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Abstract

Background: Parsimony methods are widely used in molecular evolution to estimate the most
plausible phylogeny for a set of characters. Sankoff parsimony determines the minimum number of
changes required in a given phylogeny when a cost is associated to transitions between character
states. Although optimizations exist to reduce the computations in the number of taxa, the original
algorithm takes time O(n2) in the number of states, making it impractical for large values of n.

Results: In this study we introduce an optimization of Sankoff parsimony for the reconstruction
of ancestral states when ultrametric or additive cost matrices are used. We analyzed its
performance for randomly generated matrices, Jukes-Cantor and Kimura's two-parameter models
of DNA evolution, and in the reconstruction of elongation factor-1a and ancestral metabolic states
of a group of eukaryotes, showing that in all cases the execution time is significantly less than with
the original implementation.

Conclusion: The algorithms here presented provide a fast computation of Sankoff parsimony for
a given phylogeny. Problems where the number of states is large, such as reconstruction of
ancestral metabolism, are particularly adequate for this optimization. Since we are reducing the
computations required to calculate the parsimony cost of a single tree, our method can be
combined with optimizations in the number of taxa that aim at finding the most parsimonious tree.

Background
Reconstruction of ancestral states aims at discovering the
conformation of past proteins, genes or whole genomes
from extant species data. This approach has been
successfully utilized to reconstruct ancestral steroid
receptors [1], mitochondrial DNA [2], antiviral RNase
[3], or fluorescent proteins [4]. In a similar fashion,
several studies have hypothesized on the evolution of
hormone-receptor complexes [5], composition of ances-
tral genomes [6], thermostability of extinct proteins [7],
properties of ancestral promoters [8], expansion of
human segmental duplications [9], or ancestral codon
usage [10].

Parsimony, maximum likel ihood or bayesian
approaches are commonly utilized to infer ancestral
states. Parsimony was originally introduced by Edwards
and Cavalli-Sforza [11], but its application to reconstruct
ancestral characters was first described by Fitch [12].
Sankoff later proposed a modification to take into
account different rates of change between states [13,
14]. The popularity of likelihood methods in phyloge-
netics is mostly due to the optimization proposed by
Felsenstein [15]. Yang described its application to infer
ancestral sequences [16]. Bayesian approaches have also
gained favor thanks to their combined used with Markov
Chain Monte Carlo (MCMC) methods. Huelsenbeck and

Page 1 of 10
(page number not for citation purposes)

BioMed Central

Open Access

http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Bollback have proposed an algorithm for bayesian
ancestral reconstruction [17].

Each of these approaches has advantages and weak-
nesses, and it is passionately debated which of them is
more accurate. Parsimony is known for being biased
when the rate of change per branch is high and tends to
reconstruct the wrong tree due to long branch attraction
[18], while likelihood does not suffer from these
problems [19, 20]. On the other hand, when the
characters under study evolve at non-uniform rates
over time, maximum likelihood and bayesian methods
have been shown to be inconsistent and perform worse
than parsimomy [21].

Regardless of the preferred method, the computational
complexity of ancestral reconstruction algorithms is high
and optimizations are required to work with large
number of sequences. In the particular case of parsi-
mony, an algorithm to reduce the the number of
computations has been previously proposed [22].
Goloboff has introduced diverse optimization strategies
[23, 24], and Ronquist [25] has further improved some
of the previous works. All these optimizations aim at
reducing the calculations in the number of taxa when
looking for the most parsimonious tree, that is, when
looking for the tree in the search space that minimizes
the number of changes. Nevertheless, no correct optimi-
zation in the number of states of the weighted
parsimony algorithm proposed by Sankoff is known.
Wheeler and Nixon proposed an optimization [26] later
proved incorrect by Swofford and Siddall [27].

In this paper, we present a two-fold optimization of
Sankoff parsimony. Our algorithm reduces the number
of operations in the number of states needed to calculate
the parsimony cost of a given phylogeny, as well as the
time required to reconstruct the ancestral states. This
optimization can be utilized when the cost matrix for
transitions between character states is either ultrametric
or additive, and it reduces the original O(n2) operations
required with n states per node and character. While the
optimization is moderate when the number of states is
small, as in the case of nucleotides or amino acids, the
optimization is more effective the larger the number of
states, with an 8-fold reduction in running time in the
case of metabolic enzymes. The algorithms here pre-
sented were originally developed precisely to obtain fast
reconstructions of ancestral metabolism, motivated by
the recent interest in obtaining phylogenetic signal from
metabolic data [28-33].

