
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Adaptable data management for systems biology investigations
John Boyle*, Hector Rovira, Chris Cavnor, David Burdick, Sarah Killcoyne
and Ilya Shmulevich

Address: Institute for Systems Biology, 1441 N 34th Street, Seattle, WA 98103, USA

Email: John Boyle* - jboyle@systemsbiology.org; Hector Rovira - hrovira@systemsbiology.org; Chris Cavnor - ccavnor@systemsbiology.org;
David Burdick - dburdick@systemsbiology.org; Sarah Killcoyne - skillcoyne@systemsbiology.org;
Ilya Shmulevich - ishmulevich@systemsbiology.org

* Corresponding author

Abstract
Background: Within research each experiment is different, the focus changes and the data is
generated from a continually evolving barrage of technologies. There is a continual introduction of
new techniques whose usage ranges from in-house protocols through to high-throughput
instrumentation. To support these requirements data management systems are needed that can be
rapidly built and readily adapted for new usage.

Results: The adaptable data management system discussed is designed to support the seamless
mining and analysis of biological experiment data that is commonly used in systems biology (e.g.
ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs
to represent different views upon the data. These views are designed for different roles: equipment
specific views are used to gather instrumentation information; data processing oriented views are
provided to enable the rapid development of analysis applications; and research project specific
views are used to organize information for individual research experiments. This management
system allows for both the rapid introduction of new types of information and the evolution of the
knowledge it represents.

Conclusion: Data management is an important aspect of any research enterprise. It is the
foundation on which most applications are built, and must be easily extended to serve new
functionality for new scientific areas. We have found that adopting a three-tier architecture for data
management, built around distributed standardized content repositories, allows us to rapidly
develop new applications to support a diverse user community.

Background
To enable the adaptive behaviour that is required when
developing software for research an "informal" data man-
agement strategy is often needed. By informal we mean
there is a need to rapidly develop and adapt software
infrastructures to unforeseen and (typically) unspecified

requirements. We have found that the use of a distributed
data management system (consisting of remote inter-
linked content repositories) gives us the required flexibil-
ity, while still allowing for the development of the level of
formalization that is required for robust software develop-
ment.

Published: 6 March 2009

BMC Bioinformatics 2009, 10:79 doi:10.1186/1471-2105-10-79

Received: 31 October 2008
Accepted: 6 March 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/79

© 2009 Boyle et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19265554
http://www.biomedcentral.com/1471-2105/10/79
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
Advances in computer science have pushed what can be
achieved with data management systems, and conversely
these advancements have driven the increase in demands
for richer functionality. The computer science research
advancements have involved both hardware and software,
with faster processor speeds enabling other innovations to
become feasible. The way in which data management sys-
tems are built, and extended, has also changed. These
changes in software engineering and design include: the
methodology through which software is constructed (e.g.
components leading to frameworks, and frameworks
leading to aspects [1]); the technology used to allow for dis-
tributed computing (e.g. object brokers evolving pass-by-
value mechanisms, and these being replaced by stateless
Web Services); and the ideology that is used to define the
process through which software is built (e.g. the "rational"
processes being replaced by agile programming). These
advances are continuing to occur, and will have an effect
on the next generation of data management and distribu-
tion tools (e.g. cloud computing becoming mainstream
through the use of Google App Engine or similar).

A number of companies, and academic institutions, have
marketed integration and data management solutions for
the life sciences. These enterprise data integration (and
distributed process) management systems have evolved
over the last 10 years. This evolution has been from single

database based solutions to open, distributed, interopera-
ble data management solutions (see Figure 1). This
change has been driven by demands for rapid develop-
ment, high levels of interoperability and increases in data
volume and complexity. There has been a natural progres-
sion with these integration systems, as they generally fol-
low the traditional approaches to software designs and
technologies that are prevalent at the time. There are
numerous examples of the application of technical inno-
vations being the focus of a specific integration product,
for example: in 1996 SRS [2] (from Lion Bioscience) advo-
cated external indexing to link between numerous gene
and protein data sources; in 1997 the Discovery Center
(from Netgenics) used CORBA [3] based distributed com-
ponents to provide bespoke integration products; in 1998
the Alliance framework (from Synomics) promoted an n-
tier application server distributed system, which used
linked domain specific modules; in 1999 the MetaLayer
(from Tripos) utilized XML message passing; in 2000 Dis-
coveryLink [4] (from IBM) provided a federated database
solution which linked across different databases and flat
files; in 2001 the Genomics Knowledge Platform (from
Incyte) marketed an object integration solution based
solely on EJBs; in 2002 the I3C (a consortium led by Sun
and Oracle) specified the use of an identity driven
approach to integration; in 2003 the LSP (from Oracle)
advocated the use of Web Services; in 2004 IPA (from

Evolution of enterprise architectures has occurred within the life sciencesFigure 1
Evolution of enterprise architectures has occurred within the life sciences. Limitations in the flexibility of data repos-
itories based solutions helped shape the development of integration frameworks. Integration frameworks suffered from com-
plexity and interoperability problems, and so document based solutions are now becoming the norm.
Page 2 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
Ingenuity) and MetaCore (from GeneGO) used a knowl-
edge base to provide a solution for the mining of networks
of integrated data; in 2005 caBIG [5] (from NCI) adopted
a MDA (model driven architecture) approach, built using
a J2EE and Web Service based solution, to standardize
their community integration efforts; in 2006 CancerGRID
(from MRC) delivered a resource framework based Web
Service system to bridge between diverse data sources; and
in 2007 caGRID [6] (from NCI) provided a stateful Web
Service and registry system for loosely coupled data and
analysis services.

