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Abstract
Background: The understanding of how promoter regions regulate gene expression is
complicated and far from being fully understood. It is known that histones' regulation of DNA
compactness, DNA methylation, transcription factor binding sites and CpG islands play a role in
the transcriptional regulation of a gene. Many high-throughput techniques exist nowadays which
permit the detection of epigenetic marks and regulatory elements in the promoter regions of
thousands of genes. However, so far the subsequent analysis of such experiments (e.g. the resulting
gene lists) have been hampered by the fact that currently no tool exists for a detailed analysis of
the promoter regions.

Results: We present ContDist, a tool to statistically analyze quantitative gene and promoter
properties. The software includes approximately 200 quantitative features of gene and promoter
regions for 7 commonly studied species. In contrast to "traditionally" ontological analysis which
only works on qualitative data, all the features in the underlying annotation database are
quantitative gene and promoter properties.

Utilizing the strong focus on the promoter region of this tool, we show its usefulness in two case
studies; the first on differentially methylated promoters and the second on the fundamental
differences between housekeeping and tissue specific genes. The two case studies allow both the
confirmation of recent findings as well as revealing previously unreported biological relations.

Conclusion: ContDist is a new tool with two important properties: 1) it has a strong focus on
the promoter region which is usually disregarded by virtually all ontology tools and 2) it uses
quantitative (continuously distributed) features of the genes and its promoter regions which are
not available in any other tool. ContDist is available from http://web.bioinformatics.cicbiogune.es/
CD/ContDistribution.php

Background
Enrichment/depletion analysis of gene lists derived from
high-throughput experiments is nowadays an established
and important procedure which helps to analyze and

interpret the output of an experiment under a system biol-
ogy point of view [1]. A textbook example is the differen-
tial expression of genes under pathologic conditions like
cancer. The differential expressed genes are likely to be
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important in the development of the pathology and it is
therefore important to link them to biological knowledge
available in databases. The enrichment or depletion of
functional ontologies for these genes gives a valuable
overview on the molecular bases of the analyzed pathol-
ogy.

The first tool developed for this kind of analysis was
Onto-Express which used functional annotations from
the Gene Ontology [2]. Since then many different tools
have been developed like FatiGO+ [3], DAVID [4], the fur-
ther development of Onto-Express [5] or recently Annota-
tion-Modules [6] (see also [7] for a review and [8] for the
gene set enrichment approach for differentially expressed
genes). The goal of these methods is to detect gene/pro-
tein properties which are significantly over or underrepre-
sented in a user given input list. The exact null
distribution for this problem is the hypergeometric distri-
bution [9], and statistical tests like the Fisher exact test can
be implemented to calculate the statistical significance of
the depletion/enrichment. The dichotomous character of
these statistical tests imply directly that just qualitative
gene properties can be used as annotations, e.g. those
which can be assigned as a label like 'transcription' or
'miR-1'. However, many biologically interesting gene
properties may not be qualitative but quantitative, e.g.
continuously distributed (or discrete distribution with a
high number of different values). An important example
is the number of Protein-Protein-Interactions (PPI) in
which a gene product is involved. The number of interac-
tions can reach from 1 to hundreds in the case of hub pro-
teins. In such cases, dichotomous statistical tests (like
hypergeometric or binomial) cannot be directly applied
unless the data is transformed (for example dichotomiza-
tion into interactors and non-interactors). The discretiza-
tion of continuous data potentially removes noise but will
also suffer the loss of information and the effects of arbi-
trary classification (number of bins, equal bin frequencies
vs. equal bin width etc.). The analysis of the PPI is cur-
rently only available in FatiGO+ [3] implementing a
parameter free Kolmogorov-Smirnov test.

Apart from the mentioned Protein-Protein-Interactions,
many other important quantitative gene properties can be
conceived. Examples of continuously distributed quanti-
tative features are those related to sequence evolution
such as the Ka/Ks ratio or substitution rates, the sequence
composition like the G+C content or the codon bias.
Moreover, most of the tools for the analysis of gene lists
focus on the gene products and less attention is paid to the
promoter regions despite its importance in the regulation
of gene expression. Thus ignoring important features like
helical deformations (physical DNA properties have been
shown to determine nucleosome occupancy and are
therefore crucial in the regulation of gene expression
[10]), dinucleotides densities, base composition or the

degree of overlap with genomic elements like transposa-
ble elements or phylogenetically conserved elements [11].
Moreover, current improvements in high-throughput
techniques have a higher emphasis on the promoter
region allowing now the experimental determination of
methylation states, epigenetic marks or RNA polymerase
occupancy of thousands of promoters simultaneously.
Therefore, to further characterize the resulting genes and
its promoters (the genes and promoter which summarize
the experiment), a tool which can handle quantitative fea-
tures and with a strong focus on the promoter regions
would be of great importance.

