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Abstract
Background: Disease classification has been an important application of microarray technology.
However, most microarray-based classifiers can only handle data generated within the same study,
since microarray data generated by different laboratories or with different platforms can not be
compared directly due to systematic variations. This issue has severely limited the practical use of
microarray-based disease classification.

Results: In this study, we tested the feasibility of disease classification by integrating the large
amount of heterogeneous microarray datasets from the public microarray repositories. Cross-
platform data compatibility is created by deriving expression log-rank ratios within datasets. One
may then compare vectors of log-rank ratios across datasets. In addition, we systematically map
textual annotations of datasets to concepts in Unified Medical Language System (UMLS), permitting
quantitative analysis of the phenotype "distance" between datasets and automated construction of
disease classes. We design a new classification approach named ManiSVM, which integrates
Manifold data transformation with SVM learning to exploit the data properties. Using the leave one
dataset out cross validation, ManiSVM achieved the overall accuracy of 70.7% (68.6% precision and
76.9% recall) with many disease classes achieving the accuracy higher than 80%.

Conclusion: Our results not only demonstrated the feasibility of the integrated disease
classification approach, but also showed that the classification accuracy increases with the number
of homogenous training datasets. Thus, the power of the integrative approach will increase with
the continuous accumulation of microarray data in public repositories. Our study shows that
automated disease diagnosis can be an important and promising application of the enormous
amount of costly to generate, yet freely available, public microarray data.
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Background
Microarray technology provides a revolutionary tool for
understanding human diseases. Golub et al. [1] demon-
strated that microarray data can be used to classify cancer,
e.g. to distinguish between acute myeloid leukemia and
acute lymphocytic leukemia. Since then, disease classifica-
tion has been one of the primary foci of microarray
research. For example, microarray technology has been
applied to classify cancers as diverse as lung cancer [2],
breast cancer [3], and glioma [4]. In principle, a disease
classification problem can be solved with a two-step proc-
ess: (1) build classifiers based on samples with known dis-
ease class labels; and (2) classify the unknown samples
into known disease classes. In an ideal case, we would
hope that the large amount of data generated by different
laboratory on various diseases could be integrated into a
diagnosis database, such that unknown samples could
then be matched to the disease classes in the database. In
this way, microarray-based classification could be practi-
cal and promising.

Recently, several studies have tested the feasibility of dis-
ease classification on cross-platform microarray data [5-
9]. Employing different normalization methods, those
studies showed promising results. However, all of those
studies were based on cancer microarray data with limited
scales. Moreover, in some studies, the good performance
was biased by correlated training and testing data (sam-
ples from the same dataset were distributed into training
and testing data) [5,7]. In addition, the performance eval-
uations of current studies were mainly focused on preci-
sion without considering recall. In this study, we
integrated 68 microarray datasets of diverse disease classes
to perform a large-scale and unbiased evaluation on the
classification performance. Furthermore, we design an
approach to automatically construct disease classes from
microarray data, which is an important step towards auto-
mated disease classification by utilizing the enormous
amount of public microarray repositories.

Our goal is that given microarray data profiling two sam-
ples, one normal condition and another disease condi-
tion, the disease condition can be classified based on the
phenotype annotations of datasets in the public microar-
ray database. To approach this problem, we need three
component tools: (1) a feature vector to describe a micro-
array profile pair (disease vs. normal) that is comparable
among microarray data generated with different plat-
forms; (2) disease classes built from cross-platform micro-
array data based on their associated phenotype
information; and (3) a machine learning approach capa-
ble of assigning potential phenotypes to a queried sample
pair based on its similarity to profiled pairs in known dis-
ease classes.