One common characteristic of these "technology first"
efforts is that they developed solutions that were designed
to work with static "finished" data, not research informa-
tion. This style of system works well within publishing
scenarios, where information is to be made available
throughout an enterprise as a static resource. When actu-
ally working within a research institution (or life science
company), where new technologies and ideas are contin-
ually being developed, such static publishing approaches
are not appropriate. Instead, a flexible analysis and access
system is required that allows for the rapid introduction
and integration of many types of data. With the advent of
systems biology, the recognized need for integration solu-
tions has reached a high level of urgency.

This article is principally focused on the design of software
to support systems biology investigations, rather than a
discussion of a specific application. The software that has
been developed, and made available to the community, is
discussed to illustrate the advantages of the advocated
designs. The importance of design can be over looked in
scientific computing [7], due to the complexities with the
development of software for research which arise due to
the constantly changing requirements and individual
project-centric approaches. In this article we discuss how
we designed a flexible and maintainable data manage-
ment solution which can be readily adapted to meet the
requirements of a complex research environment. The rea-
soning behind this non-traditional design is that a
research software infrastructure must be highly adaptable
to change. The required change could arise from new tech-
nologies being introduced, a change of research focus, or
a change in resourcing (project funding). How we inte-
grate the data management system with other tools and
data sources has been discussed previously [8].

Results
There are two major requirements on software design
within a rapidly changing research environment: the abil-
ity to develop and integrate software rapidly, and the
assurance that the resulting systems are adaptable to new
and unpredictable needs. The methodologies and tech-
nologies used within research environments must be able
to satisfy these requirements. Methodologies that depend

on formalized specifications for processes and data struc-
tures are not appropriate for research software infrastruc-
ture. An understanding of current informatics
technologies, and their suitability, is essential to ensure
that research driven software projects can be delivered on
schedule. Over the last few years there have been many
advances in enterprise computing which means that data
management technologies can now effectively be used in
rapidly evolving research environments. These advances
mean that, through an appropriate choice of technologies,
it is now possible to deliver, within a minimal timeframe,
a distributed system which is robust, standardized, loosely
coupled and interoperable. Enterprise components can
now be rapidly configured to deliver a range of rich func-
tionality (e.g. content management, messaging, state
based processing, dynamic discovery, high level orchestra-
tion). However, inappropriate technology choices can
result in an architecture which is not adaptable and diffi-
cult to maintain.

Technologies that require a static structure (e.g. schema
definitions) are constrained in their usage as they require
"top-down" design. This means that the usage of tradi-
tional application server based technologies may not be
appropriate for many aspects of research, as they are
largely designed for tasks where: there exists reasonably
stable information which can be structured in a DBMS or
similar; business logic is required to operate closely on the
data; or integration logic or data transformation is
required. Alternatively, less structured data management,
such as content repositories, can be suitable within
research environments. Content repositories serve a dif-
ferent purpose to application servers, but can be used to
serve out similar types of information using the same pro-
tocols. Content repository technologies can be more
appropriate (than an application server) as they provide a
high level of flexibility when dealing with unstructured
content (e.g. experiment information).

We are not suggesting that more formalized representa-
tions of data do not have their place in research environ-
ments. Many data sources can be represented as static
snapshots, and when it comes to presenting the research
results, the use of more standard software development
practices and tools is essential. These static approaches
become unsuitable in situations where software is being
developed to directly support on-going research projects,
with unpredictable life cycles and unforeseen require-
ments.

Layered content management
To manage data arising from ongoing research experi-
ments we adopted an approach using distributed content
repositories. Content repositories allow for the develop-
ment of a formalized structure that can be associated
directly with resources (see Figure 2).
Page 3 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
The content can be organized into a (typically) hierarchi-
cal structure. The nodes in the hierarchy can have an arbi-
trary complexity (depending upon the requirements) and
also have extensible property sets associated with them.
The content system also provides for the usual array of
horizontal services (e.g. data querying, browsing, manage-
ment, transactions, concurrency control, security).

We extended the Java Content Repository (JCR) standard
(using the Apache Jackrabbit implementation [9]) to pro-
vide a distributed data management system that consists
of a series of interlinked content management systems
(CMS). Such a federated content repository solution offers
three major advantages over a standard database/applica-
tion server solution:

• Easy to adapt. Within a research environment it is gener-
ally difficult to hammer down requirements. The require-
ments change over time, and new functionality is often
required at short notice. Content repository systems have
a high degree of flexibility, as the content graph can be
extended to meet new requirements, and the annotations
can be dynamically updated. This means that when new
requirements become apparent, the structure can be
changed or modified easily, without having to rewrite a
schema or change an object layer implementation. It is
interesting to note that other disciplines, in particular the
design community, have found that such flexibility is
invaluable in enabling creativity [10].

