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Abstract

Background: Finding functional regulatory elements in DNA sequences is a very important
problem in computational biology and providing a reliable algorithm for this task would be a major
step towards understanding regulatory mechanisms on genome-wide scale. Major obstacles in this
respect are that the fact that the amount of non-coding DNA is vast, and that the methods for
predicting functional transcription factor binding sites tend to produce results with a high
percentage of false positives. This makes the problem of finding regions significantly enriched in
binding sites difficult.

Results: We develop a novel method for predicting regulatory regions in DNA sequences, which
is designed to exploit the evolutionary conservation of regulatory elements between species
without assuming that the order of motifs is preserved across species. We have implemented our
method and tested its predictive abilities on various datasets from different organisms.

Conclusion: We show that our approach enables us to find a majority of the known CRMs using
only sequence information from different species together with currently publicly available motif
data. Also, our method is robust enough to perform well in predicting CRMs, despite differences in
tissue specificity and even across species, provided that the evolutionary distances between
compared species do not change substantially. The complexity of the proposed algorithm is
polynomial, and the observed running times show that it may be readily applied.

Background
Deciphering mechanisms of gene regulation is currently
one of the key problems in molecular biology. The
number of sequenced and annotated genomes is
increasing rapidly, but we do not fully understand the
regulatory networks underlying gene regulation. A few
datasets approaching a genome-wide understanding of
gene regulation in relatively simple organisms such as
E. coli [1] or S. cerevisiae [2] exist, but especially for
higher eukaryotes our understanding of gene regulation
is far from complete. Experimental reconstruction of

regulatory interactions is possible for relatively small
systems [3], but it is impossible to scale this approach to
all the available genomes. Therefore, computational
methods are currently the best tool for improving our
understanding of genome-wide gene regulation.

Biological background
The process of transcriptional regulation is facilitated by
proteins called transcription factors which bind to DNA
sequences to help or prevent the initiation of transcrip-
tion by RNA polymerase. This binding is selective, i.e.
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trans-factors bind only to specific DNA sequence motifs
(called cis-elements) [4]. In higher eukaryotes, many
genes need to exhibit complex spatio-temporal expres-
sion patterns. The key to achieving such complexity is the
combinatorial transcription regulation [5], i.e. different
combinations of similar cis-elements may yield different
expression profiles. Sequence elements, whose main
function is driving complex expression patterns, are
often referred to as cis-regulatory modules (CRMs).
Throughout this paper, we will use this term, but it
should be noted that our method is limited to finding
CRMs that are relatively close the transcription start site
(TSS) of a gene of interest (in the range of 10 kb up- or
down-stream of its TSS) whereas in general the term
"CRM" may also be used to refer to distant enhancers
which cannot be found using our method.

Previous work
The earliest computational approaches to discovering CRMs
in non-coding DNA were based on two observations:

• CRMs contain unusually high concentration of binding
sites [6],
• CRMs are more conserved across species than other
non-coding sequences [7].

These early approaches sparked a number of studies which
utilize different computational approaches to find CRMs
based on these two presumed properties [8-19]. However,
in the light of more recent analyses of the statistical
properties of CRMs [20], neither assumption appears to
be a reliable foundation for CRMprediction. After analyzing
over 500 experimentally verified CRMs from D. melanoga-
ster, Li et al. claim that the clustering of motifs may reliably
predict only a few CRMs (most notably the ones involved in
the early blastoderm formation). Similarly, evolutionary
conservation of CRMs appears to be less stringent andmuch
more nuanced than previously thought. Firstly, CRMs are
significantly more conserved than the rest of non-coding
DNA only if measured by the density of short (7 bp) blocks
conserved between species, rather than by simple sequence
identity over larger windows. This is supported by recent
findings that the evolution of CRMs is driven by gain and
loss of whole binding sites rather than pointmutations [21].
Secondly, even though the set of investigated CRMs was
statistically conserved, the authors conclude that most
CRMs are not distinguishable from other non-coding
sequences based solely on conservation. These findings are
not specific to D. melanogaster and are supported by a very
recent study [22] based on comparing TF binding signatures
in human and mouse liver.

