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Abstract

Background: Although most of the current disease candidate gene identification and
prioritization methods depend on functional annotations, the coverage of the gene functional
annotations is a limiting factor. In the current study, we describe a candidate gene prioritization
method that is entirely based on protein-protein interaction network (PPIN) analyses.

Results: For the first time, extended versions of the PageRank and HITS algorithms, and the K-
Step Markov method are applied to prioritize disease candidate genes in a training-test schema.
Using a list of known disease-related genes from our earlier study as a training set ("seeds"), and
the rest of the known genes as a test list, we perform large-scale cross validation to rank the
candidate genes and also evaluate and compare the performance of our approach. Under
appropriate settings — for example, a back probability of 0.3 for PageRank with Priors and HITS
with Priors, and step size 6 for K-Step Markov method — the three methods achieved a comparable
AUC value, suggesting a similar performance.

Conclusion: Even though network-based methods are generally not as effective as integrated
functional annotation-based methods for disease candidate gene prioritization, in a one-to-one
comparison, PPIN-based candidate gene prioritization performs better than all other gene features
or annotations. Additionally, we demonstrate that methods used for studying both social and Web
networks can be successfully used for disease candidate gene prioritization.

Background by at least one functional annotation, the remaining one

Most of the current disease candidate gene prioritization
methods [1-6] rely on functional annotations. However,
the coverage of the gene functional annotations is a limit-
ing factor. Although more than 1,500 human disease
genes have been documented, most of them continue to
be functionally uncharacterized. Currently, only a fraction
of the genome is annotated with pathways and pheno-
types [6]. While two thirds of all the genes are annotated

third is yet to be annotated.

Analysis of protein-protein interaction networks (PPINs)
is important for inferring the function of uncharacterized
proteins. Protein-protein interactions refer to the associa-
tion among the protein molecules and the study of these
associations from the perspective of biochemistry, signal
transduction and biomolecular networks. Recent biotech-
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nological advances like the high-throughput yeast two-
hybrid screen facilitated building proteome-wide PPINs
or "interactome" maps in humans [7,8]. The shift in focus
to systems biology in the post-genomic era has generated
further interest in PPINs and biological pathways. Net-
work-based analyses have been developed with a number
of goals [9], including protein function prediction [10],
identification of functional modules [11], interaction pre-
diction [12,13], identification of disease candidate genes
[14,15] and drug targets [16,17], and the study of network
structure and evolution [18-22]. While there is a wealth of
protein-disease relationships in the published literature
and a number of PPIN resources, relatively few studies
have actually used PPIN analyses for prioritizing disease
genes. Thus, making use of these networks in the context
of disease is a relatively new challenge [14]. One of the
earliest efforts [23] uses a classifier based on several topo-
logical features, including degree (the number of links to
the protein), 1N index (proportion of links to disease-
related proteins), 2N index (average 1N index in the
neighbors), average distance to disease genes, and positive
topology coefficient (average neighborhood overlapping
with disease genes). Xu et al., built a KNN-based classifier
with all disease genes from OMIM and concluded that
hereditary disease genes from OMIM in the literature-
curated protein-protein interaction network are character-
ized by a larger degree, a tendency to interact with other
disease genes, more common neighbors, and quick com-
munication to each other [23]. A more recent application,
Genes2Networks [24], identifies important genes based
on a list of "seed" genes. It generates a Z-score for each
"intermediate" gene from a binomial proportions test to
represent its specificity or significance to the "seed" genes.
The former method, independent of known disease-
related genes, is used for disease candidate gene identifi-
cation, especially in cases where there is little or no prior
knowledge about the disease. The latter application, on
the other hand, uses a "seed" list as training to score the
neighboring genes. It avoids bias toward highly connected
"hub" genes, but the candidate gene is searched in a local
network region, and the user has to provide the size of the
neighborhood region in the network.