• Easy to understand. Any data management solution will
involve a high level of complexity, especially in a distrib-
uted research environment. This complexity, however,
does not mean that the principles of how the system oper-
ates cannot be easily understood. Allowing the end-users
to build up a good mental model of how the system works
removes many obstacles with adoption. By portraying the
content management as "an intelligent file system" posi-
tive transfer of knowledge can occur, so that the system is
natural and intuitive to use.

• Easy to access. Within a research environment there is
little time to be spared for learning (largely transient)
informatics systems. This fact coupled with the low level
of formal software training of most researchers (whether
computationally inclined or not), means that convenient
access to the data is of paramount importance. Content
management systems in general, and the system discussed
in this paper in particular have little complexity in terms
of object models and data access protocols, as the storage
structure is simply a hierarchy and a large number of
access protocols can be supported (e.g. direct file I/O,
RMI, WEBDAV, REST).

Unfortunately, a single content repository system does
not offer the level of flexibility that is required. Research

groups interact with different facets of research informa-
tion in diverse ways and with a plethora of goals. This
diversity means that the data must be organized in differ-
ent ways, for example: when capturing the data it may be
appropriate to organize information by group and date;
when processing the information it can be organized by
runs and tool information; and when exploring the infor-
mation it can be organized by biological significance (e.g.
by gene, by strain, by condition).

To allow for this diversity (and adaptability) we deployed a
series of loosely coupled distributed content repositories.
The resulting distributed content management system (Fig-
ure 3) allows for different people to interact with the sys-
tems directly. To identify resources we have previously [8]
used URNs (encoded as LSIDs). We have since migrated to
using HTTP URIs, as we feel that HTTP URIs have advan-
tages over URNs for linking between data sources: URIs
(like URNs) can support human readable hierarchical nam-
ing schemes; Representational State Transfer (REST) opera-
tions can be easily appended to URIs; they do not require
additional overhead for resolution; and URIs are better
aligned with current community efforts.

The main aim of the distributed content repository system
is to enable the researchers, and associated research tools,
to easily be able to store, manipulate and retrieve the
information they want in the form they desire. One repos-
itory can span multiple installations, and multiple repos-
itories can reside within one instance. The system we use
is designed around a three-layer architecture:

• Instrumentation Layer. This layer is used to capture
experimental information. The layer models information
in a way that makes storage of the information simpler, so
that laboratory scientists can easily add and annotate
information that is captured from a variety of instru-
ments. Typically each type of experiment has a distinct
(and differently structured) repository.

• Conceptual Layer. This layer is designed to provide a
means to generically interact with the information
through the use of high level abstract operations. These
operations include the aggregation and retrieval of infor-
mation, and do not necessitate an understanding of the
actual information content. Information which is
required for manipulating the data is provided as meta-
data through properties attached to the data files.

• Organizational Layer. This layer provides a project (or
researcher) based view on the information, and therefore
is designed to have a "biological focus". Typically the con-
tent is organized by factors such as disease, organism or
molecule. Each different research, or research group, can
individually organize and annotate the data to suit their
individual requirements.
Page 4 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79

Page 5 of 16
(page number not for citation purposes)

Content management systems are designed to handle generic data itemsFigure 2
Content management systems are designed to handle generic data items. These items are placed within a hierarchi-
cal structure. Each session with a content repository is managed, so that changes can be made in a transactional manner. A sep-
arate indexing service can be used to enable searching through annotations attached to items. Generally three levels of
functionality are supplied with content managed systems: level 1 refers to "read" based operations; level two is for "write"
based operations, such as maintaining referential integrity and providing access control; and level three is additional operations
such as versioning, observation/notification and concurrency.

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
It is interesting to note that "three layer" architectures
commonly occur in many software architectures [11]. This
pattern consistently has a lower level that directly reflects
the underlying data storage, a middle layer which pro-
vides an abstract conceptualization of the data, and an
upper level which presents the data in a convenient man-
ner to external applications (see Figures 4 and 5).

Instrumentation layer
The instrumentation layer is designed to be the interface
point with high throughput equipment and laboratory
instrumentation. Data is captured by laboratory scientists
via equipment and is stored in a repository that is struc-
tured for their convenience. In this way the repository is
closely aligned to the experiment and experimenter.

The repositories are mainly used to automatically capture
information from high throughput experiments. We are
currently using instrument repositories to capture infor-

mation for high throughput imaging, proteomic and
genomic experiments. The instrumentation repositories
generally have relatively simple structures as their purpose
is to facilitate data collection. For example, when captur-
ing information for genomics, the data is organized in the
repository in a fairly flat hierarchy containing a simple
name and time stamp mechanism.

