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Abstract
Background: Functional annotation of rapidly amassing nucleotide and protein sequences
presents a challenging task for modern bioinformatics. This is particularly true for protein families
sharing extremely low sequence identity, as for lipocalins, a family of proteins with varied functions
and great diversity at the sequence level, yet conserved structures.

Results: In the present study we propose a SVM based method for identification of lipocalin
protein sequences. The SVM models were trained with the input features generated using amino
acid, dipeptide and secondary structure compositions as well as PSSM profiles. The model derived
using both PSSM and secondary structure emerged as the best model in the study. Apart from
achieving a high prediction accuracy (>90% in leave-one-out), lipocalinpred correctly differentiates
closely related fatty acid-binding proteins and triabins as non-lipocalins.

Conclusion: The method offers a promising approach as a lipocalin prediction tool,
complementing PROSITE, Pfam and homology modelling methods.

Background
The lipocalins constitute a group of small (160-200 resi-
dues, 15-20KD) mostly extracellular proteins which are
highly stable, functionally versatile and widely distributed
within different biological kingdoms. The lipocalins
belong to the calcyin superfamily, along with fatty acid
binding proteins (FABPs), avidins, metallo-protease
inhibitors and triabins. In contrast to their poor sequence
similarity (identity falling below 20% for paralogs), lipoc-
alins share a highly conserved three dimensional struc-
ture. The so-called 'lipocalin fold' comprises a stable
calyx-shaped eight-stranded b-barrel scaffold, flanked by a
C-terminal a-helix. The space between the two b-sheets of
the barrel defines an internal apolar binding cavity with
high structural plasticity, consisting of four structurally
hypervariable peptide loops, mounted on the barrel.

These are divided into two groups according to the pres-
ence of three structurally conserved regions (SCRs). The
core set of lipocalins called kernel lipocalins share the
three SCRs and are more closely related. The more diver-
gent, outlier lipocalins, share only one or two SCRs [1].

Though first identified for their ability to transport small
hydrophobic molecules like steroids, bilins, fatty acids
etc., it is now established that the functional repertoire of
lipocalins encompasses regulation of immunological (e.g.
human lcn2 confers mucosal immunity in the respiratory
tract [2,3]) and developmental processes, enzymatic
(endopeptidase) activities, as for uterocalin, metabolic
homeostasis [4], etc. The lipocalins are implicated in var-
ious environmental stress responses (in plants- e.g. AtTIL
and in bacteria- e.g. YodA ), allergies, as candidate mark-
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ers of kidney function [5], and acute phase response of
inflammation [6]. The lipocalins are also known to inter-
act with membranes.

The flexibility of lipocalin ligand binding pocket has
invigorated greater interest in lipocalins, with Pieris AG,
Germany now developing artificial lipocalins having
novel binding specificities, denominated as Anticalins
[7,8]. Anticalins offer a far more lucrative technology over
the conventional antibodies as promising reagents for
research, biotechnology and therapeutic applications.

In the light of ever increasing wealth of genomic data and
the burgeoning interest in lipocalins, it becomes impor-
tant to have facile methods of lipocalin identification.
Prediction of few well characterized lipocalin family
members is missed by the PROSITE, Pfam signatures (e.g.
apolipoprotein M) as well as Position-Specific Iterative-
Basic Local Alignment Search Tool (PSI-BLAST) [9]
searches (discussed in the results section). Easy and relia-
ble identification of lipocalins remains an arduous task,
attributable to extreme sequence diversity amongst lipoc-
alins. Crystallization and structure solution remain the
only certain ways of identification of novel lipocalin fam-
ily members [10] and indeed, a number of crystal struc-
tures have been solved for lipocalins. Experimental
determination, however requires expensive infrastructure,
and is labour- and time-intensive. Computational struc-
ture determination methods like homology modelling
and threading, offer an easier alternative and have been
used as in the case of apolipoprotein M [11,12]. Another
recent improvement to such methods for recognizing dis-
tantly related members, involves the identification of cru-
cial interactions involving two conserved clusters of
hydrophobic residues [13]. But these methods are fraught
with complications first in their own right and secondly
due to the difficulty in selecting the template for model-
ling, since the minimum similarity for reliable modelling
is 30% [14].