Recent technological advances in genomic sequencing,
gene expression analysis, and other massively parallel
techniques, while opening new opportunities, continue to
pose a formidable challenge in deriving meaningful infor-
mation from the large data silos. Typically, such data can
be represented as networks in which the nodes (e.g.,
genes, mRNA, microRNA, proteins or metabolites) are
linked by edges (e.g., DNA-protein or protein-protein or
miRNA-mRNA interactions or correlations). Structural
analysis of these networks can lead to new insights into
biological systems and is a helpful method for proposing
new and testable hypotheses. Biological networks have in
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fact been found to be comparable to communication and
social networks [25]. For instance, PPINs and communi-
cation networks share several common characters such as
scale-freeness and small-world properties, suggesting that
the algorithms used for social and Web networks are
equally applicable to biological networks. Although PPIs
have been used widely to identify novel disease candidate
genes [14,15,23,26-35], besides Kohler et al. [30] and Wu
et al. [34], there have been no reports on using PPIs for
disease gene prioritization. Additionally, to the best of our
knowledge, this is the first study that uses social- and
Web- network analysis-based algorithms to prioritize dis-
ease candidate genes.

In the analysis of social networks, Web graphs and tele-
communication networks, a common question frequently
asked is: Which entities are most important in the net-
work? Although visualization-centered approaches such
as graph drawing are useful to gain qualitative intuition
about the structure, especially in small graphs, it is not
practical to use these approaches for large and more com-
plex networks. As an alternative, a number of other
approaches have therefore been developed. For instance,
a variety of measures (degree centrality [36], closeness
centrality [37] and betweenness centrality [38]) have been
proposed by sociologists to determine the "centrality" of
a node in a social network. Likewise, in the area of Web
graphs, computer scientists have proposed and used sev-
eral algorithms such as HITS [39] and PageRank [40] for
automatically determining the "importance" of Web

pages.

In the current study, for the first time, we utilize the above
methods to prioritize disease candidate genes by estimat-
ing their relative importance in the PPIN to the disease-
related genes. Specifically, we determine the optimal
parameter values in the methods and record the corre-
sponding performance. The first algorithm that we use is
based on White and Smyth's PageRank algorithm. White
and Smyth [41] proposed a general framework and a set
of algorithms under the framework to measure the relative
importance in networks. The first method is an extension
of the original PageRank algorithm and is called PageRank
with Priors. It mimics the random surfer model wherein a
random Internet surfer starts from one of a set of root
nodes, R, and follows one of the links randomly in each
step. In this process, the surfer jumps back to the root
nodes at probability B, thus restarting the whole process.
Intuitively, the PageRank with Priors algorithm generates
a score that is proportional to the probability of reaching
any node in the Web surfing process. This score indicates
or measures the relative "closeness" or importance to the
root nodes. The second algorithm, named HITS with Pri-
ors, is an extension of HITS (Hyperlink-Induced Topic
Search), which is a link analysis algorithm developed by
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Jon Kleinberg to rate Web pages. It determines two values
for a page: its authority, which estimates the value of the
content of the page, and its hub value, which estimates the
value of its links to other pages [42]. In the Web surfing
model, the surfer still starts from one of the root nodes. In
the odd steps he/she can either follow a random "out-
link" or jump back to a root node, and in the even steps
he/she can instead follow an "in-link" or jump back to a
root node. Similar to the PageRank with Priors, HITS with
Priors also estimates the relative probability of reaching a
node in the network. The third algorithm we use is the K-
Step Markov method. In a similar Web surfing scenario,
this method mimics a surfer who starts with one of the
root nodes. The surfer follows a random link in each step,
but he/she return to the root node after K steps and
restarts surfing.

Results

Human protein interaction network

The human protein-protein interactions were extracted
from the NCBI Entrez Gene FIP site [43] and contained
8340 nodes or vertices (corresponding to 8340 unique
genes/proteins) and 27250 edges (corresponding to
27250 unique interactions). This compilation is based on
three interaction databases, namely, BIND (2389 genes
and 4054 interactions) [44], BioGRID (7683 genes,
23205 interactions) [45], and HPRD (6594 genes and
22802 interactions) [46] (See Additional File 1 for the
overlap among these three resources). Although these lit-
erature-based or literature-curated interactions are more
subjective to research bias, they are less prone to errors.
Analysis of this complete human protein interaction net-
work using "NetworkAnalyzer" [47] in Cytoscape [48]
revealed 120 connected components. The largest of these
has 8075 genes. The remaining 265 genes are separated
into 119 smaller components or sub networks of size two
to five nodes or genes. Since majority of these smaller sub-
networks contain only two genes, we reasoned that it
might not be of interest to check the distribution of the
disease genes among them.