We specify a limited set of properties (based upon an
ontology with an associated controlled vocabulary) which
are used to describe the metadata associated with the
experiment. This controlled metadata is used in conjunc-
tion with any ad-hoc or free text annotations which may
be added at a later time by the experimenter. Where pos-
sible the metadata is gathered directly from the instru-
mentation (e.g. by parsing data files generated by
microscopy control equipment such as IPLAB) otherwise,
we interface with bespoke sample tracking systems (e.g.
for genomics we bridge with the sample tracking SLIMA-

Schematic diagram showing how loose coupling between content repositories has been used to provide a distributed content management systemFigure 3
Schematic diagram showing how loose coupling between content repositories has been used to provide a dis-
tributed content management system. The data management system allows for the ad-hoc linking of items between
repositories, using URIs. This allows for the simple linkage of items between any of the repositories. Generally laboratory sci-
entists generate data and organize it directly within the "instrumentation layer". Once the data is available pipelines are built
which query and retrieve experimental data from the instrumentation layer, the subsequent analysis results are stored in the
analysis layer (including any logging information and intermediate results). The aggregation system allows for indexing of large
data files so that subsets of information can be retrieved. The organizational layer allows for the results of analysis (or sub sets
available through the aggregation system) and raw experiment results to be combined with additional research information.
Page 6 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
rray [12] software). The ontologies used are based upon
community standards (e.g. OME [13], MAGE [14]).

Once the data is collected within a repository the content
can be queried, browsed and retrieved using standardized
mechanisms, such as: object protocols (e.g. RMI) to
develop distributed systems; WebDAV to provide docu-
ment-based browsing (and mappings to file system
browsing tools); XPATH query for structured and unstruc-
tured searching/retrieval; and REST/JSON protocols for
programmatic access from any language that supports
HTTP connectivity (e.g. Java, Matlab, R, JavaScript, Flash).
To meet our needs we have also provided two additional
retrieval mechanisms:

• URI based retrieval – all referenceable items within the
repository can be retrieved using a HTTP URI. This inter-
face was built both to provide convenient access to the

data and also to allow for the construction of semantic
web based applications on top of a JCR instance.

• Standardized access components for retrieving, searching
and publishing information to a JCR instance. We have used
these components in a variety of applications, including:
within a servlet based web application; within a standalone
application(s); and as part of a GenePattern [15] tool set.

Conceptual layer
The conceptual layer is designed to aid in tasks that are
fundamental in many different research investigations.
The layer provides a high level of abstraction for tasks
associated with data processing (the "analysis system")
and data manipulation (the "aggregation system"). These
systems provide common (horizontal) functionality, and
are designed to be used by analysis and data processing
subsystems.

The ANSI-SPARC three layer database architecture was pro-posed in 1975, and is still used in modern RDBMSFigure 4
The ANSI-SPARC three layer database architecture
was proposed in 1975, and is still used in modern
RDBMS. The three proposed layers were a physical schema
which defined how the data is actually stored (inode informa-
tion), a conceptual schema which represented how informa-
tion was related and indexed, and an external schema which
represented how information was presented. The architec-
ture was designed to provide immunity to change: the physi-
cal schema defined how the actual information was stored,
and could be changed without effecting how external applica-
tions interacted with the data; and the external schema could
be changed to define richer APIs, without having to change
the underlying storage mechanism.

Design of a system within an application server typically involves three layers: an infrastructure layer which stores the data; a domain layer which is populated with vertical object models; and an application layer which models how an appli-cation can interact with the domain objectsFigure 5
Design of a system within an application server typi-
cally involves three layers: an infrastructure layer
which stores the data; a domain layer which is popu-
lated with vertical object models; and an application
layer which models how an application can interact
with the domain objects. The application server provides
both resource management and service based functionality
for each of these layers. In EJB terms there is: the infrastruc-
ture layer corresponding to a database, typically with O-R
mappings through hibernate; the domain layer corresponding
to entity beans, which basically function as an object cache;
and the application layer corresponding to sessions beans or
Web Services (with stateless session bean mappings).
Page 7 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
Analysis Subsystem
The analysis system is used to manage, audit and store the
results of data analysis/processing pipelines. Each pipe-
line run is associated with a node in the analysis content
repository. Each node defines a structure that accommo-
dates the required inputs, the outputs and logs produced
by the process, and the current status (and history) of the
execution. In this way, each processing pipeline is loosely
coupled with the analysis system, which provides a
searchable storage area for input/output files and a log-
ging service. Other software (e.g. administration/monitor-
ing applications) can query the repository to find the
status of any distributed processes that has been regis-
tered. A process that uses the analysis system typically has
the same life cycle: when a processing pipeline starts it
queries the content repository to find the required input
node (the querying is based upon the properties that have
been set on the node); status information is sent to the
status node (e.g. state transitions, failures, logging); and
output data is stored in the output nodes. Due to the loose
coupling and simplicity we have used the analysis system
to support numerous data processing pipelines, in partic-
ular in processing genomics data (see Figures 6 and 7).

