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Abstract
Background: DNA copy number variation (CNV) has been recognized as an important source of
genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV
detection, but the microarray platform has a number of inherent limitations.

Results: Here, we describe a method to detect copy number variation using shotgun sequencing,
CNV-seq. The method is based on a robust statistical model that describes the complete analysis
procedure and allows the computation of essential confidence values for detection of CNV. Our
results show that the number of reads, not the length of the reads is the key factor determining
the resolution of detection. This favors the next-generation sequencing methods that rapidly
produce large amount of short reads.

Conclusion: Simulation of various sequencing methods with coverage between 0.1× to 8× show
overall specificity between 91.7 – 99.9%, and sensitivity between 72.2 – 96.5%. We also show the
results for assessment of CNV between two individual human genomes.

Background
DNA copy number variation (CNV) has long been known
as a source of genetic variation, but its importance has
only been recognized recently [1,2]. In a landmark study
in 2006, Redon and colleagues found that 1,447 CNV
regions cover at least 12% of the human genome, with no
large stretches exempt from CNV [3]. The CNV regions
cover more nucleotide content per genome than single
nucleotide polymorphisms (SNPs), suggesting the impor-
tance of CNV in genetic diversity [3]. A common way to
detect CNV is to utilize microarray-based methods [4].
The most commonly used method, array comparative
genomic hybridization (aCGH) was first used to detect
CNV a decade ago [5,6].

Microarray-based methods have revolutionized the way of
how large-scale genome studies are carried out. Today, the
next-generation sequencing technologies are transform-
ing biology research [7]. The rapid development of new
sequencing technologies is continuously increasing the
speed of sequencing and decreasing the cost. The next-
generation sequencing, such as 454 [8], Solexa [9] and
SOLiD [10] have already showed advantages over micro-
arrays in several aspects. Apart from being rapid and
cheap, data produced by sequencing can be re-used for
varied purposes as opposed to data from microarray-
based methods that can usually solely be used by one spe-
cific study. In addition, reproducibility has been one of
the major challenges for microarray technology [11]. The
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once revolutionizing microarray-based ChIP-Chip tech-
nology is being replaced by ChIP-Seq, in which the DNA
fragments are sequenced instead of being hybridized to an
array [12]. Sequencing-based methods are also used to
produce genome-wide DNA methylation profiles, detect
SNP, study chromosome translocations and RNA tran-
scriptome profiling [13-20].

Variation in sequencing coverage in genome assemblies
has been used as an indicator for potential CNV between
an assembled genome and shotgun data from another
genome [21,22]. This is analogous to a comparison of
copy number between microarray probes and a single set
of DNA fragments. There are two major problems with
this kind of approach. Given a certain hybridization con-
dition, hybridization efficiency varies among microarray
probes. Likewise, given a certain alignment threshold,
sequencing errors in combination with differences
between genomes may result in erroneous distribution of
the reads.

Secondly, the number of probes on a microarray does not
represent the real copy number of probe sequences in a
genome. Likewise, the copy number of DNA segments in
an assembled genome may not represent the true one.
Notably, the regions containing multiple copies are the
most difficult to assemble correctly and is still the key
unsolved problem in shotgun assembly [23]. Assembly
errors like these cause false variation in the sequencing
coverage and thus yield erroneous indication of CNV.

In this paper we describe an efficient solution based on a
robust model that combines the advantages of aCGH and
high-throughput sequencing. We also assessed CNV
between two individuals (Dr. J. Craig Venter [24], Dr.
James Watson [21]). An implementation of our method is
freely available at http://tiger.dbs.nus.edu.sg/CNV-seq.

Results and discussion
The Model
We have developed a method to detect CNV by shotgun
sequencing, CNV-seq. The method is based on a robust
statistical model that allows confidence assessment of
observed copy number ratios and is conceptually derived
from aCGH (Figure 1). The microarray-based procedure,
aCGH involves a whole genome microarray where two
sets of labeled genomic fragments are hybridized. Instead
of a microarray, CNV-seq uses a sequence as a template
and two sets of shotgun reads, one set from each target
individual, X and Y (Figure 1). The two sets of shotgun
reads are mapped by sequence alignment on a template
genome. We use a sliding window approach to analyze
the mapped regions and CNVs are detected by computing
the number of reads for each individual in each of the
windows, yielding ratios. These observed ratios are

assessed by the computation of a probability of a random
occurrence, given no copy number variation.

The random sampling in shotgun sequencing results in
uneven coverage that may lead to observed coverage ratios
that falsely imply CNV. Therefore, a statistical model is
essential for the assessment of the probability of false pos-
itive ratios. The average number of reads in a region of a
genome is dependent on the total number of reads sam-
pled, the length of the genome and the length of the
region. We use this relationship to compute a minimum
sliding window size to achieve a desired minimum confi-
dence level of the observations.