In the rest of this paper we will review the original
Sankoff algorithm, describe our optimization, and
analyze its performance for both randomly generated

data and biologically well-known cost matrices for
nucleotides, amino acids, and metabolic enzymes.

Methods
Original Sankoff Parsimony
Sankoff parsimony [13, 14] counts the number of
evolutionary changes for a specific site in a phylogenetic
tree, assuming a set of n character states i = 1, ..., n (for
instance, 4 nucleotides or 20 amino acids) for which a
cost matrix C = (cij) of changes between states is given.
Each node p of the phylogeny has assigned a cost vector,
S(p), which contains the minimal evolutionary cost Si

p( )

for each of the character states. If node p is assigned state
i, the quantity Si

p( ) reflects the minimum cost of events
(state changes) from p to the root of the tree.

The original Sankoff algorithm calculates the cost vectors
at each node moving from the leaves upwards to the
root. Initially, the S(x) vectors at the inner nodes are
unknown and those at the leaves are initialized with cost
0 for the observed character state and ∞ for the rest. For
instance, if adenine is observed in a site (character) for a
certain species, the cost vector would be Sa

x( ) = 0 and
S S St

x
g
x

c
x( ) ( ) ( )= = = ∞ . The cost vector of a node p with

two children q and r is:

S c S c Si
p

j
ij j

q

k
ik k

r( ) ( ) ( )min( ) min( )= + + + (1)

Equation (1) states that the cost of being in character
state i for node p is the cost of moving from character
state i to j in child q (cij) plus the cost of having reached
state j at node q from the leaves ( S j

q( ) ). Character j is
selected to minimize this sum, with the same procedure
being applied to character k in child r. Algorithm 1
presents the original implementation of Sankoff parsi-
mony to calculate the cost vector of all nodes in a tree for
a single character.

Algorithm 1 (Original Sankoff algorithm: Up phase). A
procedure call Sankoff_Up(T, C, S) calculates the cost vector S(p)

of all nodes p of the phylogeny T, given a cost matrix C = (cij).

procedure Sankoff_Up(T, C, S)

for all nodes p of T in postorder do

if p is a leaf then

for all i in 1, ..., n do

if state i observed at leaf p then

Si
p( ) ← 0
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else

Si
p( ) ← ∞

else

{q, r} ← children of p

for all i in 1, ..., n do

Si
p( ) ← cost(q, i) + cost(r, i)

function cost(x, i)

min ← ∞

for all j in 1, ..., n do

if cij + S j
x( ) < min then

min ← cij + S j
x( )

return min

Figure 1 presents an example for a single site in a
nucleotide sequence, where cytosine, guanine, and
thymine are observed at the leaves. The minimum
number of changes under Sankoff parsimony is 4, as
annotated in the root of the tree. As it can be observed,
Algorithm 1 takes O(n2) time in the number of character
states per node, since the function cost is O(n) and it is
called n times. Once the cost vectors have been
calculated for each inner node, we can use this
information to reconstruct the ancestral states. The
algorithm proceeds now top-down, and the root of the
phylogeny gets assigned those states with minimum cost
in the vector S(root). For any inner node p, and given that
ancestral state i was reconstructed at its parent, the state j
to be chosen is that for which cij + S j

p( ) is minimized.
Notice that for inner nodes this state needs not
correspond with that for which S j

p( ) is minimum.

Algorithm 2 describes an implementation as presented
in [[34], §6].

Algorithm 2 (Original Sankoff algorithm: Down phase).
A procedure call Sankoff_Down(x, T, C, S, Sanc) calculates the
ancestral states Sanc

p( ) of all nodes p of the phylogeny T, given
the root x of T, a cost matrix C = (cij) of transition costs
between states, and the cost vectors S(p) for all nodes p of T as
calculated by Sankoff_Up(T, C, S).

procedure Sankoff_Down(x, T, C, S, Sanc)