We developed ContDist, a web based tool which analyses
and compares user provided gene lists. The novelty of the
tool is that all the available features are quantitative anno-
tations which cannot be analyzed in any existing tool. Fur-
thermore, no other tools have a strong focus on the
promoter region. Currently, the tool implements approx.
200 different annotations. Several of these annotations
are highly relevant in many studies such as Ka/Ks ratio,
physical DNA properties and base composition of pro-
moter regions, overlap with genomic elements and gene
expression. We demonstrate the usefulness and function-
ality of this tool, by means of two case studies. The first
case study, a comparison of a list of genes with unmethyl-
ated promoters with a list of differentially methylated pro-
moters, confirms some recent findings like markedly
different CG, CA and TG densities. In both case studies we
also identified new significant correlations which are
detailed in the "Results and discussion" section.

Results and discussion
Algorithm and data flow
Three different input options are available (Figure 1): i)
comparison of an input gene list to a background refer-
ence gene set (the reference set can be all genes in the
genome for which information on the analyzed annota-
tion exists, or it can be user defined); ii) comparison of
two user provided gene lists; and iii) comparison of an
input gene list to the corresponding homologous genes in
another specie (the comparison can be done with all the
other 6 species in the database). Depending on the input
different statistical tests are performed.

Annotations
The current version of the annotation database holds
information on 7 species, human (Homo sapiens), mouse
(Mus musculus), rat (Ratus norvegus), fruit fly (Drosophila
melanogaster), chimpanzee (Pan troglodites), zebrafish
(Danio rerio) and cow (Bos taurus). Depending on the spe-
cies between 180 and 220 annotations are available.
These annotations can be clustered into six different cate-
gories: i) physical properties of DNA and chromatin, ii)
base composition, iii) evolution, iv) general gene/protein
properties, v) overlap with genomic elements and vi) gene
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expression. A short summary of the available annotation
features are provided in table 1. A more detailed descrip-
tion of the annotations can be found on http://web.bioin
formatics.cicbiogune.es/CD/docCont.php#annotation.

Numerous properties are assigned in a genomic context
and therefore a classification of the gene and promoter
regions is needed. Apart from the "intrinsic" gene regions
like exons, introns and untranslated regions, several pro-
moter regions are defined which are described in [6]http:/

Outline of data flowFigure 1
Outline of data flow. ContDist is composed of three separate layers along with a MySQL database. The top layer (A) corre-
sponds to the web interface where the user input is handled, the available promoter properties are retrieved from the MySQL 
database and the information is parsed to the middle layer (B). The middle layer (B) performs all mappings, retrieves the values 
of the promoter properties to be statistically analyzed, applies the appropriate statistical tests and parses the data to the bot-
tom layer (C). The bottom layer generates a HTML-based output describing the statistical differences detected for the chosen 
annotations in the input data. Dashed arrows correspond to the communication of the layers with the MySQL database 
whereas plain arrows correspond to the dataflow between layers.

Table 1: Summery of the different quantitative features used by ContDist.

