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Abstract
Background: New rapid high-throughput sequencing technologies have sparked the creation of a
new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their
output, short-read assemblers must be designed to account for this error while utilizing all available
data.

Results: We have designed and implemented an assembler, Quality-value guided Short Read
Assembler, created to take advantage of quality-value scores as a further method of dealing with
error. Compared to previous published algorithms, our assembler shows significant improvements
not only in speed but also in output quality.

Conclusion: QSRA generally produced the highest genomic coverage, while being faster than
VCAKE. QSRA is extremely competitive in its longest contig and N50/N80 contig lengths,
producing results of similar quality to those of EDENA and VELVET. QSRA provides a step closer
to the goal of de novo assembly of complex genomes, improving upon the original VCAKE
algorithm by not only drastically reducing runtimes but also increasing the viability of the assembly
algorithm through further error handling capabilities.

Background
Recently the prevalence of high-throughput sequencing
technologies has prompted the emergence of a new class
of de novo sequence assembler. This new class of assembler
is specialized to deal with the short, non-perfect reads pro-
duced by modern high-throughput sequencers such as
those produced by the Illumina and Applied Biosystems
SOLiD platforms and includes applications such as SSAKE
[1], Velvet [2], EDENA [3], SHARCGS [4], VCAKE [5],
ALLPATHS [6], and Euler-SR [7].

Current short-read assemblers all provide the means of
stitching together small fragments of DNA sequences to

form longer contigs. Common to all short-read assem-
blers is the concept of bridging overlapping DNA frag-
ments, best expressed by De Bruijn graphs [8]. While all
short-read assemblers share this foundation, algorithms
differ from assembler to assembler, resulting in significant
runtime and output differences.

High-throughput sequencing technologies produce non-
negligible error rates in their sequenced output. As such,
de novo assemblers should be designed to minimize the
incorporation of errors during contig extension to ensure
that their output is of the highest possible quality. While
assemblers unable to account for error may be able to
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assemble error-free reads, such assemblers fail when
working with real-world, non-perfect data.

Our algorithm, QSRA (Quality-value-guided Short Read
Assembler), builds directly upon the VCAKE algorithm.
Implemented in C++, we show that QSRA not only pro-
vides for much faster assembly than VCAKE, but through
the use of quality-values QSRA can continue contig exten-
sion where VCAKE cannot, resulting in longer average
contig lengths. We have also implemented the option to
output suspected repeated regions to a separate file, aiding
in repeat-related analysis.

Implementation
Material
Illumina data generated by shotgun sequencing of the
Pinus pinaster (pina) and Pinus gerardiana (gera03) chloro-
plast genomes were used for test assemblies [9]. Pina data
consisted of 57,586,419 bases with a reference genome of
120,229 bases, resulting in an average coverage depth of
479×. Gera03 data consisted of 44,111,925 bases with a
reference genome of 117,306 bases, resulting in an aver-
age coverage depth of 376×, with both data sets having an
input read length of 33 bp.

One lane of sequence data from the Illumina 1 G Genome
Analyzer, generated by shotgun sequencing of the Strepto-
coccus suis (suisp) bacterial genome, was also used for test
assembly. Produced by the S. suis Sequencing Group at the
Sanger Institute, this Illumina data [10] consisted of
98,149,464 bases with the reference genome [11] contain-
ing 2,007,491 bases, resulting in an average coverage
depth of 49×. Read length in this case was 36 bp.

Genome coverage estimates were obtained by alignment
of the contigs output by the assemblers against the respec-
tive reference genome [9,11] using BLAT [12]. BLAT out-
put was analyzed by comparing the total number of bases
in the reference genome with the number of genomic
bases uniquely "hit" by assembled contigs. Thus, any con-
tig which BLAT, using the default value of 90% identity,
could not match to the appropriate reference genome did
not contribute to coverage calculations.

Algorithm
Figure 1 outlines the basic QSRA algorithm, with details
described here. QSRA begins its assembly process in a
manner identical to SSAKE by creating a hash table and
prefix tree. The hash table stores key-value pairs where the
keys are formed by the actual DNA sequence and the val-
ues are the number of occurrences of that sequence. The
prefix tree contains the unassembled reads as well as their
reverse complements, all indexed by their first 11 bases.
These data structures hold the unassembled input reads,
provided by the user, referred to as <R> and <Q> in Figure

1. Then, like VCAKE, QSRA finds all n of the k-mer reads
which exactly match the 3' end of the seed (now the grow-
ing contig) down to a minimum number of matching
bases, u, which is a user-defined parameter. QSRA finds
these matching reads by searching the prefix-tree data
structure. Each matching read found is stored in a linked
list along with the number of times each it and its reverse
complement occurred in the set of input reads, as well as
the number of bases in the read which match to the grow-
ing contig. This last measure indicates the position at
which bases cease to overlap the growing contig in each
matching read and is updated each time the growing con-
tig is extended.

