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Abstract

Background: An important component of time course microarray studies is the identification of
genes that demonstrate significant time-dependent variation in their expression levels. Until
recently, available methods for performing such significance tests required replicates of individual
time points. This paper describes a replicate-free method that was developed as part of a study of
the estrous cycle in the rat mammary gland in which no replicate data was collected.

Results: A temporal test statistic is proposed that is based on the degree to which data are
smoothed when fit by a spline function. An algorithm is presented that uses this test statistic
together with a false discovery rate method to identify genes whose expression profiles exhibit
significant temporal variation. The algorithm is tested on simulated data, and is compared with
another recently published replicate-free method. The simulated data consists both of genes with
known temporal dependencies, and genes from a null distribution. The proposed algorithm
identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of
the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification
of genes exhibiting distinct circadian variation. These results were confirmed in follow-up
laboratory experiments.

Conclusion: The proposed algorithm provides a new approach for identifying expression profiles
with significant temporal variation without relying on replicates. When compared with a recently
published algorithm on simulated data, the proposed algorithm appears to identify a larger
percentage of time-dependent genes for a given false discovery rate. The development of the
algorithm was instrumental in revealing the presence of circadian variation in the virgin rat
mammary gland during the estrous cycle.
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Background

In recent years, there has been considerable interest in
using gene expression microarray data to study the
dynamic behavior of cells. Microarrays allow researchers
to take a "snapshot" of the state of a cell by measuring the
mRNA expression levels of thousands of genes simultane-
ously. By taking multiple such "snapshots" at different
times, one gains a dynamic picture of how expression lev-
els change over time. A review article by Bar-Joseph [1]
gives an excellent summary of many of the issues involved
and methods developed for analyzing time course micro-
array data. Early analysis techniques applied methods that
were originally designed for analyzing static data. But
there are important differences between static experi-
ments and time course experiments, which have moti-
vated the development of specialized methods for
analyzing time course data. In static experiments, data are
collected for a number of different experimental condi-
tions. There may be little or no mathematical relationship
between these conditions, so they are usually represented
as categorical data. In such experiments, it is essential to
have several replicates from each condition. In time
course experiments, time is a quantitative variable, so the
order of the data and the spacing between time points
matters. This difference can be exploited to develop more
powerful techniques for analyzing time course data.
Moreover, there is no longer an inherent requirement for
replicates.

Based on this insight, we designed a microarray study of
the estrous cycle of the rat mammary gland in which
microarray data were collected at distinct time points
without replicates. As part of this study, we developed an
algorithm for identifying genes with significant temporal
variation that does not rely on replicates. The algorithm is
based on fitting the data with B-splines, which has a
smoothing effect. A test statistic was developed that meas-
ures the magnitude of this smoothing effect relative to the
overall variation in the data. This test statistic is then used
in a false discovery rate procedure to identify significant
genes.

The method described here, which we shall refer to as
Method 1, has some notable similarities with a method
recently proposed in [2], which we shall call Method 2.
Both methods involve fitting the data with a B-spline
model and neither method requires replicates. But there
are some important differences between the two methods.
First, Method 2 is based upon generalizing traditional
analysis of variance methodologies to time series analysis.
In contrast, Method 1 is motivated by the smoothing
effect resulting from fitting the data by a spline function.
It is designed explicitly to identify lower frequency varia-
tion in the data, which is not affected as much by the
smoothing. Another difference is the technique used to
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assess statistical significance. In Method 2, a bootstrap-
ping method is used to estimate a null distribution of the
test statistic for each gene. In contrast, our method esti-
mates a null distribution by recalculating the test statistic
on a permuted data set.

Results

Algorithm description

To describe our algorithm, we assume that gene expres-
sion data were collected at T time points denoted t,,..., tr,
given in nondecreasing order (i.e., t; <t,< ... <t;). Letting
G denote the number of genes, Y denotes the G x T array
whose ijth entry Yj; is the normalized log-expression level
of the ith gene at time point t;. Y; denotes the ith row of Y,
which will be referred to as the log-expression profile of gene
i.