Feature group Features

Physical properties of DNA and chromatin Helical deformations, predictions of methylation state
Base composition G+C content, density of dinucleotides
Evolution SNPs from dbSNP, and Substitution rates (Ka, Ks, Knr, Knc, Ka/Ks, etc)
General gene/protein properties PPI, codon bias, gene structure
Overlap with genomic elements Repetitive elements, PhastCons, CpG islands
Gene expression Expression values form gene atlas, expression breath, maximum and average expression
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Physical DNA and chromatin properties
The positioning of the nucleosomes plays an important
role in cellular processes like the regulation of gene
expression by means of modulating the accessibility of
DNA (chromatin state) [12]. There is evidence that the
nucleosome formation and/or positioning depends on
intrinsic properties of the DNA sequence such as flexibil-
ity or natural bending of adjacent base pairs [10,13]. In
particular, the repetition of curved DNA motifs positioned
at intervals of one turn of the double helix can contribute
to DNA curvature and facilitates its wrapping around the
histone surface. Therefore the mean values for 6 helical
deformations (Twist, Tilt, Roll, Shift, Slide and Rise) were
computed in different promoter regions by using the stiff-
ness constants given in [14]. Additional features related to
DNA methylation are also implemented as it has been
described that the methylation of the 5'cythosine of CpG
dinucleotides is related to compact and inaccessible chro-
matin state [15]. Two predictions on the methylation
probabilities and epigenetic states were subsequently con-
sidered. Das et al [16] predict a methylation probability
for each single CpG in the human autosomes of the
human genome assembly hg15 (NCBI 33). The coordi-
nates were first mapped to the most recent genome assem-
bly (NCBI 36.1, hg18) using the liftOver tool from UCSC
http://genome.ucsc.edu/cgi-bin/hgLiftOver. Next, the
mean probability to remain unmethylated was computed
for the CpGs located within the promoter regions (for dif-
ferent definitions). Recently, Bock et al proposed a
method capable of predicting the "CpG island strength"
by considering the epigenetic states, histone modifica-
tions and chromatin accessibility [17]. Using this predic-
tion it was possible to assign an epigenetic score to each
promoter region containing at least one CpG island.

Base composition
The base composition category contains basically the GC-
content and dinucleotide densities in different gene and
promoter regions. The density of methylable dinucle-
otides (in mammals basically CpG) may be of special
interest as it is known that it correlates with the probabil-
ity to become methylated [18]. On the other site, dinucle-
otides like TG and CA frequently arise by methylation and
posterior mutation of CpGs and therefore the densities of
these dinucleotides may also be interesting in evolution-
ary terms.

Evolution
An interesting feature is the Ka/Ks ratio which allows the
user to detect if different selective constraints acted on the
genes in the input list [19]. The Ka/Ks ratios between dif-
ferent species were extracted out of the homologene.xml

file provided by HomoloGene http://
www.ncbi.nlm.nih.gov/sites/entrez?db=homologene.
Furthermore, several other values regarding the nucle-
otide and amino acid substitution rates were obtained
from this file.

SNPs
The SNP density in different gene and promoter regions is
also available in the annotation database for human,
mouse and rat. The SNP information was retrieved from
dbSNP126 for human and mouse and version 125 for rat.

General gene/protein properties
This category holds some miscellaneous features like the
number of Protein-Protein interactions a gene product is
involved in or the codon bias. The mortality or lethality of
specific protein mutations in Yeast have been shown to
correlate with the number of protein-protein interactions
(the centrality in protein networks) [20]. Based on this
knowledge we extracted the number of protein interac-
tions for every protein based on the information in the
Interact database http://www.ebi.ac.uk/intact/site/
index.jsf without distinguishing between the types of
interaction. This means that ContDist can be used to test
the hypothesis that proteins with many interactions corre-
late with severe phenotypes. The effective number of
codons was calculated by means of Wright's formula [21]
as explained in [6].

Overlap with genomic elements
The presence of transposable elements in untranslated
and promoter regions is believed to affect gene expression
through the donation of transcriptional regulatory signals
[22]. Therefore, the differential degree of overlap with
transposable elements between two gene lists might be an
interesting biological feature to be considered. Therefore
the coverage of different gene and promoter regions with
transposable elements and repeats was computed by
using the appropriate data from the UCSC table browser
(RepeatMasker prediction). Furthermore, particular CpG
island properties were assigned to all genes which have an
island overlapping its TSS (Transcription Start Site). In
concrete the GC-content, the observed/expected ratio, the
CpG density and the length of the islands predicted by
CpGcluster [23] were assigned.

Gene Expression
The percentage of tissues where the gene is expressed, the
mean expression over all tissues and the peak expression
rate was computed from the gene atlas for human and
mouse transcripts [24]. The expression data was down-
loaded from the UCSC table browser http://
genome.ucsc.edu/cgi-bin/hgTables?command=start. All
probes with lower expression values than 200 units [25]
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were filtered out and the remaining probes were subse-
quently averaged over different probes of the same gene.

IDs and gene lists
For human, mouse and rat the mapping concept intro-
duced in Annotation-Modules http://web.bioinformat
ics.cicbiogune.es/AM/doc.php#Mapping was reused
allowing many different identifiers as input for these spe-
cies. Given the strong focus on the promoter regions of the
genes, the available annotations have been calculated
mainly for two different gene tables, RefSeq genes [26]
and Ensembl genes [27]. For the fruit fly, FlyBase gene
tables were considered as well [28].