After all exact-matching reads, according to the above cri-
teria, have been added to the linked list, QSRA computes
the total number of matches, accounting for duplicated
reads such that each copy of a read counts as matching. If
this number is less than a user-defined value t, QSRA pro-
ceeds to find all matching reads down to a lower user-
defined limit l. If, after this step, t matches are still not
found, QSRA finds all matching reads down to an overlap
of only 11 bases, lines 8–15 in Figure 1.

At this point our algorithm makes its first major departure
from VCAKE with one additional and important exten-
sion condition. If t matching sequences are still not found,
and the quality-values (q-values) option is not being used
in the current assembly, then extension on that side of the
growing contig is halted. However, if q-values are being
used in the current assembly, QSRA will extend the grow-
ing contig even if t matches are still not found, as long as
a minimum user-defined q-value score, m is met or
exceeded at the current over-hanging base position, lines
19–20 in Figure 1. This allows for extension of contigs in
some cases far beyond the VCAKE algorithm.

Next the sequences populating the linked list are consid-
ered. Each read represented in the linked list casts a
number of votes equal to its multiplicity for which base
should be added to the end of the growing contig. The
base with the highest number of votes is then added to the
3' end of the growing contig, as long as the base garners a
user-defined minimum percentage, c, of the vote. If the
winning base does not hold c percentage of the vote, or if
the number of votes exceeds a user-defined maximum, x,
extension is terminated for that side of the growing contig
due to assumed sequence repeats. With QSRA sequence
repeats can be further analyzed if desired. When a contig's
extension is aborted due to a sequence repeat condition
and the user has enabled the printing of repeated regions,
r, the suspected repeated region is output to a separate
multi-FASTA format file. All reads that cast a vote at least
once are removed from the hash-table and prefix-tree data
structures.
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The growing contig is extended in this way one base at a
time until some condition causes the extension to halt.
Extension is then performed on the reverse comple-
mented growing contig in the same manner. When exten-
sion is halted on the reverse complemented growing
strand, the resulting contig is output to a file in multi-
FASTA format and a new seed is selected. This process con-
tinues until there are no more reads in the hash-table and
prefix-tree.

Results
All tests were conducted on a 3.0 GHz Xeon Linux
machine with 32 GB of RAM. We ran five tests for each of
our three datasets, including SSAKE, VCAKE, VELVET,
EDENA, QSRA without q-values, and QSRA with q-values,
with results shown in Table 1. In all cases the minimum
contig length considered in analysis was 1 + read length,
with each application set to output contigs of at least this
length. In this way singletons were not included in analy-
sis, and all applications were tested on the same basis.

QSRA AlgorithmFigure 1
QSRA Algorithm. The basic QSRA algorithm, using default values for user-defined parameters. As illustrated, each iteration 
of contig extension (line 22) is contingent on there existing sufficiently many matching reads, <Voters>, from the input set, 
<R>. Population of <Voters> is accomplished through a series of weakening conditions. Further algorithmic details are pro-
vided in the text.
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Table 1: Results of assemblies of actual Illumina sequencing data on 3.0 GHz Xeon processor with 32 GB memory.

Organism Error 
rate (%)

Depth Program Program 
version

Program 
release 
date

Maximum 
RAM used 
(GB)

Run 
time (s)

Genome 
covered (%)

Largest 
contig 
(bp)

N50 
(bp)

N80 
(bp)

Number 
of 
Contigs

Runtime 
options

pina 5.33 479 SSAKE 3.2 2008 0.91 3463 79.8 3051 241 N/A 24686 -m 16
pina 5.33 479 VCAKE 1.0 05/2007 0.74 8400 68.1 1721 101 N/A 188778 -k 33 -o 34
pina 5.33 479 VELVET 0.6.04 03/2008 0.36 74 58.5 3076 285 N/A 464 -min_contig_

lgth 34
pina 5.33 479 EDENA 2.1.1 2008 0.24 210 77.8 3329 400 N/A 3377 -c 34
pina 5.33 479 QSRA 06032008 06/2008 0.84 1553 93.1 1046 94 86 32473 -k 33 -o 34
pina 5.33 479 QSRA* 06032008 06/2008 0.91 1301 99.3 1771 85 85 83004 -k 33 -o 34

gera03 5.18 376 SSAKE 3.2 2008 0.78 1936 85.1 3613 347 42 18093 -m 16
gera03 5.18 376 VCAKE 1.0 05/2007 0.64 3114 82.6 1964 157 96 175451 -k 33 -o 34
gera03 5.18 376 VELVET 0.6.04 03/2008 0.32 55 60.2 4296 386 N/A 311 -min_contig_

lgth 34
gera03 5.18 376 EDENA 2.1.1 2008 0.16 98 88.9 3285 535 41 1977 -c 34
gera03 5.18 376 QSRA 06032008 06/2008 0.69 733 99.1 3012 71 71 21132 -k 33 -o 34
gera03 5.18 376 QSRA* 06032008 06/2008 0.75 641 99.0 3012 569 167 60584 -k 33 -o 34