Conceptually, we can view the data as being comprised of
both time-dependent and time-independent variation.
Specifically, we assume the following model of the data:

Yii=fi(t) +

where f(f) is a continuous function of time, and ; repre-
sents the time-independent variability, which may be due
to noise, or to other influences such as sample-to-sample
heterogeneity.

The function f;(t) summarizes the influences of many dif-
ferent time-dependent biological processes, such as cell-
cycles, circadian rhythms, development patterns, hormo-
nal fluctuations, etc. Any such influences that occur at too
high a frequency (relative to the sampling rate) cannot be
distinguished from noise. So we assume the biologist is
only interested in detecting the low frequency variation in

f

With this in mind, we loosely define a gene to exhibit sig-
nificant temporal variation if its expression profile exhibits
"significant" low frequency variation. To translate this
concept into a statistical test, we fit the expression profile
of each gene with a "smooth" function of time ¢(t) using
B-splines.

Splines

Splines are piecewise polynomial functions, which are
defined with respect to a non-decreasing set of knots 7, < 7,
<...< 7,,. Between two distinct consecutive breakpoints,
the spline function is a polynomial of a specified degree.
The order of the spline is defined to be one greater than
the degrees of the polynomials. Typically, the interior
knots are chosen to be distinct time points, whereas for
technical reasons, the first and last knots are repeated K
times, where K is the order of the spline. For data approx-
imation purposes, a convenient method for defining
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splines is to define a basis for the set of piecewise polyno-
mial functions of a given order. A popular choice of basis
is the B-spline basis, which is defined using the Cox-de
Boor recursion formula [3] as follows:

1 7,<t<7
m ) m+1 m=1,..., M,
0 otherwise.

by, (1) ={

(t=tm)bm, k=1(t) + (tm+k—t)bm+1,k=1(t)
Tm+k—1"Tm Tm+k~Tm+1

k=2,.., K

(1)
In this formula, k represents the order of the spline. For
notational convenience, we define b,(t) = b; (). =
{b,(1),..., by,(t)} is the basis for the set of splines of order
K. Using this basis, it is possible to represent any K-order
spline function ¢(t) as a linear combination of the basis
functions. That is,

bm,k(t) =

M
B0 = Y Cubu(t), 2

m=1
where ¢, m = 1,.., M are the spline coefficients which

uniquely define ¢(t).

This representation is particularly convenient for fitting
splines to a set of data points. The goal is to determine for
each gene i the coefficients C; = [c,,..., ¢] which give the
best approximation of the log-expression profile Y; in the
least squares sense. The first step is to define the "spline
collocation" matrix S, which stores the values of the basis
functions evaluated at the sample time points. The entries
of S are defined by S, = b,,(t;). The least-squares approxi-
mation is then calculated by the equation

C;=YS, (3)

1

where S+ denotes the Moore-Penrose pseudoinverse of S

(see [4]).

Test statistic

The spline approximation described above smooths out
rapid fluctuations in the log-expression levels of a gene,
while preserving longer term trends. This observation
motivates the definition of the following test statistic,
which is inversely related to the magnitude of the smooth-
ing effect:

=2, (4)
ar(Y;)
where Z;:= [¢,(t,), @i(t,),--., ¢i(t,)] is the vector of interpo-
lated function values, ¢,(t) is the approximating spline
function for gene i, and Var denotes the variance. Intui-
tively, a small value of p corresponds to a large smoothing
effect, which suggests that any long-term temporal trends
are small relative to the overall variation in the log-expres-
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sion levels. In contrast, a large value of p indicates the
presence of a meaningful temporal trend.