Evaluation of PPIN for gene prioritization

We used the same training data, from our previous study
[6], comprising 19 diseases with 693 associated genes. Of
these, 589 genes were used in the cross validation because
the remaining 104 genes do not have any known protein-
protein interactions (see Additional File 2). The random
training dataset, used as a control, was built with 19 ran-
dom gene lists, with each list comprising 31-38 genes. We
used three methods, namely, K-Step Markov (KSMarkov),
PageRank with Priors (PRankP), and HITS with Priors
(HITSP), to prioritize the disease gene with different
parameter values. The random genes were prioritized
using PRankP with back probability set to 0.3. The ROC
curves of representative cross validation results are shown
in the figures 1 and 2.
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Based on our results, we observed that in terms of per-
formance, HITSP was similar to PRankP under different
back probability values. Therefore, only PRankP was
tested for extreme back probability values such as 0.01
and 0.05. The 13 different test conditions (PRankP with
back probability 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9;
KSMarkov with k = 1, 2, 4, 6; and HITSP with Priors with
back probability 0.3 and 0.5) along with the AUC values
from each validation run are listed in Table 1. Each of the
methods, with the same parameter settings, was repeated
5 times. The performance values derived from each of the
methods with respect to a particular parameter value are
summarized in Table 2. The plots of AUC with different
parameter values are shown in figure 3. The best perform-
ance of each method was selected, namely, PRankP and
HITSP with back probability 0.3 and KSMarkov with K =
4, for Analysis of Variance (ANOVA). The p value of
0.5585 suggests that there is no significant difference
among the best performance of the three methods.

Cardiac septal defect candidate gene prioritization

Mining the "clinical synopsis" and "allelic variant sec-
tions" of NCBI's OMIM (Online Mendelian Inheritance in
Man) database [49], we extracted 166 OMIM records that
had the terms "atrial septal defect" OR "ASD" OR "ven-
tricular septal defect" OR "VSD" occurring in the text.
There were 81 genes mapping to these records (see Addi-
tional File 3 for a list of OMIM records and the corre-
sponding genes associated with cardiac septal defects).
These 81 genes were used as the training set. Mining the
human protein interactome [43] (see Methods) we
extracted the 479 immediate interactants (level 1) of these
training 81 genes (Additional File 3). We then sought to
rank or prioritize these genes using both integrative func-
tional annotation-based methods and PPIN-based meth-
ods using our ToppGene server [6]. There was an overlap
of 48 genes which were removed leaving 431 genes for
ranking. We call this as the test set for cardiac septal defect.

Among the top 20 ranked genes (Table 3), 4 genes (SRF,
SMAD1, SMAD2, SMAD3) were common to all the meth-
ods (Figure 4). Analyzing the results we observed that the
performance of both the approaches (functional annota-
tion- versus PPIN- based methods) was comparable. For
instance, among the top 20 ranked genes using functional
annotations, 15 genes were reported to be previously
associated with cardiac development or malformation
(indicated with an asterisk in the Table 3). Six (INSR,
ERBB2, NOTCH2, BMPR2, TGFBR2 and SRF) of these top
20 have been previously reported to be associated with
cardiac septal defects. In case of PPIN-based methods,
there were 14 genes previously associated with either car-
diac development or abnormalities. Of these, 3 genes
(SRF, EP300, and CREBBP) have been associated with car-
diac septal defect. The genes EP300 and CREBBP have
been ranked 11/431 and 15/431 using PPIN-based meth-
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Figure |

ROC curves from cross validations. This figure shows the representative ROC curves using PageRank with Priors with
back probability 0.01, 0.05, 0.1, 0.3 and 0.5, and HITS with Priors with back probability 0.3 and 0.5. The random curve was
derived from prioritization of the random training set using the PageRank with Prior method with back probability 0.3.