Homologous genes
The data from HomoloGene is used to generate the map-
ping from the input gene identifiers to genes in the other
species ftp://ftp.ncbi.nih.gov/pub/HomoloGene/current/
homologene.data. These mappings allow cross-species
mapping between all homologous gene clusters for cur-
rently 20 species. HomoloGene uses RefSeq protein iden-
tifiers (NP_, XP_) which are internally mapped to RefSeq
genomic identifiers (NM_, XM_). The cross species map-
ping option is therefore currently only available when
genomic RefSeq identifiers are given as input.

Statistical analysis
The disadvantage of many statistical tests is that they are
only applicable if the tested random variable is Gaussian.
Many of the gene or promoter properties which are stored
in the annotation database, however; are not normally
distributed. To obtain unbiased statistical tests, we imple-
mented both, non parametric tests (Kolmogorov-Smir-
nov) and randomization/bootstrap tests of the mean.
ContDist applies three different sets of statistical tests
depending on the type of user input and additionally cal-
culates basic statistical parameters estimated from the
input samples (Figure 1).

The Kolmogorov -Smirnov test can be applied in the same
way for the first two input options (corresponding to Fig-
ure 1 A:I-II and B:I-II), however; the randomization/boot-
strap tests change slightly between the different options as
explained in materials and methods. For the third option
where two lists of homologous genes are compared (Fig-
ure 1A: III) a paired t-test is used as described in detail in
the methods section.

Case studies
ContDist is a user friendly tool which dynamically gener-
ates the input pages depending on the previous steps. The
ContDist webpage contains a step-by-step tutorial
http:web.bioinformatics.cicbiogune.es/CD/tutorial
Cont.html. The input procedure is divided into three
steps: 1) choose the species from which the input data is

derived, 2) choose the gene table and the analysis type
(input list vs. reference genes, comparison of two lists and
comparison to homologous genes), and 3) select the
annotations for analysis (in theory all available annota-
tions can be run simultaneously). Figure 2 shows an out-
put page for a comparison of two input lists. The output
pages differ for the different analyses and are explained in
more detail on the tutorial page.

The main purpose of this section is to illustrate the general
functionality of the tool and its usefulness. As mentioned
above, the tool has a strong focus on the promoter
regions, and therefore many cases can be conceived in
which this tool might deliver important information. For
example, for differentially expressed genes it might pro-
vide valuable additional information for characterization
of the promoter properties of these genes. Furthermore,
this tool will help to characterize and further analyze
genes obtained by many of the emerging high-throughput
techniques (an example of such a gene list is given in the
first case study). Finally, this tool can be used to carry out
in silico research which we demonstrate by means of the
second case study; the analysis of housekeeping vs. tissue
specific genes.

Case study 1: Genes with unmethylated vs. differentially methylated 
promoter
As mentioned above, the tool has a strong focus on the
promoter regions. In the first case study we therefore used
two gene lists derived from the methylation states of the
promoter regions. For this aim we used the data from the
Human Epigenome Project (HEP) which recently released
methylation data of approx. 1.9 million CpGs over 12 tis-
sues in the chromosomes 6, 20 and 22 [29]. From this
data we obtained two gene lists: one with unmethylated
promoter regions (hypomethylated promoters) and
another one with differentially methylated promoter
regions (see "Test data sets for case study" in "Materials
and Methods").

Table 2 presents a summary of the statistical comparisons
we carried out with ContDist for these two gene lists. The
annotations in table 2 were selected since they allow not
only the confirmation of recently reported findings but
also the detection of new discoveries.

In first place we analysed the differences in GC-content
between the two gene lists in several gene regions. We
found the differences to be highly significant in the R3
region (symmetric region of 200 bp around the TSS). Pro-
moters which are generally unmethylated are by far GC-
richer than those which show differential methylation
(64.5% vs. 57%). Interestingly, this difference vanishes
when analyzing a larger upstream region R6 (TSS -1500
bp; TSS) and also the GC-content of the introns does not
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show a significant difference between the two gene lists.
This suggest firstly, that the difference in GC-content is
highly concentrated in a short region around the TSS [30]
and secondly, that these differences are not due to the
location in different isochores but real differences in the
promoter type. Furthermore, another indicator of iso-
chore membership, the GC-content in the third position
of the codons [31], seems to confirm this as it does not
show a significant difference between the two gene lists.