To determine which genes demonstrate significant tempo-
ral variation, we use a false discovery rate procedure in
conjunction with the test statistic p. To apply this proce-
dure, it is necessary to approximate an expected distribu-
tion for p under the assumption that there is no temporal
variation. This is accomplished by creating a permuted

data set Y, which is generated by reordering the columns
of the original data matrix Y in such a way that columns

that were originally close together become far apart in Y.
To make this more precise, a permutation vector r is speci-
fied, which is simply a rearrangement of the integers 1,...,

T. Then, define f/ij =Y.

iz, » Where 7is the jth component of

.

The p statistic is calculated for each "gene" in this per-
muted data set. The resulting values are then sorted, yield-
ing an estimated null distribution. The estimated
distribution is used to calculate p-values for each gene as
follows: for gene i, the p-value is calculated by

p = Li
i G'

where L;is the number of p values from the permuted data
set that are larger than p;,. Finally, a false discovery rate
procedure [5] is used to choose significant genes.

Choosing a permutation vector
The permutation vector 7 should be chosen so that col-
umns that are close together in the original data matrix Y

will be far apart in the permuted matrix Y . Because many
biological processes are cyclic, we define the distance
between two indices in a way that accounts for wrapping
around. Specifically, we define

A(i, j) = minf]i - j[, |n +i-jl, |i-j - n[}.

We then define a score for a candidate permutation vector

7 according to the scoring function
n-1 n .. . .
()= X0 3 0,70, 7(7))  where
0 if A(i, j) = Vn or A(z(i), 7(j)) = Vn

0 7070 = {(ﬁ - 803, )7 ~ Ar(i) (7)) otherwise.

The permutation vector 7 is chosen to be a local mini-
mum of s(7z), which is found using the following local

search procedure. Given a permutation vector 7z, let 7 (i,
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j) denote the permutation vector resulting from swapping
the ith and jth entries of .

Local search procedure
Step 1: Generate a random permutation vector 7.

Step 2: Find (i, j) satisfying s( 7 (i, j)) <s(#). If no such (i,
j) exists, stop; zis locally optimal.

Step 3: Set 7= 7 (i, j) and go to Step 2.

Test results
To validate our algorithm, we performed three sets of tests
on simulated data.

p-value tests

In the first set of tests, we compared the p-values calcu-
lated by the two methods on 9 simulated data sets. Each
data set corresponds to an underlying temporal variation
with different frequency and amplitude, specified by
parameters @ and a. (See (5) in Section 5.1 for details).
The results are shown in Figures 1, 2, and 3. Figure 1 cor-
responds to the null case, where there are no temporal
dependencies in the data. The graphs in Figure 2 corre-
spond to cases where there is a temporal dependency
whose frequency is relatively low, and the graphs in Figure
3 correspond to higher frequency temporal dependencies.
In each graph, the simulated genes are sorted in order of
increasing p-values for Method 1.

False discovery rate tests

The second set of tests analyzed 8 simulated data sets. In
each data set, half of the genes were generated with time-
dependent variation, and half were generated from the

Estimated p values, Null Distribution
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Figure |

Estimated p-values for null distribution.
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null distribution. For each method, we determined for
each gene the smallest false discovery rate that would
result in that gene being selected. By sorting the genes
according to these threshold rates, we calculated the
number of true discoveries and the number of false dis-
coveries that would result from every possible fdr rate. The
results are shown in Figure 4.

We also plotted the number of false discoveries as a func-
tion of the specified fdr rate. An example for the case a =
2, ®=.5is shown in Figure 5. In this figure, the dotted line
corresponds to the predicted number of false discoveries
for each false discovery rate. Observe that the true number
of false discoveries is below this line for both algorithms.
Results for the other cases are similar.

Sensitivity tests

Our third set of tests studied the sensitivity of the methods
to i) the number of time points T, ii) the number of knots
M + 1, and iii) the order of the spline K. Each test analyzed
a data set using different values of T, M, and K. (See Sec-
tion 5.1 for details). The results are reported in Table 1.