ods while the rankings were 41 and 40 respectively using
ToppGene. Interestingly, truncated CBP protein (gene
CREBBP) leads to classical Rubinstein-Taybi syndrome
phenotypes in mice characterized by atrial and ventricular
septal defects [50]. Likewise, mouse embryos lacking
p300 protein (gene EP300) show ventricular septal defects
[51]. The higher ranking of EP300 and CREBBP in PPIN-
based method is because of their direct interactions with
training set gene (CITED2). Previous studies have

reported that the paralogous genes EP300 and CREBBP
co-activate TFAP2A in the presence of CITED2 [52]. Simi-
larly, MYL7 is ranked first in PPIN-based prioritization
while it is ranked 122 in functional annotation-based pri-
oritization methods. The higher ranking in the former is
because MYL7 has only one known interactant (MYH6),
mutation of which is associated with cardiac septal defects
[53]. Another noteworthy example is BMP2, ranked 6/431
by PPIN-based method while the ToppGene rank was 32/
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Figure 2

ROC curves from cross validations. This figure shows the representative ROC curves using the K-Step Markov method
with K =1, 2, 4, and 6. The random curve was derived from prioritization of the random training set using the PageRank with

Prior method with back probability 0.3.

431. On the other hand there were examples of potential
candidate genes which the PPIN-based prioritization
methods ranked low while ToppGene ranked them
higher. For instance, ERBB2 was ranked 112/431 by PPIN-
based method while functional annotation-based gene
prioritization (ToppGene) ranked it as eight. Mice with a

ventricular-restricted deletion of Erbb2 show ventricular
septal defect (VSD) [54,55] suggesting that the human
ortholog ERBB2 could be a potential candidate gene for
VSD. Thus, while integrative functional annotation-based
methods are superior in prioritizing disease candidate
genes, PPIN-based methods certainly have their own
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Table I: AUC values from each cross validation run.
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Test Type Test ID AUC Test ID AUC Test ID AUC Test ID AUC Test ID AUC
kil [ 0.66 2 0.66 3 0.87 4 0.66 5 0.66
k2 6 0.78 7 0.78 8 0.78 9 0.78 10 0.78
k4 I 0.8 12 0.8 13 0.8 14 0.8 15 0.8
ké 16 0.8 17 0.8 18 0.8 19 0.8 20 0.8
h3 21 0.8 22 0.8 23 0.8 24 0.8 25 0.8
h5 26 0.8 27 0.8 28 0.8 29 0.8 30 0.8
pOl 36 0.73 37 0.73 38 0.73 39 0.73 40 0.73
p05 31 0.78 32 0.78 33 0.78 34 0.78 35 0.78
pl 41 0.79 42 0.79 43 0.79 44 0.79 45 0.79
p3 46 0.8 47 0.8 48 0.8 49 0.8 50 0.8
p5 51 0.8 52 0.8 53 0.8 54 0.8 55 0.8
p7 56 0.8 57 0.8 58 0.8 59 0.8 60 0.8
p9 6l 0.79 62 0.8 63 0.79 64 0.8 65 0.8

Column "Test Type" indicates the method and parameter settings of the test. p0l through p9 stand for PageRank with Priors with back probability
0.01 to 0.9, respectively; ki, k2, k4 and ké represent K-Step Markov with K = 1, 2, 4 and 6, accordingly; h3 and h5 are HITS with Priors with back
probability 0.3 and 0.5, respectively. There were |3 test conditions, each repeated 5 times.

advantages. We, therefore, hypothesize that a combined
functional annotations- and PPIN- based methods are
more effective in identifying and ranking of disease candi-
date genes. The rankings of all the test (431) genes using
different methods (PPIN-based, ToppGene and ENDEAV-
OUR) are included in the Additional Files 4 and 5. Fur-
ther, given the continued incomplete annotation coverage
of human genes (see Table 4 for a summary of functional
annotation coverage of human interactome genes and
Additional File 6 for a gene-wise breakdown of all anno-
tations and protein interactions), PPIN-based prioritiza-
tion is a viable option.