Machine learning techniques present an alternative, relia-
ble and faster solution for such problems. First pioneered
by Vapnik in 1995, Support Vector Machine (SVM) is one
such supervised learning algorithm which delivers state-
of-the-art performance in recognition and discrimination
of cryptic patterns in complex datasets [15]. SVMs are used
in conjunction with kernel functions which implicitly
map input data to high dimensional non-linear feature
space. SVMs construct a large margin hyperplane separat-
ing the training data in this space with the aim of achiev-
ing minimum classification error [16]. Apart from the
classical kernels-linear, polynomial, RBF and Gaussian
kernels, there exist variety of sequence-specific string ker-
nels [16-18]. SVMs premised on a strong theoretical
underpinning [19] have been used extensively across a

growing spectrum of applications in computational biol-
ogy because of their ability to deal with high-dimensional,
large and diverse types of datasets as well as to effectively
handle noise [20]. SVM-based prediction methods have
been successfully employed for a legion of biological
problems, including identification of DNA and RNA
binding proteins [21], post-translational modifications in
proteins [22], automated classification of microarray gene
expression profiles [23], etc. In the present study, we
developed a SVM-based method to facilitate the predic-
tion of members of lipocalin family. Apart from composi-
tion-based features, that is amino acid composition
(AAC), dipeptide composition (DPC) and secondary
structure composition (SSC) obtained from Protein Struc-
ture Prediction (PSIPRED) [24], we used the Position-Spe-
cific Scoring Matrix (PSSM) profiles obtained from PSI-
BLAST for training the SVM models.

Given the mounting interest and biotechnological appli-
cations of lipocalins, we hope this would be a useful tool
to the end-user biologist and the research community as a
whole.

Results and Discussion
Algorithm
Performance of similarity-based searches
We carried out PSI-BLAST analysis on the non-redundant
positive dataset in a fashion similar to the LOO CV (Leave
One Out, Cross Validation), with the default values of E
as 0.001 and the number of iterations as 3. Each sequence
served as the query sequence once while the remaining
formed the database, with the procedure iterating on each
sequence. Herein, no significant hits were obtained for 6
sequences; thereby reinforcing that even remote similarity
based searches may miss out some of the positive hits i.e.
lipocalins.

With the tremendous increase in the number of sequences
accumulating from different sequencing projects, the
number of such sequences may be substantially high
because of the absence of any lipocalin hit in similarity-
based searches. This explains the need for methods spe-
cific for lipocalin identification to complement such gen-
eral similarity-based methods of protein annotation.
Thus, we embarked upon exploring machine learning
methods based on various protein features to facilitate
lipocalin identification.

Performance of standalone SVM models
We began with the LOO Cross-Validation of AAC, DPC,
SSC and PSSM based classifiers, trained using the three
kernels-linear, polynomial and RBF (Radial Basis Func-
tion). Thereafter, hybrid models using combination of
two or more features were also developed. The hold-out
procedure was performed for the best classifiers to further
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assess the discriminative quality of the models. Hold-out
method provides a further reinforcement about the dis-
criminative power, though because of the random parti-
tioning of the datasets, the results may vary considerably
for the different sets [25]. Table 1 (and the table in addi-
tional file 1) summarise the performance of the best SVM
classifiers for each module and with each kernel as
observed in the cross-validation tests.

Composition based SVM classifiers
We obtained accuracies of 69.20 and 74.83% in AAC-
based SVM models with the linear and polynomial ker-
nels respectively, and 75.16% with the RBF kernel (Table
1 and the Table in the additional file 1). The accuracies
sharply increased with DPC usage and reached 79.80,
84.10 and 82.45% for the three kernels, respectively.
However, the SSC model yielded the accuracies of 80.46
and 81.12% respectively with the linear and polynomial
kernel whereas with RBF, the accuracy touched a striking
high of 86.42% with an MCC of 0.726. The sensitivity and
specificity of this model were also appreciably high at
86.02 and 86.74% respectively. The remarkably better
performance of SSC vs AAC and DPC models is congruent
with the known structural conservation albeit the high
sequential heterogeneity of lipocalins.