The mean number of reads for X and Y genomes in a slid-
ing window determines the distribution of the ratios. The
number of reads in a window is approximately distributed
according to Poisson, Po( ), where the mean number of
reads per window is , given by

where N is the total number of sequenced reads, G is the
size of the genome and W is the size of the sliding win-
dow, and W < <G. We use the Gaussian distribution to
approximate the Poisson distribution with mean and var-
iance  =  = 2. This approximation is good when the mean
number of reads per window is greater than 10 with con-
tinuity correction.

The predicted copy number ratio, r in each sliding win-
dow can be computed by

where z is the ratio of read counts in the window and NX
and NY are the total number of reads in the genomes X and
Y respectively. Assuming an independent distribution of
the read counts, we can obtain a probability, p of a copy
number ratio being r or divergent from 1:1 ratio by a ran-
dom chance. For this purpose, we need the distribution of
the read count ratio z. This distribution is given by Gaus-
sian ratio distribution [25]. The computation of this dis-
tribution is cumbersome, but it can be transformed to
another variable, t, by Geary-Hinkley transformation [26]:

where X, , Y and  are the means and the variances

for X and Y respectively. The new variable t approximately
have a standard Gaussian distribution when the mean
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number of reads per window is greater than 6 in Y and less
than 40,000 in X. The p-value can be computed by

where Φ (t) is the cumulative standard Gaussian distribu-
tion function. The probability p decreases with increasing
sliding window size (Figure 2) and we would like p to be
as low as possible. Conversely, increased sliding window
size leads to a decreased resolution of CNV regions. There-

fore it is advantageous to compute a window size, which
yields the best possible resolution according to a preset
threshold of p for r. Based on the above equations, We can
calculate the best possible resolution, or the theoretical
minimum window size, W by

and
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A comparison of the conceptual steps in aCGH and CNV-seq methodsFigure 1
A comparison of the conceptual steps in aCGH and CNV-seq methods. 1. Starting material in both cases is genomic 
fragments from two genomes. 2. In CNV-seq the fragments are samples and sequenced. 3. Genomic fragments are directly 
hybridized on to an array. In CNV-seq the mapping is performed by sequence alignment. 4. In microarray the light intensities 
reflect the number of hybridized fragments. In CNV-seq the number of mapped reads are counted directly. 5. Data analysis, 
including estimation of copy number ratios, confidence values, etc. 6. Output of the results.
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where p' is the desired significance level, and r' is the CNV
detection threshold ratio. Φ-1 is the inverse function of Φ.
The number of reads sampled will affect the minimum
window size. For example, if one wants to detect CNV
with ratio ≥ 3 : 2 at significance level 0.002, a genome size
of 3 G bases and 10 M reads in both genomes will yield
the minimum window size of 37,243 bases, while 1 M
reads will yield the window size of 372,431 bases. The use
larger number of reads allows detection of ten times
shorter CNV.

An alternative approach is to calculate the range of copy
number ratios that can be detected at a certain significance
level p', with a predefined window size W':

where

and

Validation
In order to assess the performance of CNV-seq, we used
simulated and real human data. For the simulation of
shotgun data, in total of 101 genomes were constructed,
containing varied number, sizes and locations of CNV
regions, SNP and short insertions/deletions (indels). We
simulated three sequencing methods, Solexa, 454 and
Sanger [27] for each constructed genome on 0.1× to 8×
coverage. This resulted in the total of 8,400 simulations.

The Figure 3 shows the results of the simulations on var-
ied coverage and varied p' for constant log2(r') = 0.6. Each
dot represents an average of 100 simulations and the sizes
of the dots reflect the sizes of the lengths of the sliding
windows that are the theoretical minimum lengths, given
by equation (5). The overall specificity for our method is
between 91.7 – 99.9%, the sensitivity between 72.2 –
96.5% with the median of 99.4% and 89.9% respectively.
The mean sequence length is dependent on the technol-
ogy simulated. Thus, in order to reach the same coverage,
a larger number of fragments need to be sequenced when
sequencing is performed with Solexa, which produces
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Dependencies of p in CNV-seqFigure 2
Dependencies of p in CNV-seq. The relation of p and 
sliding window size is shown on 0.1× to 8× sequence cover-
age for log2(r') = 0.6 and average read length 250 bases. The 
values are computed using equation (5). Increased window 
length results in decreased probability, p of observing ratio r' 
or higher by cheer chance. It is possible to compensate lack 
of coverage by increasing the window size, but this results in 
lowering the resolution.
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Performance of CNV-seqFigure 3
Performance of CNV-seq. The performance of CNV-seq 
on data simulating 454, Sanger and Solexa methods. Results 
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size, i.e. resolution used. The window sizes are calculated 
using equation (5).
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short reads compared to the Sanger and 454 methods.
According to our model, the largest number of sequenced
reads yields the shortest length of the sliding window and
thus the best resolution. The range of window sizes in our
simulations varies from 1,103 bases to 2,951,792 bases,
decreasing with increasing average sequencing coverage.
The results show that our model performs well in the pres-
ence of errors. Despite of increased resolution due to
shortening of the sliding window size, the sensitivity is
increased together with increased sequencing coverage.
Slight drop in specificity with increasing sequencing cov-
erage can be observed (Figure 3). This is likely to be due
to SNPs, short indels, and read mapping errors, that are
not considered in our statistical model and have a more
profound effect on small windows. The specificity does
not drop in error free data. The effect of errors may be
reduced by using a window size that is larger than the the-
oretical minimum. For example, the theoretical minimum
window for 8× Solexa sequencing at p = 0.001 is 1947
bases. This window size gives a specificity of 95.4%, while
a 2 times larger window yields specificity of 97.8% (Figure
4).