Estrous cycle study

Method 1 was used to analyze a data set collected by
microarray to study the estrous cycle of the virgin rat
mammary gland. After preprocessing, this data set consists
of expression levels of 21044 genes at 31 different time
points, spread out over the 4 day estrous cycle. The appli-
cation of Method 1 to this data set identified 1893 tempo-
rally significant genes. By comparison, Method 2 (using
the same splines and fdr rate) identified only 871 genes.
The 1893 genes identified by Method 1 were clustered
using a hierarchical clustering method to generate 20 clus-
ters, which are displayed in Figures 6 and 7.

The choice of clustering methods resulted in most of the
genes (1579) being grouped into three large clusters (2,3
and 5). Examining the individual expression profiles of
genes in these clusters shows that most of these genes
exhibit relatively weak, but easily discernible low fre-
quency variation. However, due to the large numbers of
genes in these clusters, the graphs of the clusters (particu-
larly clusters 2 and 3) do not exhibit obvious temporal
patterns. While we believe that most of the genes in these
clusters are temporally significant, it is also likely that
these three clusters are richer in false positives.

Nine of the clusters exhibit clear estrous-cycle dependent
temporal responses. Clusters 4, 8, 12, and 15 are down-
regulated immediately following Estrus (which occurs on
day 2). Clusters 6, 7, 14, 18, and 20 are all up-regulated
following Estrus. Four other clusters exhibit distinct circa-
dian variation. In clusters 1 and 13, expression levels
increase steadily throughout the day (7 a.m.-7 p.m.) and
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then decrease over night. The opposite behavior appears
in clusters 9 and 11, for which expression levels decrease
throughout the day. The presence of these circadian varia-
tions was unexpected and potentially quite significant
biologically. To provide a preliminary validation of these
results, two genes were selected for further study: Perl
(period homolog 1), which appears in cluster 1, and BMal
(brain-muscle-ARNT-like protein), which is in cluster 9.
For these two genes, quantitative real time PCR was per-
formed, as described in [6]. The results of this analysis,
shown in Figure 8, confirm that both genes are under cir-
cadian regulation and follow the patterns predicted by the
clusters in which they are found.

Discussion

Frequency response

The results of the p-value tests shown in Figures 1, 2, and
3 demonstrate that the methods are sensitive to the fre-
quency of the underlying temporal variation. Figure 1 cor-
responds to the null case (a = 0), where there are no
temporal dependencies in the data. In this case, both
methods yield essentially identical p-values, whose graphs
lie on the 45 degree diagonal line. This line corresponds
to the uniform distribution, which is the expected distri-
bution of p-values arising from a null distribution. The
graphs in Figure 2 correspond to cases where there is a
temporal dependency whose frequency is relatively low.
In these cases, the p-values of Method 1 are lower than the
p-values of Method 2. As a result, Method 1 identifies a
greater number of significant genes for any specified p-
value. In contrast, the graphs in Figure 3 correspond to
higher frequency temporal dependencies. In these cases,
the p-values for Method 1 are higher, suggesting that
Method 2 would be more sensitive. However, in these

cases, the p-value distribution for both methods lies
above the 45 degree diagonal line corresponding to the
uniform distribution. Thus, when used in conjunction
with a false discovery rate method, neither method would
identify any of the genes as significant.

This phenomenon is surprising when viewed from the
perspective of Method 2. That method was developed as a
generalization of ANOVA techniques to the analysis of
time series data. The test statistic is a straightforward gen-
eralization of the F statistic, and its null distribution is
estimated using bootstrapping. From this perspective, one
would expect that data containing time dependencies
would, on average, produce lower p-values than the null
distribution. But just the opposite is observed for high fre-
quency data.

In contrast, the observed phenomenon is quite natural
from the viewpoint of Method 1. Here, we are explicitly
trying to measure the smoothing effect of the spline
approximation on the data. When high frequency varia-
tion is present, the effect of smoothing will be large,
resulting in larger p-values than one would expect from
purely random data.