However, there are two published studies addressing
these issues at least partially. Hallikas et al. [23] propose

the EEL algorithm for finding alignments of significant
motif occurrences instead of the sequences themselves.
This method is very efficient and does not rely on raw
sequence similarity but it assumes that the motifs in
conserved CRMs occur exactly in the same order. On the
other hand, the BLISS method [24] approaches the same
problem by analysis of a matrix containing occurrences
of all motifs along both homologous sequences after
Gaussian smoothing. This relaxes the assumption of
conserved motif occurrence order but at the very high
cost of computations. These two approaches fall into the
category of non-tissue-specific methods. The approach
reported in the present paper also falls into this category.
The other group of methods, which could be called
tissue-specific, are tuned for a particular type of CRMs,
using either a set of several known specific motifs [9], or
by learning such motifs from the known tissue-specific
CRMs [8].

Contributions of the present paper
We present a novel approach to finding CRMs in non-
coding sequences associated with homologous genes. It
is based on a simple method of scoring likelihood of the
occurrence of a conserved combination of binding sites
in a fixed-size window. This measure is constructed in
such a way that it does not rely on strict criteria for
neither sequence conservation, nor for motif clustering.
We show that we are able to use the same parameters to
discover motifs in human, rat, mouse and fruit fly using
a universal, non-tissue-specific set of known motifs.

The overall procedure of the proposed method may be
divided into the following steps:

• Finding occurrences of transcription factor binding site
motifs obtained from a database in a set of DNA
sequences proximal to transcription start sites of genes of
interest.
• Calculating the alignment scores of motif sets in
windows of fixed size using a novel method for
homologous sequences from related species
• Measuring the rarity score of best alignments against a
randomized set of promoters from the same species to
filter out non-specific alignments.

The output of this procedure is a ranking of alignments
of sequences along with the motifs contributing to this
alignment. In the following section, we describe each of
these steps in detail.

Methods
Identifying motif occurrences
In the present study we use models of transcription
factor binding sites from the JASPAR CORE database
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[25]. It consists of 138 non-redundant motifs repre-
sented by frequency matrices. Each matrix has to be
assigned a threshold of the log-likelihood of binding site
affinity.

As explained in the following sections, our method of
CRM identification takes into account both positive and
negative signals from the promoter sequence. Thus, the
control of both error types in the motif prediction has to
be balanced, in the sense that the number of false
positives should be of the same order of magnitude as
the number of false negatives. As proposed by Rahmann
et al. [26] we choose thresholds maintaining the balance
between the control of type I and type II errors (see
supporting materials for details).

In order to identify occurrences of a motif, sequences are
scanned for words with log-likelihood above the related
threshold.

Comparing window contents
As discussed earlier, the presented approach is based on
a slight relaxation of the motif order in the promoter
region. We incorporate this idea by utilizing the concept
of a fixed-size window with the assumption that the
order of motifs which occur within the window does not
matter, i.e. we treat the motif occurrences in one window
as forming a multiset rather than a sequence. For this, we
introduce a parameter W denoting the window length.
We say that a motif occurs in a window if its left border
occurs in that window. In order to compare contents X, Y
of two windows we reward the common motif occur-
rences and penalize motifs which occur in one window
but not in the other, as well as windows with empty
motif sets. This leads to the following cost function:

c(X, Y) = a·|X ∩ Y| - b·|X ÷ Y| - g,

where |X ∩ Y| denotes the number of motif occurrences
which are in common (intersection), while |X ÷ Y| is the
number of motif occurrences in one window but not in
the other (symmetric difference). If a motif M occurs MX

times in X and MY times in Y, then its contribution to the
term |X ∩ Y| is min(MX, MY), while its contribution to
the term |X ÷ Y| is |MX - MY|. The constants a, b, g are
parameters of the cost function. We assume that a > 0 to
give preference to windows containing common motif
occurrences. Since multiplying the cost function by a
positive constant does not change the relative assessment
of the window content, it follows that we may assume,
without loss of generality, that a = 1. Then, the role of
b > 0 is to penalize for motifs occurring in one of the
sequences but not in the other. It follows from our
experiments that in case of a general motif database

b should be much smaller than 1. The role of g > 0 is to
penalize pairs of windows with empty content which
cannot be affected by changes of a and b. In our
experiments we have verified that g should be close to 0
and, in general, increasing it overly decreases the
sensitivity of the method. For details of b and g
estimation see the section on Parameter estimation –

case study of muscle specific CRMs.