Discussion and Conclusion

Our current study, based on the observation that biologi-
cal networks share many properties with Web and social
networks, is an attempt to extend the successful graph
analysis-based algorithms from computer science research
to tackle the disease gene prioritization problem. Litera-
ture-based and manually curated protein interactions
were used to form the base network, and extended ver-
sions of the PageRank algorithm and HITS algorithm, as
well as the K-Step Markov method, were applied to prior-
itize disease candidate genes in a training-test schema. For

each prioritization, a list of known disease-related genes
was used as a training set ("seeds"), and the genes in the
test list (candidate genes) were ranked. To evaluate and
compare the performance of the methods, a large-scale
cross validation was performed. A total of 13 conditions
with three algorithms and different parameter settings
were tested, each repeated five times. Rank-based ROC
curves were plotted, and AUC values were used to quanti-
tatively measure the performance.

Based on our results, we draw the following conclusions:
First, under appropriate settings, for example, a back
probability of 0.3 for PageRank with Priors and HITS with
Priors, and walk length 6 for K-Step Markov method, the
three methods achieved the same AUC value and hence
similar performance. This suggests that based on the cur-
rent knowledge of protein-protein interaction networks,
even other similar or related methods (e.g., ranking of
nodes in an unweighted graph) under the same frame-
work might yield similar results.

Second, the value of back probability in PageRank with
Priors and HITS with Priors can be of broad range (e.g.,
0.1 to 0.9) and still result in relatively stable performance.
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Table 2: Mean and standard deviation (SD) of AUC values with |3 different cross validation conditions.

Method Parameter Mean of AUC SD of AUC
PageRank with Priors Back probability = 0.01 0.73 0.0008
PageRank with Priors Back probability = 0.05 0.78 0.0015
PageRank with Priors Back probability = 0.1 0.8 0.0013
PageRank with Priors Back probability = 0.3 0.8 0.0011
PageRank with Priors Back probability = 0.5 0.8 0.0015
PageRank with Priors Back probability = 0.7 0.8 0.0009
PageRank with Priors Back probability = 0.9 0.79 0.0007
K-Step Markov K=1 0.7 0.096
K-Step Markov K=2 0.78 0.0005
K-Step Markov K=4 0.8 0.0024
K-Step Markov K=6 0.8 0.0009
HITS with Priors Back probability = 0.3 0.8 0.0009
HITS with Priors Back probability = 0.5 0.8 0.0004

Highlighted rows correspond to the best parameter value of each method.

However, when the back probability was set to very low
(e.g., 0.01), the performance dropped significantly. This is
expected because in both the methods (see equations 3
and 4 under Methods), as the back probability reaches 0,
the bias toward the "seeds" is eliminated. PageRank/HITS
with Priors are same as the original PageRank/HITS algo-
rithm; therefore, the prioritization toward the selected
"seeds" fails. The performance of the K-Step Markov
method, on the other hand, decreased significantly when
the length of random walk K was small (e.g. K=1). Under
this condition, the K-Step Markov method calculates the
probability to spend time on each protein from the seeds
with a random walk of length 1. The proteins that are not
directly interacting with "seeds" will therefore never be
reached and scored 0. This suggests that if a true disease
candidate gene is not directly interacting with the "seeds”,
it will be ignored when K is 1. The method converged to
the best performance when K was 4. Any further increase
in the random walk length did not improve the perform-
ance. This can be attributed to the fact that the average
shortest path length in the PPIN was only about 4.5.

Third, the overall performance of candidate gene prioriti-
zations based exclusively on protein networks is compara-
ble to functional annotation-based methods [6] since they
were all tested using the same cross validation. The AUC

value of functional annotation based method, ToppGene
[6], was 0.916, and the best AUC value of network-based
methods (from the current study) was 0.801. This shows
that network-based methods are generally not as effective
as the integrated functional annotation-based methods
for disease candidate gene prioritization. For a more accu-
rate comparison, we compared PPIN-based methods to
the individual functional annotation features used in our
previous study [6]. Surprisingly, we found that network-
based methods are better than all annotations (see [6] for
details). We therefore conclude that PPINs can be a poten-
tially good feature for disease candidate gene prioritiza-
tion irrespective of whether the genes have other
functional annotations or not. Based on our findings that
in one-to-one comparison PPIN-based candidate gene
prioritization performed better than all other gene fea-
tures or annotations, we hypothesize that PPINs can be a
potentially good feature for disease candidate gene prior-
itization, especially when the genes lack all other func-
tional annotations or are sparsely annotated