The impact of frequency on the calculated p-values is
more exaggerated in Method 1. That is, for low frequency
variation, Method 1 yields lower p-values than Method 2;
and for high frequency variation, Method 1 yields higher
p-values. Since neither method will detect high frequency
variation, Method 1 appears to be more sensitive where it
matters-i.e., in detecting low frequency variation.
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This observation is confirmed by the results of the false
discovery rate tests shown in Figures 4 and 5. Note that for
any given false discovery rate, Method 1 detects a larger
percentage of the time-dependent genes, with the excep-
tion of the high frequency cases, for which no genes were
detected by either method.

Sensitivity tests

The average estimated p-values reported in Table 1 give an
indication of how well each method does in identifying
temporally significant genes, with smaller values indicat-
ing better performance. We make the following observa-
tions:
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1. Both methods are sensitive to the total number of
knots. In particular, the methods perform best when
there are at least 9 knots (which divide the range of
times into 8 knot-intervals). For example, for T = 49,
the p-values are very small for R = 4 (which corre-
sponds to 13 knots) and R = 6 (9 knots), but get sig-
nificantly worse for R = 8 (7 knots). This makes
intuitive sense because the data were generated from a
function which cycles 4 times, so 9 knots corresponds
to two knot-intervals per cycle. Using fewer knots
would make it very difficult to fit the data with the
splines.

2. On the other hand, there can also be too many
knots. For large numbers of time points (for example
T = 65), the average p-values are worse for R = 2. This
suggests that when there are relatively few time points
per knot, the splines may be overfitting the data,
resulting in poorer performance.

3. Both methods are relatively insensitive to the order
of the splines.

Estrous cycle study

In the estrous cycle study, it is interesting to note that all
genes identified by Method 2 were also identified by
Method 1. To assess whether the additional genes identi-
fied by Method 1 are biologically significant, we exam-
ined each of the 20 clusters and identified which genes in
the cluster were also identified by Method 2. The results
are shown in Table 2.

The genes found only by Method 1 are spread across most
of the clusters (with only some of the very small clusters
missing). As a general trend, Method 2 identified a larger
percentage of genes for clusters with more distinct tempo-
ral patterns. For example, Method 2 identified all the
genes in cluster 4, which has a very distinct pattern;

http://www.biomedcentral.com/1471-2105/10/96

whereas it identified less than half of the genes in clusters
2,3 and 5, which exhibit far less obvious temporal pat-
terns. This suggests that many of the additional genes
found by Method 1 may be false positives. However, there
are some clear exceptions to this general trend. For exam-
ple, Method 2 found only 56% of the genes in cluster 6,
despite the fact that the genes in this cluster have nearly
identical expression profiles, and exhibit a very distinct
temporal pattern. Clearly, Method 1 is identifying biolog-
ically significant genes that were missed by Method 2.

Conclusion

The algorithm presented in this paper provides a method
for identifying significant temporal variation in time
course gene expression data without requiring replicates.
This experimental paradigm enables researchers to collect
data at more time points, which often provides greater
biological insight. This was evident in these experiments
where the procedure allowed the discovery of significant
circadian variation in a substantial number of genes.

Based on our simulation tests, when compared with the
method described in [2], our method appears to be more
sensitive to detecting low frequency (relative to the sam-
pling rate) time-dependencies for any given false discov-
ery rate. Neither method is effective at identifying higher
frequency temporal trends.

Specifically, the results of the sensitivity tests indicate that
to detect variation of a given frequency, at least 8 time
points per cycle are needed.

The method was used in a study of the estrous cycle in rat
mammary glands revealing the presence of genes with cir-
cadian variation. The circadian patterns for two genes,
Perl and Bmal, were validated by quantitative real time
PCR analysis. Additional patterns have been validated in
follow-up experiments. The identification of circadian
genes by our method highlights the advantage of evaluat-
ing non-replicative time course data in comparison to rep-
licate data. Specifically, if replicate and no-replicate
studies had been undertaken with the same number of
subjects (animals), the circadian patterns would not have
been identified in the replicate study.