Given two promoter sequences S1 and S2, we are looking
for window stretches of the same length: one in S1 and
one in S2, so that the cumulative cost for consecutive
pairs of windows yields an "unusually high" score.
Computing the score is illustrated in Fig. 1(a) where the
total cost for two pairs of windows is 6 - 6b - 2g.
However, it may happen, as shown in Fig. 1(a), that the

Figure 1
Comparing window contents. Part (a) shows two pairs of
non-overlapping windows. Here we have c(X1, Y1) = 3 - 2b - g
and c(X2, Y2) = 3 - 4b - g. Observe that motif occurrences
near the border between the windows show high similarity.
In part (b) we show two extra pairs of windows which partly
overlap the windows from (a). The cost of extra windows is c
(Z1, V1) = 4 - b - g and c(Z2, V2) = 2 - 3b - g. In part (c) there
is presented a similar situation, except the motifs near the
border have changed. We obtain the cost for the new contents:
c(Z1', V1') = 1 - 7b - g and c(X2', Y2') = 3 - 6b - g. The other
contents in (c) remain the same as in (b). Hence, the total cost
of alignment in (c) is smaller by 3 + 8b.
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border between two windows may cut through an area of
the promoter with high similarity of occurring patterns
of motifs. In this case we have in Fig. 1(a) two
occurrences of one motif (square) and one occurrence
of another motif (circle). In order to accommodate for
this situation we allow windows to overlap, i.e. we
introduce a step J and assess fragments of promoter
sequences as seen from the contents of a window which
moves every J nucleotides. This is illustrated in Fig. 1(b)
where J is taken as a half of W. In this case, the total score
of the fragment becomes 12 - 10b - 4g. On the other
hand, when the border area between two windows does
not show high similarity, the additional (shifted)
windows contribute less to the total score as shown in
Fig. 1(c). In this case the total score is 9- 18b - 4g, which
is smaller than the former score by 3 + 8b.

In order to reduce computation time we consider only
window positions starting from the left end of a
promoter sequence and jumping every J nucleotides.
For a promoter sequence of length L this yields about L/J
positions to investigate, instead of L positions if we
considered all possible window positions. Also the
smaller J is, the more window positions we have to
consider. As changing the length of J produces only
quantitatively different, but qualitatively results (see
Additional file 1) we set the J parameter in our method
to be half of the window length.

Finding optimal window alignments
The next step is to find contiguous stretches of window
pairs with maximal accumulated cost. Let us recall that
we are considering two sequences S1 and S2 which are
promoter regions for genes g1 (in species A1) and g2 (in
species A2). We assume that g1 and g2 are homologs. Let
the window length W and step J be fixed. Starting from
the first position in each of the regions we move the
window every J nucleotides until we reach the end of the
region. Let N1 (resp. N2) be the number of such window
positions in S1 (resp. in S2). For each 1 ≤ i ≤ N1, let Xi

denote the contents of the window which starts in S1 at
window position i. Similarly, let Yi be the contents
obtained for S2 (for 1 ≤ i ≤ N2). We build a N1 × N2

matrix V which stores in entry (i, j) a maximal value of
the sum along the diagonal of the cost matrix c, which
ends in position (i, j). More formally V (i, j) is computed
as follows

V i j
c X Y V i j i j

c X Y
i j

i j
( , )

max[ , ( , ) ( , )] ,

max[ , ( , )]
=

+ − − >0 1 1 1

0

if 

othherwise

⎧
⎨
⎪
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Having computed the matrix V, we are ready to do a pre-
selection of CRMs. For each i ≤ N1 let j ≤ N2 be the index
such that V (i, j) is maximal among all the values in the

i-th row of V. Let (i, j), (i - 1, j - 1),...,(i - k, j - k) be the
maximal contiguous fragment of a diagonal of V which
consists of a strictly decreasing sequence of values in V.
A CRM pre-selected in S1 is the region from window
position i - k through i (recall that positions in V
correspond to window positions in the promoter
sequences). At this stage we declare the CRM preselected
since we have to further assess the likelihood of its
occuring in the genome by chance.

Assessing the rarity of CRMs
Even though the most natural guideline for selection of
CRMs is the accumulated cost of the pre-selected CRMs,
we have to adjust this statistic in order to avoid a bias
due to possible species-specific abundance of "random"
occurrences of certain motifs. In the present paper we
propose a simple heuristic approach to this issue,
considering computational feasibility of the whole
method. It is based on the idea that CRM in principle
should be specific to some group of genes, but not too
abundant in the genome. If not accounted for that, the
results tend to contain mostly results from the core
promoter area and from repetitive elements. Since it is
not desirable to filter out these sequences (particularly
filtering out core promoters could lead to serious
problems), we set out to propose a quantitative measure
of alignment rarity, which is supposed to promote
specific alignments. The approach we take stems from
simulation methods for obtaining random promoters,
but since we need to retain the features of relatively long
stretches of sequences, instead of randomly shuffling the
sequences, we select a sample of random promoters from
the considered genome and calculate how often the
aligned region gets an alignment score at least as high as
when it is aligned with its homologue. If this occurs
frequently we consider such an alignment not interesting
as a putative CRM.