S Sanc
x

i i
x( ) ( )argmin←

for all j in Sanc
x( ) do

for all child y of x do

Sankoff_Down(j, y, T, C, S, Sanc)

procedure Sankoff_Down(i, x, T, C, S, Sanc)

min_states(i, x, C, S, Sanc)

for all j in Sanc
x( ) do

for all child y of x do

Sankoff_Down(j, y, T, C, S, Sanc)

procedure min_states(i, x, C, S, Sanc)

min ← ∞

for all j in 1, ..., n do

if x = root(T) then

trans_cost ← S j
x( )

else

trans_cost ← cij + S j
x( )

if trans_cost < min then

min ← trans_cost

Sanc
x( ) ← {j}

else if trans_cost = min then

Sanc
x( ) ← Sanc

x( ) ∪ {j}

Figure 1
Original Sankoff parsimony: up phase. (A) A matrix
defining transition costs between states. (B) A sample
phylogenetic tree with cost vectors calculated for all nodes
using Algorithm 1.
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Figure 2 presents an example of the top-down phase of
Sankoff parsimony. Notice that the states chosen as
ancestral do not necesarily correspond to those with
minimum values in the cost vectors. The node with cost
vector S = (4, 3, 3, 4) has thymine as one of the two
possible parsimonious ancestral states, which has larger
cost than guanine. For simplicity, ties are not solved in
the algorithms presented in this paper and thus inner
nodes can have more than one ancestral state. If we were
to differentiate among the different parsimonious
reconstructions, there would be three scenarios for this
example as indicated by the red lines: cytosine both at
the root and the inner node, thymine both at the root
and the inner node, or thymine at the root and cytosine
at the inner node. Cytosine in the root and thymine in
the inner node is not parsimonious. The reconstruction
of ancestral states as described in Algorithm 2 takes O(n)
time per node.

Optimized Sankoff Parsimony
Our optimization is based on the observation that not
all transition costs between character states need to be
computed if the cost matrix is ultrametric or additive.

Definition 1. A cost matrix is ultrametric if for every
three indices i, j, k, one of the three following inequal-
ities holds (three point condition):

• cij 4 cik = cjk

• cik 4 cij = cjk

• cjk 4 cij = cik

Definition 2. A cost matrix is additive if for every four
indices i, j, k, ℓ, one of the three following inequalities
holds (four point condition):

• cij + ckℓ 4 cik + cjℓ = ciℓ + cjk

• cik + cjℓ 4 cij + ckℓ = ciℓ + cjk

• ciℓ + cjk 4 cij + ckℓ = cik + cjℓ

Notice that ultrametric matrices are also additive, since
they satisfy the four point condition [35].

Consider a simple example where the cost matrix C has
cii = 0 and cij = k for all i ≠ j. When calculating the cost
Si

p( ) in Equation (1), we can substitute minj(cij + S j
q( ))

for min( Si
q( ) , k + minj≠i S j

q( )), and similarly for the other
child r of p. In the more general case of ultrametric or
additive cost matrices, we can efficiently represent them
with a unique rooted weighted cost tree TC using
UPGMA [36] or neighbor-joining [37] respectively. The
length of the path between any two leaves i, j in TC
corresponds to the cost cij. For ultrametric matrices,
consider any set of leaves L = {a, b, ...} in the tree that
have the same last common ancestor, lca(L). By
definition, lca(L) is equidistant to any leaf in L, and all
leaves in L are at the same distance d to each other
(which is double the distance from the leaf to lca(L)). For
any two leaves a, b in L we can then simplify the
expression minL(cab + SL

q( ) ) as d + min SL
q( ) . Therefore,

given the cost tree TC obtained by UPGMA from the
ultrametric matrix, for each state i we only need to
compute the minimum costs at the last common
ancestor of that state and any other, that is, the inner
nodes in the path from i to the root of TC. With additive
matrices, since the distance from an inner node to its
descendant leaves can vary, we need to take into
consideration the specific length of each branch when
calculating the minimum. Therefore, in our algorithm
each cost vector Sp is replaced by a cost tree TC

p( ) , whose
inner nodes will contain the value that minimizes. cij +
SL

q( ) for all descendant leaves L. Algorithm 3 presents the
optimized version of Sankoff parsimony for the calcula-
tions from the leaves to the root of the phylogeny.