Methods

Simulation tests

The simulation tests were performed as follows. In the p-
value and FDR tests, data were generated using time
points t=(0, 2,4, 6, 8,10, 12, 14, 16, 18, 20), and the two
methods were tested using a 4th order spline with knots
[0,0,0,0,5,10, 15, 20, 20, 20, 20].

In the p-value tests, we generated 9 data sets, each consist-

ing of the log-expression values of 2000 genes generated
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Table I: Average estimated p-values

http://www.biomedcentral.com/1471-2105/10/96

Method |, Order =2

Method 2, Order =2

R R
T 2 4 6 8 T 2 4 6 8
9 0.567 0512 0.511 0.520 9 0.689 0613 0.319 0.598
17 0.533 0.857 0.899 0.921 17 0.326 0.607 0.488 0.596
25 0.262 0.417 0.599 0.586 25 0.204 0.445 0.578 0.614
33 0.133 0.120 0.173 0.594 33 0.163 0.119 0.147 0.549
49 0.022 0.006 0.006 0.123 49 0.110 0.032 0.035 0.249
65 0.018 0.002 0.004 0.002 65 0.083 0.015 0.015 0.012

Method |, Order = 3 Method 2, Order = 3

R R
T 2 4 6 8 T 2 4 6 8
9 0.657 0.566 0.483 0.475 9 0.688 0.643 0.450 0.602
17 0.443 0.870 0.819 0.874 17 0.284 0.639 0.403 0.616
25 0.143 0.201 0.575 0.610 25 0.218 0.211 0.593 0.584
33 0.121 0.090 0.494 0.587 33 0.183 0.096 0.385 0.540
49 0.020 0.006 0.006 0.014 49 0.120 0.035 0.028 0.052
65 0.014 0.003 0.002 0.001 65 0.082 0.019 0.011 0.007

Method |, Order = 4 Method 2, Order = 4

R R
T 2 4 6 8 T 2 4 6 8
9 0.589 0.616 0.510 0.593 9 0.678 0.673 0.403 0.633
17 0.445 0.801 0.821 0.881 17 0.293 0.581 0.125 0.634
25 0.220 0.292 0.481 0.528 25 0.213 0.280 0.510 0.544
33 0.145 0.101 0.097 0.470 33 0.178 0.097 0.071 0.453
49 0.034 0.008 0.008 0.028 49 0.129 0.052 0.035 0.087
65 0.016 0.003 0.003 0.001 65 0.089 0.021 0.014 0.006
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Figure 6
Clusters 1-12.
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Clusters 13-20.

from the following model, with timepoints ¢ = (0, 2, 4, 6,
8,10, 12, 14, 16, 18, 20):

Yjj= a cos(at) + N (0, 1). (5)
Here, o, and o are parameters that control the magnitude
and frequency of the time dependent variation in the data,

and N(0, 1) is the Gaussian distribution with mean 0 and
variance 1.

The null data set was generated using & = 0. The other 8
data sets were generated using all combinations of the fol-
lowing parameter values ¢=1or2, and w=.1, .25, .5 and
1.

In the FDR tests, we generated 2500 time-dependent
genes using Equation (5) and 2500 genes from the null
distribution, for a combined data set of 5000 simulated
genes. For each method, we determined for each gene the
smallest fdr rate that would result in that gene being
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Confirmation of Per|l and Bmal expression. Total RNA from the indicated time-points was used for array analysis and
analyzed by real time PCR using primers specific to rat Per| and Bmal. Data was normalized to 100% of maximum and com-
pared to that obtained in the arrays. The results show that Per| and Bmal are under circadian regulation, validating the circa-

dian patterns detected by analysis of the microarray data.

selected. By sorting the genes according to these threshold
fdr rates, we could easily calculate the number of true dis-
coveries and the number of false discoveries that would
result from every possible fdr rate. These test were per-
formed for the same 8 combinations of & and @ that were
used in the p-value tests.