We describe this procedure of randomization little more
precisely. First of all our approach assumes that the user
knows which area of promoter sequence is of interest to
her/him. For instance, in our experiments with the
muscle and liver genes we consider the promoter area to
be -10 kb through +5 kb of the start of transcription, but
other values can be considered as well. In order to assess
the rarity in a given experiment we sample a set of 99
genes from the genome of the other organism and take
their promoter regions which are of the same size and
similar position with respect to the start of transcription
as assumed by the approach. Then, for each gene g
whose predicted CRM rarity we want to assess, we
compute the score of g against each of the above
mentioned 99 promoters. For a given position in the
matrix, instead of the raw score V (i, j), we consider the
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position of this score in the ranking of 100 sequences
(and hundred matrices). This gives us an estimate of the
relevance of this prediction. Detailed procedure is
described in the following paragraph.

Let us keep the notation of the previous section (i.e. the
matrix V, the genes, g1 and g2, the sequences S1, S2). We first
explain howwe compute the S1-view rarity of (i, j), for a given
position (i, j) in V. We retrieve 99 randomly selected
sequences R1,...,R99 which are promoter regions of genes in
species A2 such that none of the genes is homologous to g2,
and each sequence Rm is of the same length as S2 (i.e. of
length N2). Next, for each m = 1,...,99 we build the
accumulative cost matrix Vm by computing window
contents of S1 against those from Rm. MatrixVm is computed
in the same way for S1 and Rm as Vwas computed for S1 and
S2. For m = 1,...,99, let vm(i) be the maximal element in the
i-th row of Vm. Let p be the position of V (i, j) in the set
{v1(i),...,v99(i), V(i, j)} counted in ascending order. Ex aequo
occurrences of V (i, j) with the other values are resolved to
the benefit of these other values, i.e. V (i, j) always occupies
the last position in the block of equal values. We set S1-view
rarity of (i, j) as the ratio p/100.

Assume we want to assess rarity of a preselected CRM in
promoter sequence S1 and assume that this CRM was
obtained from the fragment of V for positions (i, j), (i - 1,
j - 1),...,(i - k, j - k). The rarity of this CRM in S1 we define
as the minimum S1-view rarity of these positions.

Evaluating the quality of CRM predictions
In order to assess the performance of any CRM
prediction method one has to choose a proper objective
function. In this paper, we test our method on the data
with known CRM data. It can be viewed as a classical
prediction problem and scored with measures of
sensitivity and specificity [9]. However, two facts should
be accounted for in the case of CRM prediction:

(i) the expectednumber of negative examples isby far greater
than the expected number of positive ones. For example, in
our experiments for each promoter sequence in the muscle
set, there are 300 windows of size 100, out of which only a
few comprise CRMs. Similarly, Philippakis and Bulyk [9]
consider 1000 negative examples for a dataset containing 27
CRMs (see Section on Comparison with other methods).

(ii) It is expected that there are more CRMs than the ones
collected in the training dataset. For this reason, some
"false positive" predictions might be actually true CRMs.

To account for the first problem, Chan and Kibler [27]
propose one more measure, positive predictive value (PPV),
which is the ratio of true positives among all predictions.

They also note that, because of (ii) the values obtained
for PPV are underestimates.

Webelieve that becauseof (i) anymethodbased solelyon the
notions of true/false positives/negatives leads to misjudging
the performance of CRM prediction. Specifically, if the
number of negative examples is high compared to the
positive ones, amethod returningmanypredictions is scored
better than the one giving fewer results. We consider such
methods impractical. Therefore, we use a very simple but
usefulmeasure of prediction quality based on the position of
the correctly predicted CRM in the ranking of predictions
returned by our program.Given a threshold k, we say that the
CRM is found, if the correct prediction is among the top k
predictions (we call a prediction correct if it overlapswith the
CRM and is not longer than 3 times the length of the true
CRM). As themean quality of a predictionmethod for a set of
sequences annotated with known CRMs, we consider the
ratioof foundCRMs to theall knownCRMs.The choiceof k is
arbitrary,but inrealapplications it shouldnotbesmaller than
5because of (ii) and at the same time it shouldnot be limited
by the length of the sequence divided by the expected length
of aCRM.Weuse the value k=5 formammaliandatasets and
k=10 for fruit flydataset (since thereare5annotatedCRMs in
one promoter sequence, selecting only 5 top ranked
alignments would be too restrictive). Another advantage of
our scoring procedure is the fact that, as opposed to the PPV
score, it is not sensitive to overlapping predictions. More
precisely, generating many overlapping results for the high
confidence regionsmay increase thePPV scoreof amethod, it
cannot increase the number of foundCRMs. Even thoughwe
use our quality measure to optimize the parameters, we
report in Section on Comparison with other methods the
values of Sensitivity, Specificity and PPV. We also report the
actual values of the overlap between our predictions and true
CRMs (normalized by the sum of the lengths).