For the first component, we derive the expression log-rank
ratio for each gene in each profile pair. By first deriving the
expression log-rank ratios between a disease and a normal
profile as meta-information within the same dataset, and
then comparing such ratio profiles across datasets, the
results shall be comparable across datasets. Simply speak-
ing, we compare cross-dataset signals by emphasizing on
differentially expressed genes, which were shown to be
relatively robust to platforms or laboratory settings[10].
To complete the second component, we need to systemat-
ically annotate the experimental information associated
with each microarray dataset. We followed the approach
of Butte and Kohane [11] to use the disease concepts in
the Unified Medical Language Systems (UMLS) [12] in
order to annotate the phenotypes associated with each
microarray dataset. Since a disease state is usually defined
by several phenotype concepts (e.g. cancer, liver tissue,
metastasis), we built disease classes by selecting microar-
ray datasets sharing a common set of UMLS concepts.
With respect to the third component, we used Support
Vector Machine (SVM) [13,14] for classification, and fur-
ther developed a method named ManiSVM by integrating
Manifold [15] and SVM where Manifold is employed for
nonlinear dimensionality reduction to enhance the per-
formance.

By integrating the microarray data of major platforms in
the NCBI Gene Expression Omnibus (GEO) database
[16], we constructed 117 classes. Using the leave one data-
set out cross validation (LOOCV), ManiSVM and SVM
achieved the overall accuracies of 70.7% and 58.8%,
respectively. Our result not only demonstrates the feasi-
bility of disease diagnosis by integrating heterogeneous
microarray data, but also reveals that the performance of
disease classification improves with the number of
homogenous training datasets. Thus, the power of the
integrative approach can be expected to dramatically
increase with the continued accumulation of microarray
data in public repositories.

Results
In this section, we will first give a brief introduction to the
methods, followed by analysis results. Figure 1 illustrates
the three major steps of our analysis: (1) data standardiza-
tion, (2) construction of disease classes, and (3) classifica-
tion.

Data standardization for cross-dataset comparison
Standardization of expression data
We collected 232 human microarray datasets from three
major platforms of the NCBI GEO [16]: U95, U133, and
U133 plus 2.0. These platforms contain the majority of
GEO human datasets. We only kept the 80 datasets con-
taining both diseased and "normal" (or "control") condi-
tions. The mapping between probe sets and Entrez Gene
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ID [17] yielded a set of 8229 genes common to all three
platforms. For each gene, we calculate the average expres-
sion level for probe sets associated to this gene. Within
each dataset, any combination of one disease sample and
one normal sample is called a profile pair. To avoid sys-
tematic bias due to the differences in expression signals
measured by different laboratories, we describe the prop-
erties of a profile pair in terms of log-rank ratios. This is
calculated as follows: (1) convert the gene expression val-
ues to ranks within each profile, and (2) calculate the log
ratio of the two ranks for each gene (disease rank/normal
rank). In total, we obtained 12,802 vectors of log-rank

ratios for an equivalent number of profile pairs. We then
filtered out those datasets giving rise to fewer than 5 such
vectors. Our final sample consists of 68 datasets and
12,767 log-rank-ratio vectors.

Standardization of dataset annotation
To systematically categorize the phenotype information
associated with each microarray dataset, we mapped the
MeSH headings and the GEO dataset summary of each
dataset to the UMLS concepts. Any UMLS concepts associ-
ated with only one microarray dataset were filtered out,
resulting in a vocabulary of 185 disease and phenotype
concepts. More details on this phase of the analysis are
given in the Methods section.

Construction of disease classes
This step groups microarray datasets into disease classes.
We first employed the frequent itemset mining (FIM)
algorithm [18] to identify candidate disease groups shar-
ing a common set of UMLS concepts. This effort assumes
that a particular disease state is usually described by a
common group of UMLS concepts (for example, all
"breast cancer" datasets match the UMLS concepts
"breast" and "neoplasms"). Next, within each group we
measured the phenotype distance score among pairs of
datasets. This is quantified by the term frequency-inverse
document frequency (tf-idf) [19]. Only those disease classes
with a phenotype distance score whose estimated p-value is
less than 0.05 were kept for further analysis. This cut
ensures that each class has a similar level of homogeneity
in its associated UMLS concepts. Details of the tf-idf calcu-
lation and its associated p-value estimation are described
in the Methods section.

In this manner we constructed 117 classes, comprising 68
microarray datasets. Each class contains 3 to 12 datasets.
The classes covered a wide spectrum of conditions: cardi-
ovascular/heart diseases, "bacterial infections and
mycoses", neoplasms, CNS disorders, skin disorders, and
metabolic diseases. Table 1 shows selected disease classes.
Note that a given dataset can appear in more than one
class, and that many of the classes are interrelated. For
example, the disease class described by (neoplasms, "neo-
plasms, glandular and epithelial", and "neoplasms by his-
tologic type") is the parent class of one characterized by
(carcinoma, neoplasms, "neoplasms, glandular and epi-
thelial", and "neoplasms by histologic type").