Network-based prioritization methods, however, have
certain limitations. Just like functional annotation-based
methods, the performance depends on the quality of
interaction data. It is an acknowledged fact that the cur-
rent human protein interactome suffers with incomplete-
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ness and unreliability with missing interactions and false
positives. To make reliable candidate gene prioritization —
based either on functional annotations or PPINs - we
must have reasonably complete datasets that accurately
represent the interactions and annotations in the genome
and proteome. However, as the quality of these annota-
tions and interactions improves the confidence in candi-
date gene prioritization approaches based on them will
also improve. Certainly, our approach can be improved
methodology-wise in the following directions. First, the
algorithms used in our current study were originally
developed to identify "important" nodes in networks.
Although we used extended versions of these algorithms
to prioritize nodes to selected "seeds," there still could be
a bias toward hubs. Additionally, since these approaches
were designed for Web and general networks, there is def-
initely scope for additional modifications to make them
fit better with biological networks (e.g., using weighted
nodes (genes or proteins) or edges (interactions)). As
future extension, apart from considering weighted nodes
and edges, we plan to integrate our method with other
methods (e.g., combining results from functional annota-
tion-based methods and expression profiles with net-

work-based approaches). It is expected that using both
functional annotations and PPIN-based topological
parameters may better facilitate the discovery and prioriti-
zation of disease genes.

Methods

Human protein interaction datasets

The human protein interaction dataset (file "interac-
tions.gz"), a compilation of PPIs from BIND [44], BioG-
RID [45], and HPRD [46], was downloaded from NCBI
Entrez Gene FTP site [43]. All of these interactions are
derived from large-scale experiments and curated manu-
ally. For example, all interactions in BIND are experimen-
tally validated and published in at least one peer-reviewed
journal; interactions in BioGRID are entirely derived from
manual literature curation, just as in HPRD.

Prioritization methods

In the current study, the protein interaction network is
represented as an unweighted, undirected simple graph,
G, where proteins (genes) are nodes and interactions are
edges. The set of all the proteins in the network is denoted
as V and all the interactions as E. The set of known disease
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ants (Test set genes). The size of the nodes is proportional to the degree (number of edges). Panel B shows the intersection
among the top 20 ranked cardiac septal defect candidate genes using functional annotation- and PPIN- based methods. Func-

tional annotation-based prioritization was done using ToppGene server. For PPIN-based methods K-Step Markoyv, Hits with
Priors, and PageRank with Priors was used. Panel C shows the top 20 ranked cardiac septal defect genes (generated using
PPIN- and functional annotation- based methods) along with their connectivity to training set genes (based on protein-protein

interactions).

genes (also called the seeds) is denoted as R. The prioriti-
zation approaches are based on the methods of White and
Smyth [41], whose general framework, consisting of four
successive problem formulations, each building on the
next, defines the approach to ranking nodes in an
unweighted digraph G(V, E):

1. Relative importance of a node t with respect to a root node r:
Given G and r and t, where r and t are both nodes in G and
r is the root, compute the "importance" of t with respect
to r. This importance is denoted as I(t|r), a non-negative
quantity.

2. Rank of importance of a set of nodes T with respect to a root
node r: Given G and a root node r in G, rank all vertices in
T, a subset of vertices in G. For each node t in T, the value
of I(t|r) can be computed. Then the nodes can be ranked

so that the largest values correspond to the highest impor-
tance.

3. Rank of importance of a set of nodes T with respect to a set
of root nodes R: Given G and a set of root node R in G, rank
all vertices in T, a subset of vertices in G. The importance
of node t to R is defined as the average sum of importance
of t to each node in R:

I(t|R) = (1/[R])(sum(I(t|r)). (1)
4. Given G, rank all nodes: This is a special case where R =
T=V.