Algorithm 3 (Optimized Sankoff algorithm: Up phase).
A procedure call Opt_Sankoff_Up(T, TC, S) calculates the cost
vector S(p) of all nodes p of the phylogeny T, given a cost tree TC
representing an ultrametric or additive cost matrix C = (cij).

procedure Opt_Sankoff_Up(T, TC, S)

for all nodes p of T in postorder do

Figure 2
Original Sankoff parsimony: down phase. Ancestral
states for the phylogeny, cost matrix and observed states of
Figure 1, as obtained by Algorithm 2. Without solving ties,
ancestral nodes are written next to each inner node. Red
lines indicate the most parsimonious reconstructions after
solving ties.
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if p is a leaf then

for all i in 1, ..., n do

if state i observed at leaf p then

Si
p( ) ← 0

else

Si
p( ) ← ∞

update(p, i, Si
p( ) , TC)

else

{q, r} ← children of p

for all i in 1, ..., n do

Si
p( ) ← cost(q, i) + cost(r, i)

update(p, i, Si
p( ) , TC)

procedure update(x, i, v, TC)

n ← leaf of TC
x( ) corresponding to state i

cost(n) ← v

min_tags(n) ← {i}

cost ← branch length between n and its parent in TC
x( )

repeat

n ← parent of n in TC
x( )

if v + cost <cost(n) then

cost(n) ← v + cost

min_tags(n) ← {i}

else if v + cost = cost(n) then

min_tags(n) ← min_tags(n) ∪ {i}

if n ≠ root of TC
x( ) then

cost ← cost + branch length between n and its parent in
TC

x( )

until n = root of TC
x( )

function cost(x, i)

n ← leaf of TC
x( ) corresponding to state i

min ← cost(n)

cost ← branch length between n and its parent in TC
x( )

repeat

n ← parent of n in TC
x( )

if cost + cost(n) < min then

min ← cost + cost(n)

if n ≠ root of TC
x( ) then

cost ← cost + branch length between n and its parent in
TC

x( )

until n = root of TC
x( )

return min

Algorithm 3 utilizes a cost tree TC
p( ) with the same

topology as TC for each node p, and where each node is
annotated with the minimum value corresponding to
cij + SL

q( ) , as implemented in the function cost. The
function update saves each of these cost trees by moving
from the leaves to the root and storing minimum values
in the nodes (cost(n)), as well as the leaf responsible for
the value stored in the node (min_tags(n)), which will be
later used to optimize the reconstruction of ancestral
states. The complexity of Algorithm 3 depends on the
internal path length of TC. The worst case would be a
degenerate tree with linear structure, in which case the
complexity for n states is (n2 - n)/2 per node and
character [[38], §2.3.4.5]. Notice that in practice this will
be a rare case, and most cost trees have a more favourable
topology to our optimization (as will be shown in the
Results section), while the original algorithm takes O(n2)
time no matter the cost matrix used.

Figure 3 presents a detailed example of the Algorithm 3.
The cost of a transition between states i and j, cij, is the
sum of branch lengths between the corresponding leaves
in the cost tree. Since the matrix in this example is
additive, neighbor-joining guarantees a unique tree. The
minimum cost for state a can be calculated as Sa

p( ) = cost
(q, a) + cost(r, a), the sum of minimum costs from the
children nodes q and r. For node q this cost will be the
minimum among ∞ (cost at leaf a in TC

q( ) ), 8 (cost 2 at
node x plus branch length 6), and 16 (cost 6 at node w
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plus total branch length 6 + 4), therefore cost(q, a) = 8.
For node r, clearly cost(r, a) = 0, and therefore Sa

p( ) = 8.
At this point, we update the path from leaf a to the root
of TC

p( ) : node x is set to 8 + 6 = 14, and node w is set to
8 + 6 + 4 = 18. The cost for state b is calculated following
the same procedure, resulting in Sb

p( ) = 8. When
updating TC

p( ) , the cost at node x is reduced from 14
to 10 (8 at leaf b plus branch length 2), and at node w
from 18 to 14. The remaining state costs and inner nodes
of the cost tree are calculated in a similar way.

Algorithm 4 presents the optimized version of the
reconstruction of ancestral states using Sankoff parsi-
mony. In its original implementation, for each node we
had to consider all posible states looking for the one that
minimized cij + S j

x( ) . Since we have already saved the
minimum transition costs and the leaves responsible for

them as shown in Algorithm 3, we can use this
information to further speed up computation. The
ancestral states for the root r of the phylogeny T are
obtained as in the original algorithm. For any inner node
x of T, and given that its parent had ancestral state k
reconstructed, we only need to move from leaf k to the
root of TC

x( ) and keep the state min_tags(n) that has the
minimum value cost(n).