The genomics normalization pipeline (Figure 6) uses the
analysis system directly. As the analysis system uses a
standard pattern of nodes (input, output and status hier-
archies), any analysis pipeline can make use of it. The
genomics normalization pipeline simply retrieves the
required input parameters, executes the job (and updates
the status), and then writes the results. By using a pattern
of nodes, applications can be loosely coupled so that they
can be developed independently of each other with few
dependencies e.g. a job submission application can write
to the input nodes (Figure 6), and a separate processing
application can receive notifications that are triggered
through changes to the status nodes (Figure 7). The loose
coupling provides a high level of reliability and allows for
rapid application development. The content system also
provides for a means to ensure that we are able to achieve
reliable auditing of each analysis run. The basic function-
ality for reading/writing information is provided through
standardized modules.

Aggregation Subsystem
One of the aims of the computing advances over the last
few years has involved the concept of run time aggregation.
This approach is epitomized by the semantic web, where
people can mash information from a variety of data
sources into a single graph. We provide a run time aggre-
gation system specifically for the aggregation of data from
different analyses.

When an analysis run has finished, the observing aggrega-
tion system can trigger an indexing operation on the

results. The indexing is controlled using the properties
that are associated with the output of the analysis run
(typically the properties related to the rows or columns
that are to be indexed). As all data within any of the con-
tent systems is indexed it is possible to retrieve data items
using free text or direct querying. If, for example, an appli-
cation (or user) wished to aggregate all data pertaining to
a specific gene then it can query the aggregation subsys-
tem (and other content repositories) so that the aggre-
gated information retrieved would consist of both nodes
(representing both specific data and any associated meta-
data) and specific rows (or columns) from data files. In
this way, it is possible to extract relevant information from
a variety of data sources upon demand. For example, the
end results of the normalization pipeline shown in Figure
6 is a large replicate combined data matrix of how mouse
gene expression levels change over a myriad of conditions;
the aggregation system can be used to automatically
extract subsets of this information directly so that they can
be presented in a uniform manner (see Figure 8).

The Web Portal (Figure 8) uses the standardized service to
retrieve information from a number of repositories. The
service can query multiple repositories, so that the portal
makes a request to retrieve URIs for specific types of infor-
mation that match a specific gene id. This information is
then displayed in each of the portlets. The aggregation sys-
tem is used to allow for each part of data files (e.g. a spe-
cific row in a matrix that corresponds to a particular gene/
probe) to be uniquely identified by URIs.

Organization layer
The organization layer allows for the construction of a sci-
entific oriented façade on top of the other repositories.
This façade provides a scientific project based structure,
which allows for the custom organization of data and for
project specific annotations to be added. This layer pro-
vides more than a materialized view of the other layers, as
extra information and data relevant to the specific scien-
tific project can be added, searched and retrieved. As all
"referenceable" items within any of the repositories are
exposed as HTTP URIs, these can be used to provide links
between distributed repositories. As all items are uniquely
addressable, a generic browsing application can be built
(see Figure 9) which provides a view on the interlinked
repositories. The browsing application can be used to
annotate items so that they can be searched, to organize
distributed items, and to link items from different reposi-
tories.

The endpoint for URI addressed items is a REST Web Serv-
ice implemented as a series of servlets. These Web Services
are used to provide interoperable operations on both
individual repositories (see Table 1) and items within a
repository (see Table 2). Any domain model representa-
Page 8 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
tions (in Request and Response) are formatted using Java-
Script Object Notation (JSON). The JSON syntax is fast
becoming a standard for communications over REST APIs
as: it is lightweight; easily extensible and human readable;
is easy to interpret from many programming languages;
and can conveniently be transformed to other formats
such as XML. We use this API to rapidly develop applica-

tions for specific users or research groups on top of repos-
itories that (generally) directly reflect the "mental model"
that the users have about the organizational structure of
their information. An example of how we have used this
layer is an application that is used to organize the results
of proteomics experiments (see Figure 10). This applica-
tion simply mirrors how a research group used to organize

Example view on a gene expression array normalization and analysis pipeline web applicationFigure 6
Example view on a gene expression array normalization and analysis pipeline web application. This web applica-
tion is used to normalize sets of gene expression experiments together so that they can be compared. The researcher can use
a variety of search tools to select the arrays they wish to use: basic search performs a string match against any annotations in
the content repository and the search by meta data is used to perform exact matching of names against node properties. Data
is retrieved from the instrumentation layer and a new node is created in an analysis repository which represents the specific
request. An analysis pipeline is then started using information stored in the analysis node. In this case the analysis pipeline is
built within Gene Pattern. As the run progresses all status information is passed to the analysis node, so that the run can be
monitored by an administration application. When the run is complete, the final results are also stored in the repository, and
this triggers a notification event (typically an email) to be sent.
Page 9 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
their data locally (e.g. the directory hierarchy they used to
store gels, proteomics results, ELISAs). The application
has richer functionality as the items can now be anno-
tated, is accessible (and versioned) and the relationships
between items can be browsed (including access to the
raw data files).