Recently it has been shown that strong CpG promoters
(high CG density) are mostly unmethylated even when
inactive while CpG poor promoters seem to be the prefer-
ential targets for de novo methylation in somatic cells [18].

Our results in table 2 seem to confirm this finding. The
mean CpG density in R3 promoter regions of unmethyl-
ated genes is twice as high as the corresponding density in
differentially methylated promoters (PKS < = 1.53E-09,
Prandom < 0.0001). Methylated CpGs are prone to mutate
towards TG/CA, and table 2 shows that the densities of
these dinucleotides are higher in differentially methylated
promoters. This indeed suggests higher de novo methyla-
tion and evolutionary loss of CpGs (substitutions towards
TG/CA).

Next, we analyzed the differences in DNA properties like
bending and curvature (helical deformations) which to
our knowledge have not been analyzed in this context.

Graphical display of a typical outcome for the comparison of two gene listsFigure 2
Graphical display of a typical outcome for the comparison of two gene lists. The head of the page shows a short 
summary of the analysis (analysis type, Job ID, input data, data sizes etc.). After the header, an output box is given for each 
annotation. Each box consists of three different tables: summary, basic statistics of the input and statistical tests. The summary 
table provides the number of genes for which the chosen annotation exists (effective sizes) and the annotated input data for 
download. It can be seen that 248 out of 252 and 37 out of 39 genes could be found in the database (differences between orig-
inal and effective input size). The basic statistic table gives a rough overview on the input data and displays parameters such as 
means, medians and standard deviation apart of a graphical visualization so that the user can rapidly gain insight on the distribu-
tion of the quantitative feature annotated to the input genes. Finally, the last table resumes the statistical tests. In the case of 
comparing two input lists, two tests are carried out: the Kolmogorov-Smirnov test and a randomization test of the means (see 
"Randomization/bootstrap statistical tests" in "Materials and Methods"). For both tests, apart from the p-values, the most 
important values (maximal difference, observed distance between means etc.) and a graphical representation are given.
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Table 2 shows that a large difference exists in the Twist
(rotation around the center line of DNA helix). This
means that differentially methylated promoters are signif-
icantly stiffer than unmethylated promoters under this
rotation. On the contrary, another rotational deforma-
tion, Tilt, does not show a significant difference between
the two methylation gene lists. This is interesting as it
means that a difference in GC-content does not necessar-
ily implies a difference in the mean DNA properties.

Two predictions on methylation probabilities and chro-
matin states were also analyzed. The mean probability to
remain unmethylated is 0.66 in the unmethylated gene
list while it is just half as much, 0.32 in the differentially
methylated promoters. The epigenetic scores given by
Bock et al. [17] can range from 0 to 1: 0 indicates com-
pletely silenced and inaccessible regions and 1 means
completely unmethylated and highly accessible regions.
Table 2 shows additionally that the epigenetic score indi-
cate also less methylation and a more open chromatin
structure for the unmethylated promoters.

Another interesting outcome is related to the conservation
of the genes. The results indicate that the genes with
unmethylated promoters are more conserved (the coding
region) than genes with differentially methylated promot-

ers. This applies to both the substitution probability per
base and amino acids and it is also reflected in the Ka/Ks
ratios. Values near 0 indicate strong negative selection
while values higher than one might point out positive
selection [19]. The mean Ka/Ks ratio of unmethylated pro-
moters (0.107) is just half as high as in the case of differ-
entially methylated promoters (0.200).

Finally, we found that neither the peak expression (value
for the tissue with the highest expression) nor the mean
expression (mean expression over all tissues) show signif-
icant differences between the two gene lists. However, the
expression breadth (% of tissues where the gene is
expressed) shows a significant difference (66% in
unmethylated genes vs. 51.3% in differentially methyl-
ated genes). It is known that approx. 60% of all genes pos-
ses a CpG island overlapping its TSS and that CpG islands
are higher correlated with housekeeping genes than with
tissue specific genes [32]. Given the higher CpG density
observed in unmethylated promoters, it can be assumed
that they are also more correlated to CpG islands. How-
ever, a higher correlation towards CpG islands implies
also a higher correlation to housekeeping genes, what in
turn can explain the higher observed expression breath in
unmethylated genes.

Table 2: A summary of the comparison of unmethylated and differentially methylated promoters.