Based on White and Smyth's framework, the solution to
problem 3 is what is needed in this study. To recap it in
the context of disease gene prioritization, the problem is
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Table 3: Cardiac septal defect candidate gene prioritization.

http://www.biomedcentral.com/1471-2105/10/73

Rank Integrative functional annotation PPIN-based ranking PPIN-based ranking PPIN-based ranking
based ranking (using ToppGene) (K-Step Markov) (Hits with Priors) (PageRank with Priors)

| TGFBR2*# MYLT7* MYL7* MYL7*

2 EGFR* PEX19 PEX19 PEX19

3 SMAD4* NPHPI NPHPI NPHPI

4 SRF## HDACI* MAGED | MAGED |

5 FOS MAGED | BMP2* BMP2*

6 ACVRIB BMP2* HDACI* HDACI*

7 SMAD2* SRF*# IGBPI IGBPI

8 ERBB2*# IGBPI MID2 MID2

9 NOTCH2*# GRB2* SMAD3* SMAD3*

10 FN % SMAD3* SRF## SRF##

I BMPR2*# EP300%# GRB2* GRB2*

12 NID2 MID2 MYC* MYC*

13 SMAD I* MYC* HIPK2 HIPK2

14 SMAD3* SMAD2* FGF2* FGF2*

15 INSR*# CREBBP*# SMAD2* SMAD?2*

16 HIPK SMAD I* SMAD I* SMAD I*

17 RRAS HIPK2 HDAC3 HDAC3

18 RASA I* TGFBI* EP300%# EP300*#

19 MEF2C* FGF2* CREBBP*# CREBBP*#

20 RACI* AR* TGFBI* TGFBI*

The cardiac septal defect sub-network was created using known cardiac septal defect genes (from OMIM) and their immediate interactants, and
was prioritized using functional annotation and PPIN based methods. Functional annotation based prioritization was done using ToppGene server.
The PPIN based rankings were obtained using 3 methods: K step Markov, Hits with Priors, and PageRank with Priors. The highlighted genes are
those occurring in all of the prioritized top 20 genes generated using different methodologies. Note that the Hits with Priors and PageRank with
Priors gave identical results (see Additional Files 3, 4 and 5 for the list of genes and prioritization results). The genes marked with * are associated
with abnormal heart morphology (ToppGene: 15/20; K-Step Markov: 14/20; and Hits with Priors and PageRank with Priors: 13/20) while those
marked with # have been reported to be associated with cardiac septal defects (6/20 and 3/20 in ToppGene and PPIN prioritized top 20 candidate

genes for cardiac septal defects).

to prioritize a set of genes in the network based on their
importance to a set of root genes (e.g., genes known to be
associated with a disease). The importance of a gene to the
set of root genes is just the average sum of the importance
of it to each individual root gene. Although this frame-
work was proposed for directed networks, it can also be
applied to the undirected networks because the latter is

just a special case of the former. In this study, the undi-
rected protein interaction network was converted to an
equivalent directed network, when necessary.

With the problem formulation defined, the key of the
solution is to find I(t|r), the importance of node t with
respect to a root node r. For this, we use three algorithms
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Table 4: Summary of functional annotation coverage of human
interactome genes.

Interactome genes with 3 annotations (2440)

GO + MP + Pathways 2440

Interactome genes with any 2 annotations (2866)

GO + Pathways 1630

GO+MP 1232

MP + Pathways 4

Interactome genes with only | annotation (2505)

GOonly 2448

MP only 10

Pathways only 47

Interactome genes with no annotations (223) 223

Total Interactome genes 8034

About 1/3r4(2505/8034) genes of the interactome are sparsely
annotated (GO — Gene Ontology; MP — Mammalian Phenotype; and
Pathway annotations).

from White and Smyth [41]: a) PageRank with Priors, b)
HITS with Priors, and ¢) K-step Markov.

The PageRank with Priors method is an extension of the
original PageRank algorithm. The iterative stationary
probability equation is:

di, (v) )
3 o0 w0 [+ o, @)

u=1

) =(1-p)

In this equation, p, represents the "prior bias". p, = 1/|R|
for v in R, the root node set; p, = 0 otherwise. , empiri-
cally defined on [0, 1], represents a "back probability."
d;,(v) is the in-degree of v. p(v|u) is the probability of
arriving vertex v from u. With the surfing model described
earlier taken in consideration, "Prior bias" represents the
probability to start with a particular node. In this case, all
root nodes are considered equally important; therefore
prior bias is 1/|R| for all root nodes. The prior bias in case
of non-root nodes is set to 0 to eliminate the probability
of starting with a non-root node. The "back probability"
represents the probability to jump back to the root node
in each step.