Experimental results
For all experiments with biological data discussed here
we chose the window length W = 100 and step J = 50.
Other values of W in the interval 50 through 250, as well
as other steps, gave similar results (data not shown).

Organization of this section is as follows: we optimize
parameters for our method on a set of muscle specific
CRMs which have been experimentally verified. Then we
show that our method gives reasonable results for other
CRMs with these parameters: liver specific CRMs in
human and the CRMs for the eve gene in D. melanogaster.

Parameter estimation – case study of muscle
specific CRMs
We estimated the appropriate parameters on a large set
of muscle specific CRMs reported by Wasserman and
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Fickett [28]. It consists of 43 CRMs, mainly from human,
mouse and rat. After removing from the list of CRMs
those coming from other species (chicken, hamster, pig,
cow) the remaining CRMs, 37 in total, were manually
checked and verified at Ensembl database [29]. This step
was essential since the original data was outdated with
respect to the current genomes deposited in the database.
In some cases we were not able to map a CRM to the
corresponding gene. After omitting these doubtful cases
we were left with 24 CRMs corresponding to 23 genes (5
genes are from human, 12 from mouse and 6 from rat).
One human gene (DESMIN) had two CRMs. For all
aforementioned genes and their homologs (in the other
two species) we retrieved promoter regions flanking
from -10 Kb through +5 Kb relative to the TSS according
to Ensembl. We thus have created 48 pairs of promoter
regions corresponding to homologous genes. The choice
of the sequence length here was a trade-off between
covering as many CRMs from [29] and running time of
the learning procedure.

Estimation of parameters was performed on a grid of
values for b and g. We first examined the intervals 0
through 2 for both parameters with step 0.2 (in fact, we
replaced 0 with 1·10-5 due to the considerations in
section on comparing window contents). For each set of
parameters we computed the mean quality of CRM
prediction (see subsection on evaluating the quality of
CRM predictions). After the area with an optimal score
was localized, we performed again the estimation on
intervals 0 through 0.5 with step 0.05 for both
parameters (as above replacing 0 with 1·10-5). A plot
of the obtained prediction evaluations is shown in Fig. 2.
The best results were obtained for b = 0.2 and g = 1·10-5.
A set of more detailed numerical results is given in the
supporting material.

An important question is whether the introduction of
the rarity score improves the performance of the method.
In order to verify that, we have repeated the parameter
fitting procedure using only the raw alignment scores
without computing the rarity. The optimal parameters
were in fact slightly different (b = 0.4, g = 0.05), but the
overall prediction quality dropped dramatically. We
were able to predict only 1/3 of examples and it is
worth noting that the rankings of the predictions are in
40 cases out of 50 cases lower. It is important that even
though in some cases (6 out of 50) the raw score gives a
better ranking, these are only in cases where the rarity
score gives a prediction within the top 5 as well.
However, in 23 cases the correct prediction is ranked
among the top 5 by the rarity score, whereas the raw
score is below that cutoff. The comparison of the two
rankings is presented in Fig. 3. All results of our method
on the training dataset are presented in Additional file 1.

Prediction of liver specific CRMs in human
The experiment was performed on the set of liver specific
CRMs reported by Krivan and Wasserman [30]. The
dataset consists of 16 CRMs: 10 from human and 6 from
other species. We have manually selected 7 human CRMs
which, according to Ensembl, lie in the regions from -10
Kb through +5 Kb relative to the TSSs. Then, we retrieved
the flanking sequences for the selected genes and their
homologs in rat and mouse. Both these species have two
homologs of human insulin and one homolog for each
of the other genes which gives 16 gene pairs altogether.

The algorithm was run on all 16 pairs of homologous
promoter regions with the parameters chosen for the
muscle specific data in the previous section (b = 0.2 and
g = 1·10-5). The result of CRM prediction is reported in
Table 1 (a more detailed version is included in
Additional file 1). Out of 7 CRMs, 4 are clearly predicted
(rarity ≤ 0.1, ranking ≤ 5) and the remaining 3 are not
found (rarity ≥ 0.8). This result is comparable with the
performance of the method on the training dataset.
Observe that the well predicted CRMs have a significant
overlap.