Algorithm 4 (Optimized Sankoff algorithm: Down
phase). A procedure call Opt_Sankoff_Down(x, T, TC, Sanc)
calculates the ancestral states Sanc

p( ) of all nodes p of the
phylogeny T, given the root x of T and the cost tree TC

p( ) for
each node p of T as calculated by Opt_Sankoff_Up(T, TC, S).

procedure Sankoff_Down(x, T, TC, Sanc)

S Sanc
x

i i
x( ) ( )argmin←

for all j in Sanc
x( ) do

for all child y of x do

Opt_Sankoff_Down(j, y, T, TC, Sanc)

procedure Opt_Sankoff_Down(i, x, T, TC, Sanc)

n ← leaf of TC
x( ) corresponding to state i

min ← cost(n)

cost ← branch length between n and its parent in TC
x( )

repeat

n ← parent of n in TC
x( )

if cost + cost(n) < min then

min ← cost + cost(n)

Sanc
x( ) ← {min_tags(n)}

else if cost + cost(n) = min then

Sanc
x( ) ← Sanc

x( ) ∪ {min_tags(n)}

if n ≠ root of TC
x( ) then

cost ← cost + branch length between n and its parent in
TC

x( )

until n = root of TC
x( )

for all j in Sancdo

Figure 3
Optimized Sankoff parsimony: up phase. (A) Cost
matrix between six states a, ..., f and their associated cost
tree as calculated by the neighbor-joining algorithm. (B) A
simple phylogeny with three nodes (dashed boxes), their
cost vectors S and cost trees TC. Cost vectors S

(q) and S(r),
and cost trees TC

q( ) and TC
r( ) are already calculated. (C)

Step-by-step reconstruction of S(p) and TC
q( ) for node p

following Algorithm 3.
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for all child y of x do

Opt_Sankoff_Down(j, y, T, TC, Sanc)

Figure 4 presents an example of Algorithm 4. Assuming
the parent node of p had state ancestral state e, we move
from that leaf to the root of TC

p( ) while comparing
minimum values: 34 at e, 34 (28 + 6) if we move from
state f, 35 (27 + 6 + 2) if we move from d or 25 (14 + 6 +
2 + 1) when moving from b. The ancestral state
reconstructed in this node is therefore b. If the ancestral
state at the parent had been a instead, node p would have
state a as the most parsimonious. Notice that in this case
the value in the root of TC

p( ) is not necessary, since the
cost of moving from b to a is in fact 10 (minimum
annotated at the parent of a) plus 6 (the length of the
branch from a to its parent).

Algorithm 4 reduces the number of operations compared
to the original implementation, since we do not have to
review all states at each node but only traverse from a
leaf to the root of the cost tree. The original implementa-
tion takes O(n) time, while the complexity of our
optimization is again a function of the internal path
length of TC, which in general will be less than n.

Results and Discussion
We performed a series of simulations involving a single
random site from 10 to 100 species in a random
phylogeny, and 4 to 800 character states. Sankoff
parsimony costs were calculated using randomly gener-
ated additive matrices and their associated cost trees. All

experiments were performed in a Mac Pro with 2 × 2.66
Ghz Dual-Core Intel Xeon processor, 7 GB of memory,
and Mac OS X 10.4.11. Figure 5 presents running times
versus the number of states, with the running time
shown for all the generated phylogenies; that is, for each
point corresponding to a particular number of states in
the horizontal axis, there are 91 measurementes (10 to
100 species) of execution times for both the original and
optimized methods. As it can be observed, times for the
optimized algorithm grow linearly in the number of
states, while the original implementation has a quadratic
growth. Results for ultrametric matrices (not shown)
were similar to those presented in Figure 5.

Figures 6 and 7 show results for a single randomly
generated nucleotide and phylogeny (10 to 100 species)
using cost matrices based on the DNA evolution models
proposed by Jukes and Cantor [39] and Kimura [40],
both of which are ultrametric. Even though there are
only 4 character states, the optimized algorithm outper-
forms the original implementation. Notice that results
for these two figures and the previous one are for a single
site; calculations for full sequences would further
increase the difference between the original and the
optimized algorithms.

To provide a better idea of the performance of our
optimization in a more realistic setup, we reconstructed
the ancestral amino acid chain of elongation factor-1a
from the sequence of 42 species (see [41] for details).
The cost matrices were obtained from works addressing
the problem of how to obtain a reduced amino acid
alphabet that can still produce a correct folding [42-46].

Figure 4
Optimized Sankoff parsimony: down phase. (A)
Calculation of the ancestral state for node p following
Algorithm 4, given that the parent node of p had ancestral
state e. (B) Calculation of the ancestral state for node p
following Algorithm 4, given that the parent node of p had
ancestral state a.