UnM Differentially M

Feature Mean Median Mean Median p-valueKS p-valueRand

G+C in R3 64.50 64.34 57.07 57.11 2.13E-05 1.00E-04
G+C in R6 50.04 49.87 49.02 47.87 4.70E-01 0.3731
G+C in introns 47.31 47.3 49.55 49.58 6.35E-01 0.1699
G+C in 3' UTR 45.8 46.29 47.17 48.47 5.67E-01 0.4603
G+C in 3 position 60.91 63.42 64.37 69.08 3.10E-01 0.2065
CA density in R3 0.0523 0.05 0.06493 0.065 3.37E-05 1.00E-04
CG density in R3 0.08597 0.085 0.04297 0.0375 1.53E-09 1.00E-04
TG density in R3 0.06039 0.06 0.07723 0.0775 3.31E-06 1.00E-04
Twist in R3 0.02515 0.02518 0.02564 0.0257 4.91E-10 1.00E-04
Tilt in R3 0.03556 0.03556 0.03546 0.03548 3.29E-01 0.1409
Rise in R3 7.82035 7.82304 7.79215 7.79555 2.79E-07 1.00E-04
Roll in R3 0.01984 0.01984 0.01979 0.01979 3.19E-04 1.00E-04
Shift in R3 1.31184 1.31192 1.32067 1.32122 3.08E-03 0.0004
Slide in R3 2.09794 2.09697 2.11725 2.1185 1.16E-02 0.0014
Bock-comb in R1 0.59871 0.5875 0.43191 0.415 5.67E-05 1.00E-04
unMeth prob in R3 0.65596 0.79195 0.3217 0.20742 4.26E-08 1.00E-04
Ka/Ks hsa/mmu 0.10729 0.08677 0.20001 0.15901 8.09E-04 0.0003
nucC hsa/mmu 0.14416 0.13743 0.21186 0.19773 1.68E-05 1.00E-04
protC hsa/mmu 0.11891 0.09942 0.24044 0.22569 4.63E-05 1.00E-04
Nc 48.29 49.26 47.03 47.82 6.38E-01 0.3138
peakExpression 3727 1392 2966 1403 6.77E-01 0.6982
Expression Breadth 66.00 81.65 51.30 50.63 4.07E-02 0.0234

Significant differences are highlighted in bold. "R" is used to specify different promoter regions: R1 is the Transcription Start Site (TSS), R3 [TSS -200 
bp; TSS + 200 bp] and R6 [TSS -1500 bp; TSS]. G+C stands for the GC-content, Bock-comb is the combinatorial score (see http://epigraph.mpi-
inf.mpg.de/download/CpG_islands_revisited/) of Bock CpG islands overlapping the TSS (R1 regions) and "unMeth prob in R3" is the mean 
probability of the R3 region to remain unmethylated. nucC and protC are the substitution probabilities per base/amino acid (hsa/mmu indicates that 
the values are based on pair wise alignments between human and mouse) and Nc is the codon bias. M is the abbreviation of "methylated".
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Case study 2: Housekeeping (HK) vs. tissue specific genes (TS)
The lists of housekeeping and tissue specific genes where
derived from the expression data described above in the
section 'Gene Expression'. We considered a gene as house-
keeping if it is expressed in all 79 tissues (including path-
ologic tissues). On the other hand, we define the tissue
specific genes to have an expression breadth lower than
10% (e.g. expressed in less than 8 tissues).

The differences between housekeeping and tissue specific
genes have been intensively studied over the last years (for
a recent update, see [33] and references therein). The
understanding of the differences between these two
groups regarding its genomic structure, evolutionary rate
and transcriptional regulation is fundamental to under-
stand transcriptomics in general. We have chosen this
example to demonstrate that the presented tool can also
be used to carry out in silico research.

Several well established differences do exist between HK
and TS genes, like the higher expression rates, the high
association of HK genes with CpG islands and the higher
conservation of the coding region in HK genes. In table 3
we confirm these well established differences between
these two groups, showing in this way that by means of
the presented tool many fundamental gene properties can
be analyzed and compared in an easy and quick way. No
consensus does exist on the lengths of the coding regions
and mRNAs. The results shown in table 3 coincide with
studies based on microarray expression data (like the
input data used in this case study) showing that TS genes
seem to have slightly longer CDS than HK genes. Finally
we also analyzed the differences in the number of protein-
protein interactions. We found a significant difference

between the two gene groups showing the HK genes have
more PPI than the TS genes, a result which to our knowl-
edge has not been reported before.

