed of 826 barcode
sequences coming from specimens belonging to 82
different species. The barcode sequences are mainly
taken from the Kingdom Animalia, the Phylum Chor-
data, the class Mammalia, the Infraclass Eutheria, the

Superorder Laurasiatheria and the Order Chiroptera, or
commonly know as bats. Also in this case, each sequence

Table 2: Optimal values and Error Rates (first data set)

Error Rates
b a test% training testing

10 4 10 8.02% 17.00%
10 4 10 10.14% 20.00%
10 4 20 11.90% 21.52%
10 4 20 13.50% 21.19%

average 10.89% 19.93%

15 6 10 0.87% 10.00%
15 6 10 1.93% 12.50%
15 6 20 1.50% 10.93%
15 6 20 2.04% 12.25%

average 1.58% 11.42%

20 8 15 0.20% 8.94%
20 8 15 0.61% 7.72%

average 0.40% 8.33%
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is extended to 660 sites (or nucleotides) with special
handling for gaps, if necessary. The sequences are taken
from BOLD (Barcode Of Life Database) and differ in
variety of aspects, length and composition. For this data
set the class distribution is more fair, with 10 specimens
for each, on the average. We have chosen this data set to
have a comparison between a fair distributed and a more
spread and less populated set.

The experiments have been conducted according to the
previously described scheme.

As shown in Table 4 the results for a less populated set
with fewer species have an increased recognition rate.
When focusing on a given experiment, interesting
considerations may be drawn on the results by a more
detailed analysis. For example, considering the correct
recognition rates on test individuals for the different
classes, we note that, out of the 82 species only 3 classes
do not have a perfect classification rate; namely,
Noctilio_albiventris_PS1, Phyllostomus_discolor, and Eumop-
s_hansae. These 3 classes are quite under-represented in
the training data (with 3, 3, and 6 individuals

respectively) and this may easily be a reason for the
poor performances obtained; moreover, we also note
that for the first 2 species no individual in the test data is
recognized correctly, and only 50% in the third. Such
type of information may easily indicate a structural
similarity of these 3 species with other species that are
present and more richly represented in the training data.
An example of the logic rules associated with a subset of
the species is reported in Table 5.

The third data set was obtained from GenBank Nucleo-
tide Database and is composed of 626 recent barcode
sequences coming from specimens belonging to 82
different species. The barcode sequences are mainly
taken from the Kingdom Animalia, the Phylum Chor-
data and belong to the commonly know paraphyletic
group of the fishes. In this case, each sequence is
extended to 675 sites (or nucleotides) with special
handling for gaps, if necessary. Because of the different
haplotypes and the distinct Mitochondrial Regions the
lengths of the sequences evidently differ from each other.
We normalized the downloaded sequences by excluding
the under represented species, in order to obtain a

Table 3: Logic Formulas for Species 1 to 5 (first data set)

SPECIES CC WC CLAUSE(S)

A1 1.00 0.00 (v100 = c) and (v346 = a) and (v499 = t) and (v502 = a)
A2 0.77 0.00 (v82 = t) and (v238 = t) and (v502 = c)
A3 1.00 0.00 (v58 = a) and not(v100 = c) and not(v106 = a)
A4 1.00 0.00 (v106 = t) and (v139 = g)
A5 1.00 0.00 not(v106 = g) and not(v295 = a) and not(v295 = g)

Table 4: Optimal values and Error Rates (second data set)

Error Rates
b a test% training testing

10 8 10 15.47% 15.06%
10 8 10 16.48% 15.90%
10 7 20 19.97% 21.03%
10 7 20 21.39% 22.56%

average 18.32% 18.64%

15 11 10 5.52% 6.67%
15 11 10 6.37% 8.33%
15 11 20 7.40% 10.42%
15 11 20 10.88% 10.42%

average 7.54% 8.96%

20 14 10 0% 1.38%
20 14 10 2.22% 3.08%
20 15 20 1.97% 5.50%
20 15 20 1.58% 5.13%

average 1.44% 3.77%
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balanced training set. For this data set the class
distribution is fair, with 8 specimens for each species,
on the average.

Adopting the previously described scheme, we obtain the
results presented in Table 6 and in Table 7.

The results shown in Table 6 are related to the last
analysis, in which we have used a higher number of
features (15, 20 and 25) in order to obtain similar results
to the previous data sets (as shown in Table 2 and 4).
The formulas are still very compact (see Table 7) and the
recognition rates are in line with those of the other
experiments.