suisp 2.26 49 SSAKE 3.2 2008 2.21 5941 95.8 6475 1036 355 15632 -m 16
suisp 2.26 49 VCAKE 1.0 05/2007 1.66 7202 99.0 11894 1577 718 487006 -k 36, -o 37
suisp 2.26 49 VELVET 0.6.04 03/2008 0.74 144 96.4 18690 4401 1992 1185 -min_contig_

lgth 37
suisp 2.26 49 EDENA 2.1.1 2008 0.48 357 97.3 8829 1836 759 3254 -c 37
suisp 2.26 49 QSRA 06032008 06/2008 1.89 3329 96.9 11934 2432 259 18834 -k 36 -o 37
suisp 2.26 49 QSRA* 06032008 06/2008 2.18 3628 98.5 11934 2370 259 168464 -k 36 -o 37

Five tests were run for each of three data sets, including SSAKE, VCAKE, VELVET, EDENA, QSRA without q-values, specified simply as QSRA in Table 1, and QSRA with q-values, 
specified as QSRA* in Table 1. In addition to the runtime options listed for VELVET, each VELVET run used a tile size of 19 and a coverage cutoff of 5. Only contigs were used, 
discarding unextended singletons, in the calculation of coverage, N50, and N80 values. Coverage values were determined though analysis of BLAT output by comparing the total 
number of bases in the reference genome with the number of bases uniquely "hit" by the BLAT alignments with assembled contigs. Thus, any contig which BLAT, using the default 
value of 90% identity, could not match to its reference genome did not contribute to coverage calculations. N50 and N80 values are equal to the largest contig in the output such 
that it and all contigs of greater length accounted for 50%/80% of total genome coverage. For S. suis, 43.8% of the 36 mer Illumina reads in the data set matched perfectly to the 
reference genome, which corresponds to an estimated average error rate per sequence base of 2.26%.
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For assembly of the pina Illumina reads we see that assem-
bly with QSRA, both with and without q-values, resulted
in a drastically shorter running times than VCAKE, at
1,301s and 1,553s respectively, compared to VCAKE's
8,400s. Assembly with QSRA yielded the highest genomic
coverage as well, at 99.3% and 93.1% with and without q-
values respectively. While EDENA and VELVET yielded the
longest individual contigs at 3,329 bp and 3,076 bp,
QSRA yielded the next longest contigs at 1,771 bp with q-
values and 1,046 bp without q-values.

On the gera03 Illumina reads, QSRA again finished far
more quickly than VCAKE at 641s and 733s as compared
to VCAKE's 3,114s. Again assembly with QSRA maintains
the highest genomic coverage at 99.0% and 99.1%,
although in this case VELVET yielded the longest single
contig at 3,706 bp, compared to QSRA with its longest
contig at 3012 bp.

For the S. suisp data set all applications tested performed
very well in overall coverage. VELVET yielded the longest
single contig at 18,690 bp followed by QSRA's 11,934 bp.
QSRA finished in roughly half the time as VCAKE, yield-
ing N50 lengths second only to VELVET.

Conclusion
For our tests, EDENA and VELVET generally yielded the
longest contigs while QSRA generally produced the high-
est genomic coverage. QSRA was much faster than VCAKE
while implementing the use of q-values, while providing
the option to output suspected repeated regions. QSRA is
extremely competitive in its longest contig and N50/N80
contig lengths output, producing results of similar quality
to those of EDENA and VELVET, while finishing in far less
time than VCAKE.

Assemblers such as EDENA and VELVET summarize their
input reads by constructing a graph which is then proc-
essed and traversed in a second step to generate contigs.
This processing results in some information loss as input
reads are not considered individually as they are in assem-
blers such as SSAKE, VCAKE, and QSRA. This algorithmic
difference is responsible for the trade-off observed here
whereby EDENA and VELVET output generally longer but
fewer contigs and have lower overall genomic coverage,
while SSAKE, VCAKE, and QSRA output generally a higher
number of shorter contigs that, in the case of QSRA, result
in a higher overall genomic overage.

QSRA provides a step closer to the goal of de novo assem-
bly of complex genomes, improving upon the original
VCAKE algorithm by not only drastically reducing runt-
imes but also by increasing the viability of the assembly
algorithm by addition of further error handling capabili-
ties.

Availability and requirements
• Project name: QSRA – Quality-value guided short read
assembler

• Project home page: http://qsra.cgrb.oregonstate.edu

• Operating system: UNIX

• Programming language: C++

• Other requirements: None

• License: Free for educational and public use

• Any restrictions to use by non-academics: Must obtain
permission from author for non-academic/non-public
use

Abbreviations
The following abbreviations have been used: RAM: Ran-
dom Access Memory; GB: Gigabyte; GHz: Gigahertz.
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