The organizational repositories represent a domain-ori-
ented view on the information. The information can be
securely retrieved using a variety of protocols (see Figure
11). The flexible access to the data means that: scientists
can browse, arrange and annotate the information using a
hierarchy that best suits their needs; and domain-centric
applications can be rapidly developed using these struc-
tures as interfaces to the data.

Discussion and conclusion
The adaptive data management system we have discussed
has been designed to meet the competing requirements
for data management that arise within a research organi-
zation. As with many aspects of research informatics, flex-
ibility and rapid development are key issues as
requirements change unexpectedly and frequently. We
advocate the view that, to be of lasting use to research, any
data management system must be able to:

Support the evolution of ideas
The development of integration strategies for systems
biology is problematic due to both the nature of science
and the organization of scientists. It is typical that the
means to which a specific experimental technology will be

Administration and inspection tools can be built against the analysis repository, which show information about specific analysis that was undertakenFigure 7
Administration and inspection tools can be built against the analysis repository, which show information about
specific analysis that was undertaken. These tools simply display the information about completed analysis runs. They can
be searched, and the results fro each analysis can be retrieved. The above tool shows a view on the analysis repository that is
used for all gene expression analysis runs, the type of chip is chosen using the top drop down menu, and then information
about each analysis (e.g. descriptions of the chips that were analyzed) is shown. The federated repository allows for loose cou-
pling between the web applications, administration tools and the analysis pipeline framework.
Page 10 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
used, and the methods used to analyze the resulting data,
is unknown at software design time. This is because scien-
tific understanding continually evolves. Any scientific
data management system has to support such evolution,
meaning that traditional approaches to development and
design are frequently inappropriate. As neither the data
usage nor analysis is known a priori an easily adaptable
solution is needed.

Allows for flexible working
There is a fundamental requirement for scientists to easily
access, query and manipulate data to suit their needs. Sci-
ence led investigations require an infrastructure to sup-
port ongoing data driven discovery processes. This means
that: the data should be accessible through a variety of
mechanisms, including multiple computer languages and
applications; the data should be detached from the sys-

The above example Web Application uses a portlet engine to display information from a variety of repositories (and other data sources)Figure 8
The above example Web Application uses a portlet engine to display information from a variety of repositor-
ies (and other data sources). The aggregation system can be used to pull together information from different sources. It
can be used directly to index and then extract subsets of information from larger data files. The above example web application
is a prototype application which uses our adaptive data management system to store information about gene annotations,
ChIP-Chip experiments, transcription factor binding site predications and gene expression studies. The Gene Expression Port-
let transparently accesses and extracts subsets of information from data files by simply querying the aggregation system by gene
name.
Page 11 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79

Page 12 of 16
(page number not for citation purposes)

Purpose built Web Application for browsing distributed repositoriesFigure 9
Purpose built Web Application for browsing distributed repositories. Although there are a variety of tools available
for browsing single site (and single workspace) repositories, the above application allows for the transparent linking and brows-
ing of distributed repositories. In this example, a repository has been overlaid on the other repositories which provide a
project structure on the information.

Table 1: Repository level operations that are provided through http encoding.

Operation Base
Syntax

Description

Browse /<XPATH> Providing a repository PATH parameter (e.g, /analysis/runs) returns a generic representation of the underlying
resources.

Create /new Create new resources by appending '/new' and providing parameters for a repository PATH and a resource NAME.
Files can be uploaded as part of a multi-part HttpRequest.

Search /search Search by query terms by appending '/search' and providing parameters for a repository PATH. Query terms are
matched against underlying resource properties (e.g. Organism = Mouse).

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
tem, so that scientists are not "tied down" to any specific
object model or way of working; and flexible navigation
through the data using a variety of approaches should be
supported.

Delivers the salient information
Many aspects of biomedical research can be thought of as
an information centered science [16]. Information must
be established in the context in which it has been
requested, that is to say, the view on the information
changes depending upon the question that was asked.
Therefore, the structure of the data management system
must change depending upon the requirements. In a
research environment, the views on the data typically
involve: high throughput instrumentation, where infor-
mation must be pushed from machines quickly and relia-
bly; computational informatics processing applications,

which require auditing and annotations; and research
projects, which require domain oriented and flexible
views upon the data. This requirement for adaptable data
management is encountered in many avenues of research
across all of the biomedical sciences.

Rather than build a de novo system, we have extended
standardized open source systems. By extending commu-
nity standards we are able to deliver production systems
quickly and are able to overcome boundaries due to
resource limitations. We have found that the standardized
systems we have adopted are generally not directly suita-
ble for research informatics, and therefore had to be
extended to allow for the required flexibility. These exten-
sions are designed to: ensure that the system integrates
well within a research enterprise; allow for customization
of the system to ensure it has a richer semantics; and pro-

Table 2: HTTP URI based operations are provided through a REST API for operating on individual objects.