The datasets within each disease class naturally form a pos-
itive set for that class. However, the size of the datasets can
vary widely. Large datasets may come to dominate the
characteristics of their disease classes. In order to get an
unbiased estimator of classification accuracy, we ran-
domly selected 50 log-rank ratio vectors from each dataset
if its total number of profile pairs is greater than 50. We

Diagram of the integrative disease classification frameworkFigure 1
Diagram of the integrative disease classification 
framework. The framework consists of three major steps: 
(1) Standardization of microarray data and dataset annota-
tion: expression log-rank-ratio vectors were constructed 
from each microarray data set, and UMLS concepts were 
extracted from the dataset summary and corresponding 
MeSH headings. (2) Disease class construction: disease 
classes were initially constructed by FIM analysis and were 
further refined by calculating the phenotype distance score. (3) 
Classification by SVM and ManiSVM.
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built the negative set by randomly sampling an equal
number of vectors from datasets not in the positive set.

Classification analysis
We applied two approaches to training the disease classi-
fiers. The first was direct application of the SVM algorithm
with a linear kernel and C-support vector classification (C-
SVC), using the LIBSVM package [20]. Prior to classifica-
tion, we reduced the number of features by selecting those
genes with significantly different log-rank ratios (t-test p-
value < 0.05) between the positive and negative training
sets. In the second approach, we first constructed a Lapla-
cian matrix to represent the gene expression data [15],
thereby transforming the data in a non-linear fashion into
a new and lower-dimensional manifold. We then applied
SVM to the transformed data. We call the second approach
ManiSVM. The major advantage in integrating graph
laplacian with SVM is to transform the data via non-linear
dimension reduction into a new space, where data points
close in distance shall share high phenotype similarity
based on the chosen similarity metric. Such transforma-
tion enhances the separation of data points between pos-
itive and negative classes, thus the subsequent application
of the linear kernel SVM to the transformed data can
achieve better performance than its direct application to
the original data. Details of the graph laplacian transfor-
mation are described in Methods.

We performed disease classification with SVM and Man-
iSVM, and evaluated performance with LOOCV (see
Methods for details). We performed LOOCV by leaving

out one dataset from the positive set (within a disease
class) and the equal number of expression log-rank-ratio
vectors from the negative set as the testing positive and
negative set, respectively. Then the remainder positive and
negative set are training positive and negative set, respec-
tively. Even though our classification unit is a single pro-
file, we left out the entire positive dataset to avoid bias
caused by replicates in the same dataset. We used the fol-
lowing measures to assess classification performance: pre-
cision = TP/(TP+FP); recall = TP/(TP+FN); and accuracy =
(TP+TN)/(TP+TN+FP+FN), where TP stands for true posi-
tives, TN for true negatives, FP for false positives, and FN
for false negatives. The accuracy is actually a way to sum-
marize the precision and recall information. For each
LOOCV procedure, we repeated 5 times by random sam-
pling of different negative sets, and we averaged the result
to assess the classification performance.

Our results showed that ManiSVM achieved the overall
accuracy of 70.7% outperforming SVM (58.8%) by the
default hyperplane positions. Although SVM can achieve
high classification precision (89.8%), its recall is rather
low (19.8%). In the contrast, ManiSVM provides more
balanced performance and yielded 68.6% precision and
76.9% recall with 12% disease classes achieving the accu-
racy higher than 80%. By further shifting the position of
hyperplane via adjusting the threshold of SVM decision
value, SVM achieved the maximum accuracy of 67.5%
(72.0% precision and 57.3% recall) and ManiSVM
achieved the maximum accuracy of 75.6% (68.6% preci-
sion and 94.4% recall). Again, ManiSVM outperformed

Table 1: Selected disease classes and their associated classification performance.