Figure 5
Execution times for simulated cost matrices.
Execution time versus number of states (4 to 800) with
random cost matrices and phylogenies (10 to 100 species),
with the original and optimized Sankoff parsimony
algorithms.

BMC Bioinformatics 2009, 10:51 http://www.biomedcentral.com/1471-2105/10/51

Page 7 of 10
(page number not for citation purposes)



Figure 8 presents the corresponding cost trees. As it can
be seen in Figure 9, in this particular example the
optimization is approximately 27% faster than the
original algorithm.

Figure 10 presents results for the reconstruction of the
ancestral metabolism of twelve eukaryotes (adapted
from [47], with Xenopus laevis, Candida albicans, Cyani-
dioschyzon merolae, Danio rerio, and Oryza sativa japonica

added). Hierarchical and information content similarity
measures [48] were used to determine the transition
costs between states (in this case, enzymes identified by
their EC number [49]). The characters to reconstruct will
be the enzymatic reactions annotated to the species in

Figure 6
Execution times for Jukes-Cantor model. Execution times
for one nucleotide site in 91 phylogenies (10 to 100 species) with
the original and optimized implementations of Sankoff
parsimony, using a costmatrix based on the Jukes-Cantormodel.

Figure 7
Execution times for Kimura two-parameter model.
Execution times for one nucleotide site in 91 phylogenies (10
to 100 species) with the original and optimized
implementations of Sankoff parsimony, using a cost matrix
based on Kimura's two-parameter model.

C M F I L V W Y A H T G P D E N Q R K S

Wang & Wang (1999) Nat. Struc. Bio. 6(11):1033–1038

L V I M C A G S T P F Y W E D N Q K R H

Murphy, Wallquist & Levy (2000) Prot. Eng. 13(3):149–152

C F Y W M L I V G P A T S N H Q E D R K

Fan & Wang (2003) J. Mol. Bio. 328:921–926

D E K R H N Q S T I L V F W Y C M A G P

Smith & Smith (1990) PNAS 87:118–122

L F I M V W C Y H A T G P R Q S N E D K

Cieplak et al (2000) Unpublished

Figure 8
Amino acid cost trees. Cost trees corresponding to five
different amino acid cost matrices [42-46].

Figure 9
Execution times for ancestral elongation factor-1a
reconstruction. Execution times for the reconstruction of
elongation factor-1a (EF-1a) in 42 species, with the cost trees
presented in Figure 8. EF-1a sequences obtained from [41].
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KEGG [50], with enzymes representing the possible
states. Whenever an enzymatic reaction is not annotated
to a species, its state will be chosen as the subset of
annotated enzymes that are closer to it, at the corre-
sponding cost. This is in order to avoid having cost
vectors in the leaves with all their entries having cost ∞.
For instance, under hierarchical similarity, if the enzyme
alcohol dehydrogenase (1.1.1.1) is not annotated to a
species, we would look first for any annotated enzyme in
the group of oxidoreductases acting on the CH-OH
group of donors with NAD+ or NADP+ as acceptor
(1.1.1.-), which are the closest to 1.1.1.1 at cost 0.25. If
no such enzyme is annotated, we would look for those in
the group 1.1.-.- (cost 0.5 to 1.1.1.1), and so on until a
group with annotated enzymes for the species is found.

Alternatively, we could have codified the presence or
absence of enzymes in each species, and then perform a
reconstruction using maximum parsimony. While this is
a commonly used approach, the use of measures of
enzymatic similarity has shown a better performance
than simple patterns of presence/absence of enzymes in
the phylogenetic analysis of metabolism [31], and
therefore the election of large state sets is to be preferred.
For this particular example, the number of states is
composed of 925 reactions annotated to at least one of
the twelve species under study, and the number of inner
nodes in the cost tree is comparatively small, making our
optimization 8-fold faster than the original
implementation.

Conclusion
The optimization here presented provides a computation
of Sankoff parsimony faster than the original algorithm
when the cost matrix is ultrametric or additive, even for a
small number of character states. Since our approach
reduces the execution time needed to calculate the

parsimony cost of a single tree, it could be easily
combined with optimizations looking for the most
parsimonous tree. Our algorithm takes comparatively
less time to execute when the number of states is large,
and therefore problems such as ancestral metabolism
reconstruction could be especially well-suited for this
optimization.
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