Some general considerations on the results obtained are:

• the number of sites used for identifying the class of
an individual is always very small - smaller, in
general, of what is obtained in other experiments
presented in the literature (e.g., in [18]), confirming
the validity of the barcode information to discrimi-
nate among species;
• the precision of the formulas, when evaluated on a
training-test split of the data, is always very high and
in line with previous results; even if the method
needs a sufficient number of specimens as represen-
tative of a species in order to provide robust
formulas, a small number (near 10) seems to be

Table 5: Logic Formulas for Species 1 to 5 (second data set)

SPECIES CC WC CLAUSE(S)

Ametrida centurio 1.00 0.00 (v182 = g) and (v290 = g)
Anoura caudifer 1.00 0.00 (v83 = c) and (v416 = a) and (v470 = c)
Anoura geoffroyi 1.00 0.00 (v290 = g) and (v416 = a) and (v470 = t)
Anoura latidens 1.00 0.00 (v266 = t) and (v377 = c) and (v416 = a)
Artibeus amplus 1.00 0.00 (v140 = t) and (v473 = t) and (v512 = c) and (v602 = c)

Table 6: Optimal values and Error Rates (third data set)

Error Rates
b a test% training testing

15 5 10 4.78% 7.06%
15 6 10 4.78% 8.74%
15 6 20 3.30% 10.64%
15 5 20 10.52% 17.73%

average 5.84% 11.04%

20 7 10 4.02% 4.75%
20 8 10 1.15% 9.71%
20 8 20 8.25% 14.18%
20 7 20 10.93% 16.31%

average 6.08% 11.23%

25 10 10 0% 3.78%
25 10 10 1.53% 8.74%
25 10 20 1.24% 7.80%
25 10 20 1.65% 5.67%

average 1.10% 6.49%

Table 7: Logic Formulas for Species 1 to 5 (third data set)

SPECIES CC WC CLAUSE(S)

Ompok bimaculatus 1.00 0.00 (v400 = t) and (v556 = t) and (v607 = c)
Ompok pabo 1.00 0.00 (v287 = a) and (v329 = a)
Glyptothorax ventrolineatus 1.00 0.00 (v36 = g) and (v267 = a) and (v308 = g) and (v589 = c)
Glyptothorax brevipinnis 1.00 0.00 ((v219 = a) and (v408 = t)
Parambassis ranga 1.00 0.00 (v545 = g) and (v556 = a) and (v607 = a)
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sufficient to obtain good results (as shown in
particular by the third data set examined);
• the formulas produced by the proposed method are
not constrained to form a taxonomic structure of the
analyzed species (differing from other clustering-
oriented methods as Neighbor Join [20]).
• the problem sizes of the described experiments
have not caused any computational problem to our
method. The feature selection model is linear in the
number of specimens, while the dimensions of the
barcode fragment (below 700 sites) is not at all a
problem for standard integer programming solvers.
When the number of specimens rises in size, then the
use of a specifically designed GRASP algorithm (see
[17]) keeps the solution time in a linear relation with
the problem size. On the other hand, the identifica-
tion of the logic formulas with Lsquare, although very
fast with the considered dimensions, may require
longer times when the number of specimens ranges
in the tens of thousands. For this reason we are
presently experimenting more efficient and parallel
implementations of a solution algorithm that would
possess, for this part of the method, the desirable
scalability.

Conclusion
In this work we have discussed the application of Data
Mining methods for specimen classification. We consider
the problem of the analysis of barcode - a particular
fragment of mitochondrial DNA that has recently been
identified as a potential collector of genetic information
that is useful to discriminate among species. The method
adopted is comprised of two main steps; the first is based
on the compression of the barcode into a reduced set of
very informative features using a particular integer
programming formulation; the second consists in the
application of a logic mining method - the Lsquare
system - to identify separating formulas on the com-
pressed data. The method appears to be practical,
sufficiently fast and precise, exhibits small error rates
and produces extremely compact separating formulas for
the data sets considered in the experiments. Such latter
feature plays a very important role in this type of
applications as it results in consistent semantic value that
can be used by field experts to enhance and complete
their knowledge of the studied phenomenon - in this
case, the relation between species taxonomies and the
COI mitochondrial DNA.

The results described in this paper direct the interest of
future research into two main directions that go beyond
the scope of this paper: one is the detailed comparisons
of the correct recognition results with other similar
character-based methods with specifically designed

experimental designs; the other one is the study of the
relations among the small classification formulas
obtained and the taxonomical tree-like strucures that
are present in the data.
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