UMLS concepts Datasets Phenotype distance score
(p-value)

ManiSVM accuracy SVM accuracy

C0027651 (Neoplasms), C0027660 (Neoplasms, Glandular and 
Epithelial), C0040300 (Body tissue), C0007097 (Carcinoma), 
C0027653 (Neoplasms by Site), C0027652 (Neoplasms by 
Histologic Type)

GDS1070
GDS1321
GDS1479
GDS505

3.50E-05 0.8421 0.6018

C0018981 (Hemic and Lymphatic Diseases), C0005773 (Blood 
Cells), C0018939 (Hematological Disease)

GDS1257
GDS1392
GDS539
GDS1320
GDS390

7.10E-05 0.8047 0.6253

C0007682 (CNS disorder), C0006111 (Brain Diseases), C0027765 
(nervous system disorder)

GDS1331
GDS1726
GDS1065

9.99E-03 0.7569 0.6483

C0021311 (Infection), C0004615 (Bacterial Infections and 
Mycoses)

GDS1428
GDS1022
GDS539
GDS711
GDS1726
GDS1397

2.36E-04 0.7498 0.5253
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SVM. The endowed classification power of ManiSVM is
attributed to the fact that the data points can be better sep-
arated in the Manifold space in terms of their phenotype
similarity based on the chosen data similarity metric.

The performance of individual classes varies greatly. For
example, ManiSVM achieved 83.4% accuracy for the dis-
ease class described by the UMLS concepts (neoplasms,
neoplasms by site, and neoplasms by histologic type), but
only 67.2% accuracy for the disease class described by
(neoplasms, mammary neoplasms, and neoplasms by
site). One reason for this difference is that the former con-
tains 9 datasets, while the latter contains only 3 datasets.
In general, a class with more datasets will be easier to clas-
sify (or more properly, will have more capacity to train a
classifier). Figure 2a shows that the accuracy increases
with the number of datasets in a class: as the number of
datasets increases from 3 to 7, the accuracy increases from
63.7% to 73.5% and from 55.4% to 58.8% for ManiSVM
and SVM respectively. This relationship highlights the
advantage of integrating multiple datasets for disease clas-
sification.

Discussion
Although the correlation between dataset number and
classification performance is strong (Figure 2a), outliers
do exist. For example, the disease class characterized by
the UMLS concepts (neoplasms, "neoplasms, glandular
and epithelial", carcinoma, "head and neck neoplasms",
neoplasms by site, and neoplasms by histologic type) con-
tains only 3 datasets, but has a high classification accuracy
of 82.8%. In contrast, the disease class (leukocytes,
immune system diseases, and blood cells) contains 4
datasets, but is associated with a classification accuracy of
66.0%. These two disease classes differ in terms of within-
class homogeneity. The disease class with 3 datasets bene-
fited from similar dataset annotations, with an average
phenotype distance score of 0.59; while the disease class
with 4 datasets had an average phenotype distance score
of 0.78.

To properly compare the average phenotype distances
within disease classes of different sizes (3-12 datasets), we
estimated the statistical significance of phenotype dis-
tance scores by random sampling (see the Methods sec-
tion). In general, more significant p-values correspond to
lower phenotype distance scores and higher degrees of
within-class data homogeneity. Figure 2b shows the sig-
nificant negative correlation between accuracy and the p-
value of the phenotype distance score. As the p-value of
the phenotype distance score increases from 10-6 to 10-2,
the accuracy of the classifier decreases from 74.6% to
63.3% and from 63.7% to 54.0% for ManiSVM and SVM
respectively. This analysis demonstrates conclusively that
classification power increases with dataset homogeneity.

Thus, integrating multiple datasets is only expected to
enhance classification performance if they are sufficiently
homogenous in the diseases being measured.