Conclusion
We present ContDist, a tool which can analyze and com-
pare continuously distributed gene and promoter proper-
ties. Thus, the novelty of our tool resides in its strong focus
on the promoter regions, which have been widely disre-
garded so far by others, and the fact that ContDist uses
quantitative features instead of labelled annotations (like
in "traditionally" ontological analyses). Currently, the
annotation database holds around 200 different gene and
promoter features for each of the 7 species which are cur-
rently available. It implements 3 different analysis
options: comparison of two input gene lists, a gene list vs.
a reference list and the comparison of an input list with its
corresponding homologous genes. For each of the analy-
sis types, the appropriate statistical tests are implemented
like the Kolmogorov-Smirnov test, randomization tests of
the mean or paired t-test. The output displays in a concise
way the statistical significances, graphical representation
of both the annotated input data and the statistical tests
and a basic statistics of the input data. Moreover, it also
provides the annotated gene lists for download. There-
fore, this tool can also be used for annotation purposes.

We showed the usefulness of the tool by means of two
case studies. In the first one, we compared genes with
unmethylated to those with differentially methylated pro-
moters and in the second one we analysed the fundamen-
tal differences between housekeeping and tissue specific
genes. The latter also demonstrates the usefulness of this
tool in fundamental in silico studies. In both case studies

Table 3: Basic differences between housekeeping and tissue specific genes.

housekeeping tissue specific
Feature Mean median mean median ratio p-valueKS p-valueRand

CG density in R3 0.086 0.088 0.064 0.060 0.416 7.16E-80 0.0001
G+C in R2 65.6 66.7 61.8 62.7 0.085 1.83E-27 0.0001
G+C in R3 64.6 65.6 60.9 62.3 0.086 1.06E-25 0.0001
G+C in R4 58.7 58.8 56.3 56.9 0.061 1.66E-17 0.0001
G+C in R6 51.7 51.3 50.6 50.4 0.033 1.31E-17 0.0001
G+C in Intron 46.6 45.6 47.1 45.8 -0.016 5.22E-06 0.0514
Ka/Ks (hsa/mmu) 0.100 0.074 0.151 0.125 -0.594 8.25E-35 0.0001
Subst. per aa
(hsa/mmu)

0.107 0.082 0.171 0.147 -0.675 2.76E-47 0.0001

PPI 7.9 3.0 4.8 2.0 0.728 7.28E-10 0.0004
mean Expr. 2264.1 1137.7 933.4 287.3 1.278 0.00E+00 0.0001
peak Expr. 9716.4 3660.3 2229.0 357.8 2.124 0.00E+00 0.0001
CDS length 1532.6 1170.0 1703.0 1335.0 -0.152 2.34E-10 0.0001
mRNA length 2900.4 2439.5 2964.7 2427.0 -0.032 9.48E-01 0.2685

The tool permits to confirm quickly some known aspects like the difference in expression levels, association to CpG islands and higher 
conservation of HK genes. The tool also detects that HK genes products have on average more interaction partners, a finding which to our 
knowledge has not been reported so far.
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we could quickly confirm some recent findings like the
increased probability of de-novo methylation for less CpG-
dens promoters [18] or the higher expression levels of HG
genes. However, we also demonstrated that ContDist can
reveal new insight to biology function. We reported strik-
ing differences in the mean stiffness of different helical
deformations of DNA between unmethylated and differ-
entially methylated promoters. It turned out that the rota-
tion around the center line of the DNA helix (Twist) is
much stiffer in differentially methylated promoters. On
the contrary, no significant difference could be found for
another rotational deformation (Tilt) which shows that
base composition cannot account for the differences
found for Twist. Finally, the tool also revealed that genes
with unmethylated promoters are much more conserved
than genes with differentially methylated promoters and
a significant difference in the number of protein-protein
interactions between housekeeping and tissue specific
genes.

Methods
Software implementation
The ContDist user interface was written in php which
allows the dynamic generation of the HTML input pages
depending on previously provided parameters. For exam-
ple, the chosen specie will affect the later options availa-
ble. The core algorithms of ContDist are implemented in
Java. The Java algorithms communicate with the MySQL
database and perform the appropriate statistical tests.
ContDist interfaces also to GNU plot to generate histo-
grams, cumulative fraction plots, and other statistical
plots.

Randomization/bootstrap statistical tests
Randomization/bootstrap statistical tests are applied
when comparing an input list to a reference gene list and/
or comparing two independent gene lists. However, the
test is carried out in a different way depending on which
of the two user-given input options is selected. Note that
the first test can be compared to a one sample t-test (null
hypothesis: the input gene list is randomly extracted from
the reference genes) while the second randomization test
would correspond to a two sample t-test (null hypothesis:
the genes are randomly assigned to the lists).