Predicting even-skipped CRMs in fruit fly
In this experiment we have concentrated on cis-regula-
tory modules for the well studied gene eve in Drosophila
melanogaster. We extracted the relative positions of the
following five experimentally verified eve CRMs from
REDfly database [31]: eve_stripe1, eve_stripe2,

Figure 2
Prediction quality as a function of b and g parameters.
The prediction quality (Q) for the training (muscle) dataset is
plotted here as a function of the b and g parameters. The
maximum value is marked by a square. It should be noted,
that the prediction quality seems to be close to zero for
most values except for the small area around maximum. Our
experiments with wider ranges of parameters (data not
shown) also support that hypothesis.
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eve_stripe4_6, eve_stripe5, and eve_stripe_3+7. Their
length ranges from 500 to 800 nucleotides. The
promoter regions corresponding to the eve gene in
(several species) were downloaded from Flybase [32].
The reason for taking the region (-5 Kb, +10 Kb), rather
than (-10 Kb, +5 Kb) was in order to make sure that the
five CRMs of interest are included in the selected area
while keeping the same overall sequence length. These
four Drosophila species have diverged from D. melano-
gaster so that D. erecta and D. melanogaster are the closest
relatives, while D. mojavensis and D. melanogaster are
evolutionarily furthest apart among these four. Fig. 4(e)
contains a phylogenetic tree for these five flies together
with other seven Drosophila species.

We ran our method on four pairs of promoter regions
with the same parameters as for other datasets (b = 0.2
and g = 1·10-5). The quality of prediction of the
experimental CRMs as retrieved by our method are
shown in Table 2. With the exception of stripe_5, all
other CRMs were predicted correctly for the pair
D. melanogaster/D. pseudoobscura. The results for
D. melanogaster/D. ananassae pair were marginally worse
than for the previous pair. The results were not
satisfactory for the closer relative D. erecta nor for the
farthest relative D. mojavensis. This could be explained by
the fact that evolutionary distance between D.mel. and
D.pse./D.ana. is similar to the distance between human and
mouse/rat. This suggests that a reference species should be
selected so that the evolutionary distance is similar to that in
the training dataset. Thoughwe did not investigate this issue
because of the lack of proper training dataset, it is possible
that we could get better predictions of even skip CRMs for a
different set of parameters for different evolutionary
distances. Nevertheless, it is remarkable that despite
applying parameters that were estimated for different
species and for genes with different tissue specificity we
obtained predictions of similar quality.

Fig. 4 presents the top ten predictions for four pairs of
flies obtained with our method. They are presented by
brown stripes (orange stripes are included in this figure

Figure 3
Comparison of the raw score and the rarity score
rankings. The plot shows the comparison of rankings
obtained for the CRMs from the training set using raw score
vs. rarity scores. Each point corresponds to a single CRM.
The position of the dot depends on the ranking of this CRM
using raw scores (X-axis, log scale) and its ranking according
to the rarity score (Y-axis, log scale). The green and red lines
are placed at k = 5 for rarity and raw scores respectively.
The points placed below (red shaded area) and left (green
shaded area) of these lines are considered to be found by
respective methods. As we can see, there are no points
found only when using the raw score but substantial number
of them is found only when using the rarity score. It should
be noted, that the parameter estimation was done for both
rankings separately, i.e. optimal parameters b and g were
used for both methods. The data for this table is available in
Additional file 1.

Table 1: Prediction quality of liver specific CRMs in human

human gene homolog species prediction

ALDOB mouse incorrect
rat incorrect

IGF1 mouse correct
rat correct

PAH mouse incorrect
rat incorrect

PROC mouse correct
rat correct

CYP7A1 mouse incorrect
rat incorrect

G6PC mouse correct
rat correct

INS mouse incorrect
mouse correct
rat correct
rat correct

For each gene name in column 1, one row shows CRM prediction for
one homolog (described in column 2).
If the most significant prediction which overlaps the experimentally
verified CRM is in the top 5 in the rarity ranking, we call it correct, and
incorrect otherwise. An extended version of this table can be found in
Additional file 1.
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for comparison with another method, see the next
section). The reader may notice that in addition to the
sought after experimental CRMs there are a number of
new putative CRMs which may be false positives, but
may turn out to be true cis-regulatory modules. Some of
the putative CRMs are supported by more than one pair
which may be an indication of a true CRM.