Analysis of human data
The genomes of two individuals, Dr. Craig J. Venter and
Dr. J. Watson were recently sequenced on 7.5× and 7.4×
coverage respectively [21,24]. The genome of Dr. Craig J.
Venter is sequenced using Sanger method and Dr. J.

Watson's genome using 454 technology. We compared
the two genomes using CNV-seq (Figure 5 and Additional
File 1). The thresholds p' = 10-5 and log2(r') = 0.6 yield
sliding window size of 26,481 bases for autosomal chro-
mosomes. The sex chromosomes have a lower sequencing
coverage than autosomal chromosomes, therefore larger
window sizes are used: 72,044 bases for chromosome X
and 269,032 bases for chromosome Y. We identified 174
contiguous regions covered by four or more consecutive
windows. The sizes of these regions range from 66,202
bases to 941,612 bases.

The comparison of the 174 CNV calls with those in the
Database of Genomic Variants (DGV) [2] revealed 142 of
the CNV calls to overlap more than 50% with previously
reported CNV regions. In order to asses the significance of
CNV calls, we performed 5,000 permutation tests, using
174 randomly distributed CNV regions of the same sizes
as in the original experiment. In average, only 56 and
maximum 78 of 174 regions overlap more than 50% with
CNV in DGV (Figure 6) 5,000 random sets. The real CNV
calls have significantly larger overlap with DGV (p = 0).

We also intersected the CNV calls with the CNVs identi-
fied by aCGH in the two genomes. There are 23 and 45
CNV regions reported in Watson's and Venter's genome
respectively [21,24]. We found 15 of our CNV calls over-
lap with 10 of previously reported Watson's CNV regions,
and only 11 of our CNV calls overlap with 5 of Venter's.
The low overlap with Venter's CNV calls made by aCGH is
not surprising, for the reason that the majority of the CNV
regions were detected by only one of three microarray
platforms [24]. There are 121 CNV calls that made by
CNV-seq but not aCGH and overlap with DGV data, sug-
gesting that CNV-seq can detect CNV regions that were
missed by aCGH. One of these regions is shown in Figure
5 (bottom panel), a 238 kb region (copy number ratio
6:1, p = 0) containing two genes (FAM23B, MRC1L1) and
one miRNA (hsa-mir-511-2). We have used stringent
thresholds in our analysis, thus by lowering thresholds,
such as p-value and the number of consecutive windows,
will increase the number of reported CNV calls.

A major assumption in CNV-seq is that shotgun sampling
of DNA fragments is random, and therefore the CNV calls
made by CNV-seq are not due to different sequencing bias
between the two sets of data compared. When the two sets
of data are prepared in the same way, this assumption is
valid. However, when the shotgun sequences are gener-
ated using two different sequencing methods, the assump-
tion may not hold any more. Solexa sequencing reads are
recently reported to be GC-biased dependent on a library
preparation procedure [28]. Venter's genome was
sequenced using 454 and Watson's genome was
sequenced using the Sanger method. We compared the

Specificity vs window sizeFigure 4
Specificity vs window size. In order to increase specificity, 
a larger than the theoretical minimum window size can be 
used by sacrificing resolution. The specificities using 1×, 1.5×, 
2×, 3×, 4×, and 5× of the theoretical minimum window size 
are shown, for simulated Solexa sequencing data at 8× cover-
age.
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distribution of GC frequencies in the shotgun reads in
both genomes. There are no significant differences
between the two distributions (p = 0.2106, Kolmogorov-
Smimrov test).