1. In the first case where an input list is compared against
a reference gene list, the input list is a subset of the refer-
ence genes (for the analysis the input genes are not
removed from the reference genes). To establish if the
mean value of the input list is significantly different to the
mean value of the reference genes, a sampling distribution
of the reference set is generated. 10000 random lists are
sampled out from the reference with the same size as the
input list and the mean value is calculated for each ran-

dom sample. The resulting distribution of randomly gen-
erated mean values (sampling distribution) will be
normally distributed if the input gene list is sufficiently
large. The standard z-score can now be calculated as:

 where μ is the mean of the population (rand-

omizations) and σ the standard deviation of all random
runs. x is the value to be standardized. The z-score is the
number of standard deviations an observed value is away
from the population mean (the mean value of all rand-
omizations). The corresponding p-value can be calculated
easily. First, the p-value for a one-sided test is calculated
by means of the cumulative density function of the Gaus-
sian distribution as 1-CDFx (x denotes the value of the z-

score). Finally, applying the doubling approach (multi-
plying by 2) we obtain the p-value for a two-tailed test.

In addition, a bootstrap p-value is calculated by counting
the number of times the random mean is smaller or
higher than the observed mean (mean of the input list).
Then we define the bootstrap p-value as:

with

and Nlower = N - Nhigher being N the number of randomiza-
tions.

2. For the case where two independent gene lists are com-
pared, a randomization test of the means [34] is per-
formed in order to establish if the quantitative values in
the two input lists are significantly different. First, the dif-
ference between the means of the two lists is calculated
which we will refer to as the observed distance. The values
are then randomly reassigned 10000 times to the two lists
maintaining the original sizes of the lists. For each ran-
dom run the difference between the two random lists are
calculated. This gives a (re)-sampling distribution of the
differences. The p-value of the randomization test can
now be calculated as:

Nhigher is the number of random differences which are
higher or equal to the observed difference. The null
hypothesis is that the two lists are equal which means that
a two-tailed p-value is needed. This is achieved by using

z x= −m
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the absolute in the Kronecker delta function xi > = |x| (in
equation 2)

Paired t-test statistical test
For the case where two lists of homologous genes are com-
pared the values of both lists are correlated (e.g. the two
values of a particular pair of homologous genes corre-
spond to the same gene in different species) and subse-
quently the gene lists are considered dependent. This fact
should be taken into account when performing a statisti-
cal test. Therefore, in order to test if the two distributions
have equal means, a paired t-test is required. This test can
be applied if the distribution of the differences between
the two lists is Gaussian. ContDist plot the distribution of
differences, so that the user can easily check if this crite-
rion holds.

Test data sets for case study
The methylation data from the HEP home page http://
www.epigenome.org/ was downloaded and used as test
case for ContDist. Currently, methylation data exists for
12 tissues in 3 chromosomes (6, 20 and 22). All valid
CpGs, together with the information on methylation val-
ues and the tissue is mapped to the promoter region of all
genes comprised by TSS -200 bp to TSS + 200 bp. In the
next step the mean percentage of promoter methylation is
calculated for every promoter region and for all tissues
(the methylation values reach from 0, e.g. unmethylated,
to 100 corresponding to fully methylated). We just con-
sider promoters with at least 4 CpGs mapped in 4 differ-
ent tissues. We define a promoter as unmethylated if the
mean methylation is smaller than 20 in all tissues (a sim-
ilar definition can be found in [29]). Consequently, we
consider a promoter as methylated if the mean methyla-
tion is higher than 80 in all tissues. Promoters with inter-
mediate methylation (>20 and <80) were not considered.
Finally, we define a promoter as differentially methylated
if it is in at least one tissue methylated and in one tissue
unmethylated. In the RefSeq gene table, many transcripts
of splice variants are annotated which start at the same
position and this may lead to duplicated promoters in the
analysis. Therefore, we filtered out redundant promoters
for this specific test case by means of grouping the genes
by their TSS maintaining finally just one gene of each TSS
group (filtering duplicated promoters). This procedure
yields a data set consisting of 252 unmethylated and 39
differentially methylated promoters.

Availability and requirements
The web tool is available under http://web.bioinformat
ics.cicbiogune.es/CD/ContDistribution.php. It can be
freely accessed and no login is required.
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