In the sensitivity tests, we generated 500 time-dependent
genes from (5) with @ = 1, w = 1, with T evenly-spaced
time points ranging from ¢, = 0 to t,,, = 20. With this
choice of parameters, the cosine function in (5) cycles

Table 2: Analysis of clusters

roughly 4 times over the range of time points. Both meth-
ods were run on the simulated data set using M + 1 evenly
spaced knots ranging from ¢,,;,,= 0 to t,,,, = 20. For Method
1, the permutation vector 7 was chosen according to the
procedure described in Section 2.1.3. For Method 2, a
sample size of 500 was used for the bootstrapping proce-
dure. For each run, we calculated the average of the esti-
mated p-values for all genes in the data set. The tests were
repeated for all combinations of T € {9, 17, 25, 33, 49,
65}, K=1{2,3,4},and M = (T- 1)R forR € {2, 4, 6, 8}.
Note that the number of knots M + 1 used in each case

Cluster  # Method |  # Method 2 # in Method | not Method 2 % in Method | not Method 2 Description

| 57 48 9 16 Circadian, Increase
2 318 147 171 54 No clear pattern

3 645 235 409 63 No clear pattern

4 14 14 0 0 Downreg. after E (PR in here)
5 611 287 324 53 No clear pattern

6 18 10 8 44 Upregulated after E (cyclins)
7 10 3 7 70 Upregulated after E
8 66 48 18 27 Downregulated after E
9 2 2 0 0 Circadian, decrease
10 | 0 | 100 No clear pattern

I 127 8l 46 36 Circadian, decrease
12 5 2 3 60 Downregulated after E
13 7 7 0 0 Circadian, increase
14 4 4 0 0 Upregulated after E
15 2 | | 50 Downregulated after E
16 | | 0 0 No clear pattern

17 | 0 | 100 No clear pattern

18 | | 0 0 Upregulated after E
19 2 0 0 0 No clear pattern
20 | | 0 0 Upregulated after E
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depends on the number of time points T and the ratio R.
Specifically, M = (T - 1)/R. Thus, smaller values of R corre-
spond to larger numbers of knots.

Estrous cycle study

The data analyzed in the estrous cycle study were gener-
ated as follows. Sprague-Dawley female rats were
obtained from Taconic Farms (Germantown, New York,
USA) as adult virgins 70 +/- 3 days of age. Vaginal lavages
were performed daily to identify rats with regular 4 day
estrous cycles, as previously described [7]. Rats were
included in the study after confirmation of at least two
consecutive and regular 4-day estrous cycles. Cervical tis-
sue, harvested and prepared for histological analysis, was
used to confirm stage of estrous at time of euthanasia.
Collecting each tissue sample required sacrificing the rat,
so each microarray measured expression levels from a dif-
ferent rat. This resulted in significant heterogeneity
between samples that was independent of time. Rats were
sacrificed at approximately 1.5 hour intervals between 7
am and 7 pm over the four day estrous cycle. Blood sam-
ples were taken for hormone levels and a mammary gland
was dissected and flash frozen to be used for later mRNA
extraction. Left mammary gland chains 4-6, with lymph
nodes removed, were quick frozen in liquid nitrogen for
biochemical and molecular analyses. All animal proce-
dures were done in compliance with the AMC Cancer
Research Institute Animal Care and Use Committee and
NIH Policy on Humane Care and Use of Laboratory Ani-
mals. Total RNA was isolated from approximately 100 mg
fractions of frozen, pulverized mammary tissues using Tri-
Zol reagent as per the manufacturer's supplied protocol
(Invitrogen Life Technologies, Inc, Carlsbad, California,
USA). RNA samples were further purified and DNase
treated using RNeasy and the RNase-Free DNase Set (Qia-
gen, Valencia, California, USA) as per the manufacturer's
suggestions. Quality and quantity of total RNA was
assessed using the RNA 6000 Nano Assay (Agilent Tech-
nologies, Palo Alto, California, USA). First and second
strand cDNA synthesis was carried out using a one-cycle
method (first strand then second strand synthesis)
employing an Invitrogen cDNA synthesis kit as outlined
in the Affymetrix 2003 protocol. The double stranded
c¢DNA product was cleaned up and used as template for
target labeling in vitro transcription reaction (Affymetrix
GeneChip IVT Labeling kit). Twenty ug of amplified IVT
product was fragmented, and the quality of both the IVT
product and the fragmentation product were assessed
using the Agilent Bioanalyzer system. All samples passed
and were subsequently hybridized to the Rat RAE_230 2.0
Affymetrix microarray chips. Hybridized chips were
scanned, data collected and scaled to a target gene inten-
sity of 175 using GeneChip Operating Software™ (GCOS)
version 1.1 (Affymetrix, http://www.affymetrix.com). Ini-