Conclusion
We have developed a method to detect CNV using shot-
gun data. Our approach not only combines the advan-
tages of microarray methods and high-throughput
sequencing, but is also based on a robust statistical model
allowing confidence assessment. We tested the approach
on both simulated and real data and the results show that
the method can be applied to relatively low sequencing
coverage with good specificity and sensitivity. We have
also developed a model to compute the theoretical limit
of resolution for given data at a desired confidence level.

We expect the continued rapid development of sequenc-
ing technologies to further lower the cost and increase the

speed of sequencing. Thus, sequencing-based approaches
are likely to gain increased advantage over microarrays.
Next-generation sequencing methods mostly produce a
large number of short reads and our results show that the
number of reads sequenced – not the length of the reads,
is the most important factor that determines the resolu-
tion, i.e. larger number of sequenced fragments results in
increased resolution. Alternatively, given a constant reso-
lution an increase in the number of sequenced reads will
result in increased sensitivity and specificity. Therefore, a
large number of short reads is an advantage as opposed to
a small number of long reads.

Methods
Simulations
The human chromosome 1 (NCBI build 36) was used to
construct one diploid reference genome and 100 diploid
test genomes. The unmodified chromosome 1 sequence
was used as the template genome. The test individual

Copy number variation between two human individualsFigure 5
Copy number variation between two human individuals. Copy number variation detected by CNV-seq using shotgun 
sequence data from two individuals, Venter and Watson. The top panel shows a genome level log2 ratio plot. The middle panel 
shows the plot for chromosome 10. The bottom panel shows detailed view of a CNV region in chromosome 10. The red color 
gradient in the middle and bottom sections represents log10 p calculated on each of ratios.
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genomes are constructed by the introducing CNV, SNPs
and short indels. The CNV is introduced into each of the
test genomes by concatenating the two chromosomes and
by selecting nine source sequences at random positions to
replace 26 target sequences at random positions. Four of
the nine source sequences are used four times each to
replace four random target sequences and the remaining
five of the nine sequences are used to replace two random
target sequences each. The procedure results in the total of
35 segments in each of the 100 simulated test genomes
with the following copy number ratios: 26 with ratio 1:2,
five with ratio 4:2 and four with ratio 6:2. The length of
the source sequences is 10k, where k is a random number
between log10 500 and log10 2 M, yielding the median
length of 26,464 bases and the mean 234,065.7 bases. In
addition, each test genome is modified by randomly
introducing 5 SNPs/kb and short, 1–3 bp insertions/dele-
tions with the frequency of 0.5 indels/kb.

The reference genome is constructed the same way as the
individual test genomes, except no CNV was introduced.

We simulated the shotgun sequencing process for test and
reference genomes by using real sequence quality files,
specific for each sequencing method. The quality files
used for Sanger and 454 sequencing were downloaded
from the personal genome projects of Venter [24] and
Watson [21] in Trace Archive [29], respectively. For the

simulation of Solexa method we used quality files from
the project SRA000261 in Trace Archive. The lengths of
the quality files define the read lengths at a random start-
ing position. The errors were introduced according to
quality values given in the quality files. Both Sanger and
454 methods use Phred quality values [30], q and the
error probabilities, e are given by e = 10q/-10. The errors are
introduced by generating a random number R between 0
and 1. If R <e, then one of the following errors will be
introduced: Substitution to one of the three remaining
bases, an insertion or a deletion. The probability of an
indel is 10% of all introduced errors with the equal ratio
of indels. The base frequency in the source genome is used
to calculate the frequency of each base, which is in turn
used to give the insertion and substitution probability.
The Solexa quality values, qs can be converted to Phred
quality scores as follows

We simulated the shotgun process for 0.1×, 0.2×, 0.5×, 1×,
2×, 5× and 8× coverages.

The performance is measured by counting the number of
sliding windows giving a correct alternatively an incorrect
prediction. Our model describes the theoretical limit of
detection for given data with given r' and p'. The true copy
number ratio of each window is known in the simulated
data, i.e. the true r. All windows where true r ≥ r' or r ≤ 1/
r' should be classified as CNV in order to achieve 100%
sensitivity. Similarly, all windows where true r ≤ r' or r ≥
1/r' should not be classified as CNV in order to achieve
100% specificity.

CNV detection in human data
The shotgun sequencing data were downloaded from the
personal genome projects of Venter and Watson in Trace
Archive. The template genome was downloaded from
Ensembl [31], human genome assembly, NCBI Build 36.
The thresholds p' = 10-5 and log2(r') = 0.6 are used. Given
the data these thresholds yield the window size, W = 26,
481 bases for autosomal chromosomes, 72,044 bases for
chromosome X and 269,032 bases for chromosome Y.

CNV-seq
All calculations are performed using R [32] and sequences
aligned by BLAT [33]. The whole procedure is automated
by Perl http://www.perl.org scripts.
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