In the above analysis, we have assessed the homogeneity
of a disease class by comparing dataset annotations that
were mapped to the UMLS concepts. Our results show
that such assessment generally reflects the true phenotype
similarity between datasets. Despite a satisfactory overall
performance, we have observed a few exceptions to this
rule. For example, the disease class (digestive system dis-
orders and epithelial cells) contained 3 datasets
{GDS858, GDS1321, GDS1022} and had a fairly small
average phenotype distance score 0.67 (p-value 0.008),
but proved rather difficult to classify. A further investiga-
tion of individual datasets revealed that the dataset

Classification performance increases with size and phenotype homogeneity of disease classesFigure 2
Classification performance increases with size and 
phenotype homogeneity of disease classes. The disease 
classes were divided into bins (a) based on the number of 
datasets (from 3 to 7) in the classes, or (b) based on the p-
value of the phenotype distance score (p-value intervals were 
chosen as: 1.0E-6 to 1.0E-5, 1.0E-5 to 1.0E-4, 1.0E-4 to 1.0E-
3, 1.0E-3 to 1.0E-2, and 1.0E-2 to 5.0E-2). For each bin, the 
average accuracy was calculated by performing ManiSVM and 
SVM classification.
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GDS1022 actually studied lung pneumocytes after infec-
tion with Pseudomonas aeruginosa, which is not related
to digestive system disorders. The reason that GDS1022
was mapped to this disease class is because its dataset
summary mentioned "Pseudomonas aeruginosa causes
serious respiratory infections in cystic fibrosis patients,"
and "cystic fibrosis" was automatically mapped to the
"digestive system disorders" by the UMLS system. Thus,
although the object of this study (lung pneumocytes) is
not related to the digestive system, GDS1022 was none-
theless classed among digestive system disorders by the
UMLS concept of "cystic fibrosis." This mapping impreci-
sion resulted in inaccurate phenotype distance scores, and
led to a low classification accuracy of 60.2% and 59.1%
for this disease class by ManiSVM and SVM, respectively.
On the other hand, such failures prove that the perform-
ance of our method could be further enhanced by a more
advanced UMLS text mining tool. As with all automated
text mining methods, however, mapping imprecision can-
not be fully avoided. But with the rapid accumulation of
microarray data, we should be able to minimize or bypass
the influence of UMLS mapping noise by imposing
stricter homogeneity requirements on candidate disease
classes.

Conclusion
We have proposed a framework for microarray-based
molecular diagnosis by combining public microarray
repositories with the UMLS knowledge base. We respond
to several challenges in integrating cross-platform micro-
array datasets. In particular, we addressed the issue of data
compatibility by expressing the difference in two profiles
as the ratio of logarithmic rankings. In addition, we sys-
tematically associated each microarray dataset with dis-
ease classes by mapping their textual annotations to
UMLS concepts. The disease classes were created by com-
paring phenotype distance scores among pairs of datasets.
Although SVM has already been considered one of the
best approaches for microarray-based disease classifica-
tion by several studies [21,22], we further enhanced its
power by using Manifold for non-linear dimension reduc-
tion and data transformation. Our result has not only
demonstrated the feasibility of this approach, but also
highlighted the fact that classification power increases
with the number and homogeneity of training datasets.
This work therefore provides a solid foundation to the
problem of integrating enormous amounts of microarray
data, which are costly to generate yet freely available. The
power of our approach will increase dramatically with the
continued growth of public microarray repositories. The
framework presented here will also benefit from ongoing
efforts to develop more advanced UMLS text mining tools.

Methods
Disease annotation with UMLS concepts
To systematically categorize the phenotypes associated
with each microarray dataset, we used the UMLS system
[12,23]. For each dataset, we identified its associated pub-
lication and downloaded its medical subject headings
(MeSH) via NCBI Entrez programming utilities. The
MeSH and NCBI GEO summary of a dataset were then
parsed with the program MetaMap to find UMLS con-
cepts. To reduce noise we focused on a subset of disease-
related concepts in UMLS, including all the MeSH vocab-
ulary and terms belonging to the semantic types: patho-
logic function, "injury or poisoning", anatomical
abnormality, "body part, organ, or organ component", tis-
sue, and cell. To infer higher-order links between datasets,
all ancestor concepts were included.

Calculation of the phenotype distance scores and the 
associated p-values
The calculation procedure is as follows:

1. For the UMLS concept i in dataset j, we calculated the
term frequency tf(i, j) = ni, j/(∑k nk, j), where ni, j denotes the
number of occurrences of UMLS concept i in dataset j.
Then by definition, the value of tf(i, j) indicates the level of
occurrence frequency of UMLS concept i in dataset j.