Operation Base Syntax Method Description

Retrieve /<XPATH>/meta GET Retrieve JSON representation of a resource, and an array of its child resources

Retrieve /<XPATH>/dir GET Retrieve a file system representation of the resource with directories and files.

Retrieve /<XPATH>/structured GET Retrieve the domain model representation of the resource.

Search /<XPATH>/search GET Retrieve underlying resources matching provided query parameters.

Modify /<XPATH> POST Updates domain model representations, properties, files or contents of a file.

Delete /<XPATH> DELETE Permanently removes the resource, its model, properties and files

Proteomics data browsing web applicationFigure 10
Proteomics data browsing web application. This is an example of a web application that has been constructed on top of
the organizational layer, the application allows for browsing/sorting by annotations and linking of experiments relating to a spe-
cific tandem MS experiment (e.g. western, ELISA, etc). As rapid application development and easier maintenance are essential
in fast moving research environments, the underlying repository is structured to direct reflect how the proteomics experi-
menters wish to interact with their data. This structure is effectively mirrored in the web application, enabling rapid develop-
ment and reducing transformation complexities.
Page 13 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79

Page 14 of 16
(page number not for citation purposes)

The use of communication standards allows for a high degree of flexibility in delivery of informationFigure 11
The use of communication standards allows for a high degree of flexibility in delivery of information. Data
stored in files can be either imported or linked into the content repositories, and then annotated. RMI interfaces expose the
basic read/write functionality. This information can be searched using structured querying (sql or xpath based), as well as using
free text (inverse index based) searching. To ensure accessibility to the data and flexibility of use we provide a REST API which
provides additional integration points. For the data analysis pipelines (or toolsets in GenePattern) standardized modules are
provided which use the REST API directly to search for files, as well as read/write information into the content repositories.
Application programming language integration is provided through the REST API returning JSON objects, so that while the
integration is stateless it supports any language that can access URIs and parse JSON (e.g. Matlab, R, Java, C#, Perl). The system
can also be used to integrate with the semantic web, as RDF graphs which directly represent information within the repository
can also be returned. Dynamic Web Content is generated and managed using Spring, with controllers being used to service
AJAX requests. We use AJAX/JSON calls to populate pages and visualizations in a variety of web frameworks (including port-
lets and JSF). Desktop integration is essential to the usage of the repositories, and the REST access layer can be used to return
information in a number of protocols: URI access can be used to allow direct access; WebDAV can be used to integrate with
common desktop tools and allow for browsing; and the REST API can be used to return directory (tree) based structures.

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
vide workflows to ensure the system can work robustly
with high throughput instrumentation.

We have found that the three-tier distributed data man-
agement system provides the flexibility and adaptability
that we required. As we adopted and extended standards,
the system was put together with a minimal of FTE effort,
while still providing a robust and scalable architecture.
Most importantly, as science moves along at a rapid pace,
and opinions are always multi-faceted and divided, this
system allows us to evolve the structure of the data man-
agement to meet new requirements without having to
continually rewrite or wrap out of date or inappropriate
legacy code.

Availability and requirements
We have made a number of tools available to the commu-
nity. These tools are built upon the Web Services we have
developed that allows for the interoperability and distri-
bution of content across a number of JCR instances. For
these tools to function one or more JCR compatible
instances must first be installed, and then the REST serv-
ices must be deployed within tomcat. Further instructions
are given below, and more details (including the relevant
template files) are given on the main download site.

Project information
Project home page: http://www.systemsbiology.org/infor
matics;

Operating system(s): Platform independent;

Programming language: Java; Other requirements: Java 1.5
or higher, Tomcat 6.0 or higher, working JCR instance
1.4.0 or higher.

Licence: Apache;

Any restrictions to use by non-academics: no restrictions.

Installation instructions
Detailed instructions on how to install the main data
management system, which consists of the REST services
and the project explorer web application are given with
the downloads section of the project web site. To install
the main software the following steps must be under-
taken:

1) Ensure you have Java 1.5 installed and a working Tom-
cat (6.×) instance

2) Download the main services file (the addama distribu-
tion) from the downloads site.

3) Install a JCR instance to create a repository (Jackrabbit
from Apache is the recommendation). To install Jackrab-

bit: download the jcr-instance-jar-with-dependencies.jar
into an execution working directory (JCR_HOME); edit
the jcr-instance.properties file and copy the file into the
JCR_HOME.

4) Start the repository by executing the jar using "java – jar
jcr-instance-jar-with-dependencies.jar jcr-instance.xml".

5) Copy the addama-rest.war file into your tomcat/
webapps directory and then fill in the addama-rest.prop-
erties file and copy it to your tomcat/libs directory.

6) Copy the addama-html.war file into your tomcat/
webapps directory, make sure the addama-rest war file
started up properly first.

7) In your browser go to http://[host name]/addama-html

Available tools
The following tools are available from the main down-
load site.

• REST/URI Extensions. This is the main set of services that
must be installed before any of the additional tools. The
services allow for the retrieval of content using a URI.

• JCR Browsing System. A javascript/json/ajax based web
application for browsing and editing the contents of a JCR
instance. This is included as part of the main distribution.