The set of motifs used in this study was a broad spectrum
of motifs from JASPAR CORE. We have also investigated
the impact of choosing more specific motifs for our
approach. We have run the experiment for a set of eight
specific motifs which constitute the even skip CRMs.
However, the results were rather discouraging (data

available in Additional file 1), suggesting that the general
purpose motifs such as JASPAR CORE are better suited
for discovering evolutionarily conserved CRMs. One
possible explanation for this observation is that such
species-specific motifs are ubiquitously conserved in the
fly genome and therefore true CRMs do not stand out in
comparison with the background model. We therefore
propose that JASPAR CORE (or a similar set of non-
species-specific motifs) may be a better choice for
predicting conserved CRMs.

Comparison with other methods
Recall that methods available for the task of CRM
prediction can be divided into two distinct classes based
on the chosen approach:

• tissue-specific methods, tuned for a particular type of
CRMs, using either a set of several known specific motifs
[9], or learning such motifs from the known tissue-
specific CRMs [8],
• general methods based on a universal motif set (e.g.
[23, 24]).

The method proposed in the present paper belongs to
the second class and our comparison is carried out
within this class. We refer the reader to [8] for a thorough
comparison of the performance of tissue-specific
approaches.

There are two published methods proposing computa-
tional prediction of CRMs based on a non-specific motif
set. Though we could not compare our results with the
BLISS algorithm [24], as it seems to be limited to
sequences significantly smaller than 15000 bp. We
believe that this is due to the fact, that the computation
cost was too high. Actually, the time complexity of BLISS
algorithm is  (L2m), where L is the promoter length
and m is the number of considered motifs. On the other
hand the complexity of our method is  (L2) (see
Additional file 1). Even though the asymptotic complex-
ity of these methods with respect to L is the same (if we
consider m as a constant), the number of atomic
operations which have to be performed by our method
for the actual values of L and m is approximately 250
thousand times smaller than for the BLISS method. This
is in part due to using 'step' by our method. It should be
noted that the running time of our method is less than a
minute for a pair of sequences of length 15kb on a
standard workstation PC.

Computation time is also a strong point of EEL software
[23], which is available for download. We have rerun the
EEL software on the same datasets as our method. For
the muscle dataset, it was able to recover altogether 14 of

Figure 4
Comparison of CRM predictions in even-skipped gene
in different Fruitflies. In parts (a) through (d) the Y-axis
represents positions in the promoter region of eve gene of
D. melanogasterwith 5' end at the top and 3' end at the bottom,
while the X-axis represents positions in the promoter region
(with 5' end corresponding to the left and 3' end
corresponding to the right end) of erecta, ananassae and
mojavensis, respectively. Brown strips represent the top ten
predictions by our method, while orange strips represent the
top ten predictions by EEL. Light green horizontal areas
represent positions of the experimentally verified even skip
CRMs in D. melanogaster. Part (e) presents a phylogenetic tree
of 12 Drosophila species including the ones discussed here.

Table 2: CRMs in the gene eve in fruit fly

CRM homolog Drosophila
erecta

Drosophila
ananassae

Drosophila
pseudoobscura

Drosophila
mojavensis

stripe3+7 - - + +
stripe2 - - + +
stripe4 6 - - + +
stripe1 - + + +
stripe5 - - - -

The table reports quality of the most significant prediction of each CRM
in the gene eve in Drosophila melanogaster obtained by our method with
each of other considered Drosophila species. The key to values is the
same as in Table 1, however since we are looking for 5 CRMs, we have
adjusted the value k to 10.
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the 24 CRMs (detailed results are in Additional file 1).
For the liver dataset, the results of the two methods were
comparable: EEL was able to recover 5 out of 7 CRMs,
while we were able to recover 4 from the same data.

The results for the fruit fly dataset are presented in
Table 3. We present here the performance of both
methods in recovering the even-skipped gene CRMs
using the homology with D. pseudoobscura. The values of
sensitivity and PPV are presented in two variants:
assuming top 5 predictions or top 10. Another view of
the same results is presented in Fig. 4. We present there
top 10 predictions for both methods for all 4 pairs of
homologous sequences. In three cases (a, c, d) our
method provides reasonable predictions while the EEL
method is often providing wrong predictions. It should
be noted that a possible reason for poorer performance
of EEL on the Fruifly dataset is that the set of parameters
used by EEL for mammalian genomes cannot be used to
the analyses on insect genomes, even though the authors
of EEL [23] show that it is able to recover the same
enhancers of eve with a specific set of motifs (and
possibly different parameters, however this is not clear
from their study). In contrast, the parameters for our
method seem to be applicable to Fruifly data, especially
when comparing D. melanogaster to D. pseudoobscura.