2. We calculated the inverse document frequency idfi =
log(D/Di), where D denotes the total number of datasets
and Di is the number of datasets containing the UMLS
concept i. A smaller idfi implies a higher popularity of
UMLS concept i among the collected microarray datasets.

3. The tf-idf score was defined by tf-idf(i, j) = tf(i, j) × idfi,
which adjusted the score of tf(i, j) by taking into account
the popularity level of the UMLS concept i. More intui-
tively, tf-idf(i, j) can be considered as a measure of specific
relevance of UMLS concept i to dataset j. Let s be the
number of UMLS concepts, a dataset j is then associated
with a tf-idf vector of dimension s, i.e., [tf-idf(1, j),..., tf-idf(s,

j)].

4. The phenotype similarity between any two datasets was
estimated with the cosine between their tf-idf vectors. The
phenotype distance score of a candidate disease class was cal-
culated as one minus the average phenotype similarity of
any dataset pair within the class.

5. Finally, to evaluate the significance of a phenotype dis-
tance score, we estimated its empirical p-value by boot-
strapping all of the datasets. In detail, given a disease class
with k datasets, we randomly sampled k datasets from all
datasets, and calculated the phenotype distance score,
repeated 1,000,000 times, and generated the empirical
distribution.
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Graph laplacian transformation
In the following, we detail the graph laplacian transforma-
tion [14]. Given k expression log-rank-ratio vectors x1,
x2,�,xk ∈ ℜl where l is the number of selected genes, we
assume that the first s <k vectors are in the training set with
labels ci, where ci = 1 if xi is in positive set and ci = -1 oth-
erwise. The rest {xs+1, xs+2,�,xk} are in the testing set and
unlabeled. The graph laplacian procedures are as follows:

1. Constructing the adjacency matrix: (1) calculate Pear-
son correlation for each vector pair xi and xj; (2) define
adjacency matrix W as wij = 1 if the Pearson correlation of
the vector xi and xj is greater than the threshold γ; and wij =
0 otherwise. Here we set γ to be 0.25.

2. Singular value decomposition (SVD): (1) build lapla-
cian matrix L = D - W where W is the adjacency matrix
defined above and D is a diagonal matrix of the same size

as W satisfying Dij = ∑j wji; (2) identify the eigenvalues and

eigenvectors by solving the equation Le = λe for λ and e,

and order the obtained k eigenvalues increasingly: λ1 ≤ λ2

≤ � ≤λk. The p eigenvectors e1, e2, � ep that corresponds to

the p smallest eigenvalues λ1, λ2, �, λp are then used to

represent x1, x2,�, xk in the manifold space, where

. That

is that xi ∈ ℜl (j = 1,...,k) is mapped to (e1(i),...,ep(i)) with

ej(i) being the ith component of the eigenvector ej. We

note that all the eigenvalues are non-negative since L is
symmetric and positive semi-definite.

Following the notations in Belkin and Niyogi [15], we let
Elab denote the k × p matrix with e1, e2, �, ep being the col-
umn vectors of Elab (the (i, j)th entry of Elab is ej(i)). Then
Elab represents the transformed data in the manifold space
with a reduced dimension of p, as described above., SVM
analysis is subsequently performed on these transformed
data. The motivation for performing the manifold trans-
formation comes from the following important mathe-
matical property of Elab:

For any linear operation on Elab, say

 with  =

(f1,...,fp)(e1(i),...,ep(i))T (i = 1,...,k), we have

Applying SVM with the linear kernel to Elab is essentially to

perform a linear operation on Elab, such as .

Then  can be naturally considered as the
classifiers, and so equation (1) measures the weighted dif-
ferences among the objects' classification labels with wij's

being the weights. We note that the labelling differences
associated with larger wij's (corresponding to the pairs of

objects with higher similarities) are having more weights.
Hence, the smaller S is, the more likely that the objects
with high similarities would have the same class label.
Furthermore, from equation (3), our manifold data natu-
rally leads to the smallest S for a given linear operation
and p due to the use of the smallest eigenvalues/eigenvec-
tors. In brief, the manifold transformation helps better
distinguish between the positive and negative sets and
thus further improves the classification results.
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