• Access Components: Components are provided to support
the development of applications that require JCR retriev-
ing, searching and publishing functionality. This are pro-
vided as a separate download and code is provided for R,
Matlab, Perl, Python, Java and Ruby.

• Data Feeder. A utility for loading a JCR from a sample
tracking system. This utility demonstrates how annota-
tions and data items can be mapped into a repository; and
how simple monitoring can be used to mirror the con-
tents of an existing sample tracking system in the JCR. This
is built against the freely available SlimArray sample track-
ing software [12].

• File Loader. A utility for loading file data directly into a
JCR instance using XPATH information to define the posi-
tion. This runs as an executable Java jar.

Authors' contributions
JB designed the system, managed the development team,
and drafted the manuscript. HR worked on the design and
implementation of the REST interfaces, the aggregation
system and the portal. CC contributed to the manuscript,
provided implementations for key services, and standard-
ised the metadata for the services. DB principally worked
on the analysis pipelines and associated services, and also
Page 15 of 16
(page number not for citation purposes)

http://www.systemsbiology.org/informatics
http://www.systemsbiology.org/informatics
http://[host name]/addama-html

BMC Bioinformatics 2009, 10:79 http://www.biomedcentral.com/1471-2105/10/79
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

contributed significantly towards the design. SK worked
on the pipelines and web applications, and also project
managed the team. IS instigated and guided the project.
All authors read and approved the manuscript.

Acknowledgements
The project described was supported by grant number P50GMO76547
from the National Institute of General Medical Sciences, grant number
1R011CA1374422 from the National Cancer Institute and as part of con-
tract HHSN272200700038C from the National Institute for Allergy and
Infectious Diseases. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIMGS, NCI,
NIAID or the NIH.

References
1. Kiczales GLJ, Mendhekar A, Maeda C, Videira Lopes C, Loingtier J,

Irwin J: Aspect-Oriented Programming. In European Conference
on Object-Oriented Programming Finland: Springer-Verlag; 1997.

2. Etzold TUA, Argos P: SRS: information retrieval system for
molecular biology data banks. Methods Enzymol 1996,
266:114-128.

3. CORBA Services [http://www.omg.org/technology/documents/
corbaservices_spec_catalog.htm]

4. Haas LSP, Kodali P, Kotlar E, Rice J, Swope W: DiscoveryLink: A
system for integrated access to life sciences data sources.
IBM systems Journal 2001, 40(2):489-511.

5. Li MCX, Li X, Ma B, Vitányi P: The similarity metric. IEEE Trans-
actions on Information Theory 2004, 50(12):3250-3264.

6. Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W, Kher M,
Manisundaram A, Shanbhag K, Covitz P: caGrid: design and imple-
mentation of the core architecture of the cancer biomedical
informatics grid. Bioinformatics 2006, 22(15):.

7. Kelly D: A Software Chasm: Software Engineering and Scien-
tific Computing. IEEE Software 2007, 24(6):119-120.

8. Boyle J, Cavnor C, Killcoyne S, Shmulevich I: Systems Biology
Driven Software Design for the Research Enterprise. BMC
Bioinformatics 2008, 9(295):.

9. Plaisant CGJ, Bederson B: SpaceTree: Supporting Exploration in
Large Node Link Tree, Design Evolution and Empirical Eval-
uation. Information Visualization 2002.

10. Fischer G: Domain-Oriented Design Environments: Support-
ing Individual and Social Creativity. Proc CMCD IV 1999:83-111.

11. Bachman C: Summary of current work ANSI/X3/SPARC/
study group: database systems. ACM SIGMOD 1974, 6(3):16-39.

12. Marzolf B, Troisch P: SLIMarray: Lightweight software for
microarray facility management. Source Code Biol Med 2006,
1:5.

13. Goldberg I, Allan C, Burel J, Creager D, Falconi A, Hochheiser H,
Johnston J, Mellen J, Sorger P, Swedlow J: The Open Microscopy
Environment (OME) Data Model and XML File: Open Tools
for Informatics and Quantitative Analysis in Biological Imag-
ing. Genome Biol 2005, 6(5):R47.

14. Brazma Aea: Minimum information about a microarray exper-
iment (MIAME)–toward standards for microarray data.
Nature Genetics 2001:365-371.

15. Reich MLT, Gould J, Lerner J, Tamayo P, Mesirov J: GenePattern
2.0. Nat Genet 2006, 38:500-501.

16. Hood L, Galas D: The Digital Code of DNA. Nature 2003,
421:444-448.
Page 16 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743681
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16766552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16766552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16766552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18578887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18578887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16642009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16642009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540920
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Layered content management
	Instrumentation layer
	Conceptual layer
	Analysis Subsystem
	Aggregation Subsystem

	Organization layer

	Discussion and conclusion
	Support the evolution of ideas
	Allows for flexible working
	Delivers the salient information

	Availability and requirements
	Project information
	Installation instructions
	Available tools
	Authors' contributions
	Acknowledgements
	References