tial quality assessment of all scanned chips was performed

http://www.biomedcentral.com/1471-2105/10/96

using GeneChip Operating Software (GCOS) v1.1. Com-
piled data in the form of 32 individual CEL files, the pri-
mary output of scanned Rat RAE_230 2.0 microarray
chips, were imported to GeneSpring (Agilent Technolo-
gies, http://www.chem.agilent.com) for analysis using the
native probe level GC-Robust Multi-array Average (GC-
RMA) algorithm. Incomplete and ambiguous data was
discarded leaving samples at the following 31 time points
(measured in hours after midnight of the first day of the
estrous cycle): 7, 7.5, 10, 13, 13.2, 14.6, 16, 17.6, 31.6,
32.8, 34.5, 35.5, 37.1, 38.3, 41.6, 43, 57, 58, 59.8, 61.3,
62.5, 64.2, 65.6, 67.1, 79.3, 80.9, 82.5, 83.9, 85.3, 86.3,
88.1. (Time point 40 was discarded because the data
appeared corrupted). After processing, consensus expres-
sion levels were available for each gene at each time point.
In order to minimize the possible adverse impact of low-
level noise on the analysis, any gene that had a consensus
expression level reading of less than 10 at any time point
was deleted. This procedure resulted in a data set consist-
ing of 21044 genes at 31 time points. Raw data are depos-
ited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO series
GSE12289). Prior to applying our algorithm, we per-
formed the following normalization procedure to the
expression values:

Y= log Xij- ty

where X;; is the consensus expression level for gene i at the
jth time point, and ; is the average value of log X;; for the
ith gene.

The algorithm was applied to the normalized data Y},
using a 2nd order (piecewise linear) spline defined with
the following knots sequence:
7,7,17.6,31.6,43,58,67,79.3,88.1,88.1. These knots corre-
spond to the first and last time point collected for each
day.

The null distribution of the test statistic was calculated
using the permutation vector 7= (7, 14, 23, 30, 1, 15, 20,
26, 6,9, 19, 29, 3, 10, 22, 28, 2, 13, 24, 5, 11, 25, 27, 8,
17,21, 31, 4, 12, 18, 16).

Significant genes were identified using a false discovery
rate of f=.25. The genes were clustered by applying a hier-
archical clustering method to the spline coefficients calcu-
lated by equation (3). A complete linkage method was
used, and the distance between two genes i and j was

defined using the Euclidean distance
di = \/zle (Cim —c]-m)2 . From this, 20 clusters were
identified.
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In the validation study, two genes were selected for further
study: Per1 (period homolog 1), and BMal (brain-muscle-
ARNT-like protein). For these two genes, quantitative real
time PCR was performed, as described in [6]. Primers used
for analysis were: Bmal-F1 5'-GGG CTG GAC GAA GAC
AGT GA-3', Bmal-R1 5'-CGC CCG ATT GCA ACG A-3',
Per1-F1 5'-CCT GCA CAC CCA GAA GGA A-3', Per1-R1 5'-
GAG GTG TCA AGC CCA CGA A-3', Actin-F1 5'-TCT GTG
TGG ATT GGT GGC TCT A-3', Actin-R1 5'-CTG CTT GCT
GAT CCA CAT CTG-3".
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