The HITS with Priors is an extension of the original HITS
algorithm. The iterative equations are defined as:

http://www.biomedcentral.com/1471-2105/10/73

= - p| 3w

B O I M "
(i+1) _ oy (V) a(t)(u)
W == 30T G [

where d;,(v) and d, (V) are the in-degree and out-degree
of v, respectively, and H(®) and A() are defined as:

(i) _ 4 di (v) (i)
HO= 22 M0
; \4 Ao (v)
A — (¥
2 v=1 2 u=1 a4 (u)
For definitions of prior bias p, and "back probability"

refer to the earlier sections under PageRank with Priors.
The authority score is set as the importance of the node.

(4)

The K-Step Markov approach computes the relative prob-
ability that the system will spend time at any particular
node given that it starts in a set of roots R and ends after K
steps. According to White and Smyth [41], the value of K
controls the relative trade-off between a distribution
"biased" toward R, and when K gets larger the steady-state
distribution will converge to the PageRank result. The
equation to compute the K-Step Markov importance is:

I(t|R) = [Apg + A?py...AKpg], (5)

where A is the transition probability matrix of size n x n,
pris an n x 1 vector of initial probabilities for the root set
R, and I(t|R) is the t-th entry in this sum vector.

For additional details of the methods, the readers are
referred to the original paper by White and Smyth [41].

PPIN analysis and derivation of topological parameters
The basic network statistics and topological parameters
were derived using NetworkAnalyzer [47]. NetworkAna-
lyzer is a JAVA plug-in for Cytoscape [48], a software plat-
form for the analysis and visualization of molecular
interaction networks. The version of Cytoscape was 2.5.2
and NetworkAnalyzer was 2.5.1.

The implementation of the prioritization methods,
PageRank with Priors, HITS with Priors, and the K-Step
Markov approach are all available in the JUNG (JAVA
Universal Network/Graph) [56] framework. It is a JAVA
package that provides a common and extendible language
for the modeling, analysis, and visualization of data that
can be represented as a graph or network. Version 2.0 was
used and integrated with other in-house programs
through APIs to perform all the required functions. Fur-
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ther details of JUNG can be obtained from the web site
[56].

Evaluation of prioritization methods

Cross-validations to test the performance of the prioritiza-
tion methods were done as described earlier [6]. Briefly,
19 diseases from OMIM [57] and GAD [58] were used as
training sets. For each disease, the associated genes (with
the one under test removed) were used as "seeds" and
leave-one-out random cross-validation was performed.
Random sets of genes were used as the control training
sets. The rank-based sensitivity and specificity followed
the previous definitions. ROC curves were plotted to visu-
alize the performance with AUC values as quantitative
measures. For further details refer to our previous publica-
tion [6].

All of the three node ranking methods require pre-deter-
mined parameters. For PageRank with Priors and HITS
with Priors, the "back probability" is needed. It represents
the bias toward the seeds, and the recommended value,
according to White and Smyth [41], is 0.3. For the K-Step
Markov approach, the only parameter is the length of the
random walk, which controls the relative trade-off
between a distribution "biased" toward the "seeds" and
the steady-state distribution, which is independent of the
"seeds." As K gets bigger, the final state is moving toward
the steady state. The recommended K value was 6. In order
to evaluate the effect of different values of the parameters
on the performance, different values of parameters were
used in the cross-validations and a test of each parameter
setting was repeated five times to estimate the mean and
standard deviation. Comparison of the performance of
each of the three methods was done through analysis of
variance.

Cardiac septal defect gene network

To obtain a list of all diseases that have a phenotype car-
diac septal defect, we queried the "Clinical Synopsis" and
"Allelic Variants" sections of OMIM database with the
terms "atrial septal defect" or "ventricular septal defect" or
"ASD" or "VSD". We then downloaded the associated
genes (Training set) and their immediate interactants
(Test set) based on PPIN. The test genes were then ranked
using (a) functional annotation-based prioritization
(ToppGene server [6]); and (b) PPIN-based ranking (as
described earlier). The network view of the top 20 ranked
genes along with their interactions with the training set
genes was generated using Cytoscape (version 2.6.1) and
the plug-in "NetworkAnalyzer" [47,48].
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