Discussion and conclusion
The novel method of predicting cis-regulatory modules
which is proposed in the present paper is based on the
following two salient features:

• implementation of a mixture of sequential and set-
theoretic evaluation of similarity measure for groups of
motif occurrences;
• introduction of a rarity measure for putative CRMs.

Both of these above features play an important role in
the quality of CRM prediction. Introduction of a rarity
measure for putative CRMs plays a crucial role in moving
true positives up in the ranking. We propose a
straightforward method of computing this rarity mea-
sure, having mainly computational efficiency in mind.
Further research should clarify whether we can improve
with respect to the quality of predictions when adopting

less naive ways of computing rarity without affecting
computational time. The main contribution and power
of the present method lays in combining both: sequen-
tial and set-theoretic aspects of assessing similarity of
motif clusters. As mentioned earlier one way of
approaching the problem of predicting CRMs is via
discovering conserved non-coding sequences and then
finding their subsequences that contain a large number
of motif occurrences. This is partly covered by our
method, since if two promoter fragments have a similar
sequence and are drawn from the same background, then
the penalty for symmetric difference of sets of motif
occurrences in these fragments is zero, and what really
counts is the number of such occurrences. On the other
hand, in our method we relax the assumption of
sequence conservation since we are working solely with
motif occurrences. We also do not assume a strict
conservation of the order of motif occurrences by
allowing disruptions of this order without any penalty,
provided that the occurrences are not too far apart, i.e.
they fit into one window. For the same reason we do not
penalize differences in relative distances of motifs,
providing the differences are within the window length.

Also, even though in our analyses all known CRMs
considered are of comparable size (mostly 100–500 bp),
the range of possible sizes of CRMs is still debated.
Judging by the sizes in databases of CRMs, the regions
are often much larger (even up to 5 kb, see [31]), while
one of the most well studied enhanceosomes (Iterferon-
b) is only 60 bp in length [33]. Given this wide range of
possible CRM lengths it may be considered an advantage
that our method puts less constraints on the CRM length
as other, most notably conservation-based, methods.

An appealing feature of our method is that it is tailored
for use with a non-specific set of motifs. The results of
experiments presented here show clearly that a non-
specific set such as JASPAR CORE works very well for
muscle and liver, as well as for the even skip CRMs.

Another important issue which emerges from the results
of our method is that the quality of CRM prediction may
largely depend on the evolutionary distance of a relative
organism against which we compare constellations of
CRMs. As we have seen, when the species of interest is
D. melanogaster, we obtained unsatisfying results when
the chosen relative was D. erecta. The outcome was better
for D. ananassae, best for D. pseudoobscura, but again
worse for D. mojavensis (but not as bad as for D. erecta).

It should be noted that D. pseudoobscura and D. ananassae
are in a similar evolutionary distance to D. melanogaster
as rat and mouse are to human [34] It also seems that the
set of relatives mouse/rat works well for human.

Table 3: Prediction quality for fruit fly CRMs. The table reports
prediction quality for CRMs in Drosophila melanogaster obtained
with Drosophila pseudoobscura.

our method EEL

Top rank found SN PPV found SN PPV

5 2 0.4 0.4 1 0.2 0.2
10 4 0.8 0.4 2 0.4 0.2
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Parameters
In total our approach uses the following four internal
parameters. Remarks on selection of these parameters are
given in section on experimental results.

• W – length of the window (set to 100);
• J – length of step (set to 50);
• coefficients in the cost function (as discussed in the text
the parameter a can be set to 1 without loss of
generality):

(i) b – penalty for difference in motif composition (set to
0.2);
(ii) g – CRM extension penalty (set to 10-5).

In order to filter the obtained results the user may choose
the following two parameters:

• The threshold rarity (we use 0.05);
• the number k of top predictions to be displayed (we
used k = 5 for liver and muscle data, and k = 10 for the
gene even-skipped).

It should be noted that the total length of promoter
sequences, as well as the position of left and right flank
with respect to the start of transcription can be also
considered a parameter, since the user may choose to
search for CRMs using flanking regions of different size
and different relative position.

Availability and requirements
Project name: Billboard

Project home page: http://bioputer.mimuw.edu.pl/
papers/crm08

Operating system(s): Platform independent (tested only
on Linux)

Programming language: Java (requires JDK6and theAnt tool)

License: GNU GPL

Any restrictions to use by non-academics: None
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