PSSM profile based SVM classifier
PSI-BLAST derived PSSM profiles captures useful informa-
tion about the residue composition as well as conserva-
tion of residues at crucial positions within the protein
sequence, because in evolution the amino acid residues
with similar physico-chemical properties tend to be
highly conserved due to selective pressure. PSSM profiles
have been used as SVM input feature for a number of clas-

sification problems, e.g. prediction of sub-cellular locali-
zation [26], nucleic acid binding proteins [27], etc.

We used the PSSM profile, normalized using the logistic
function (See Methods) for developing an SVM module.
The PSSM profile-based model yielded maximal accura-
cies of 85.43 and 87.41% respectively with linear and pol-
ynomial kernels respectively, and a remarkably high
accuracy of 89.40% with the RBF kernel, with the sensitiv-
ity and specificity of 89.70 and 89.15% along with an
MCC of 0.786.

Performance of hybrid SVM models
With an aim to further enhance the prediction accuracy,
we developed and evaluated four hybrid models using dif-
ferent combinations of features (hybrids).

DPC and SSC hybrid
This model performed better than the standalone DPC
model but did not achieve any improvement over the SSC
model, showing the maximum accuracy of 85.76% with
the polynomial kernel. With the linear and RBF kernels,
the accuracies were 83.77 and 85.43% respectively.

DPC and PSSM hybrid
This hybrid model performed as well as DPC but much
worse than the PSSM model and showed a dramatic dip
to an overall maximal accuracy of 81.12% with the poly-
nomial kernel. This may be attributable to noise produced
by the increase in the length of training input to 800
dimensions. With the linear and RBF kernels also, the per-
formance was comparable at 79.80 and 80.46% accura-
cies.

Table 1: Performance of SVM classifiers for various combinations of training features, kernels, parameters and validation methods

Feature V* Kernel Parameters SN (%) SP (%) Acc (%) MCC F measure

Threshold C g d

AAC A R -0.1 1 0.01 - 72.79 77.10 75.16 0.498 1.429
DPC A P -0.1 0 - 2 80.14 87.34 84.10 0.678 1.658
PSSM A R -0.1 5 9 - 89.70 89.15 89.40 0.786 1.725

D R -0.1 5 9 - 84.55 85.54 85.09 0.701 1.644
D R -0.1 5 9 - 88.96 84.33 86.42 0.731 1.633

SSC A R -0.1 5 3 - 86.02 86.74 86.42 0.726 1.665
D R -0.1 5 3 - 84.55 86.74 85.75 0.712 1.664
D R -0.1 5 3 - 82.35 78.91 80.46 0.609 1.509

DPC+SSC A P 0.1 0 - 2 85.29 86.14 85.76 0.713 1.651
PSSM+SSC A R 0.0 4 1 - 88.97 92.16 90.72 0.812 1.785

A R -0.1 4 1 - 89.70 89.15 89.40 0.786 1.725
D R 0.0 4 1 - 87.49 80.72 83.77 0.678 1.561
D R 0.0 4 1 - 85.29 84.93 85.09 0.700 1.628

DPC+PSSM A R -0.1 0 0.001 - 81.61 83.73 82.78 0.652 1.592
DPC+PSSM+SSC A P 0.1 0 - 2 85.29 86.14 85.76 0.713 1.651

*Validation: A = Leave-one-out; D = Hold-out
Kernel: R = RBF; P = Polynomial; L = Linear
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PSSM and SSC hybrid
This was the model with the highest overall accuracy of
90.72%, better than both the PSSM and SSC models, but
with a slightly lower sensitivity (88.97%) and higher spe-
cificity (92.16%) as that of the PSSM model. The accuracy
was 85.76 and 84.43% with both the linear and polyno-
mial kernels. This model achieved the best overall accu-
racy amongst all the models.

DPC, PSSM and SSC hybrid
This model performed reasonably well, with accuracies of
83.44, 85.43 and 85.76% with the polynomial, RBF and
linear kernels respectively. Yet this was not an improve-
ment over any of the models based on one or two features
and was therefore not considered for any further evalua-
tion.

Hold-out procedure
Hold-out procedure was run on the three best SVM mod-
els: PSSM, SSC and PSSM-SSC. This procedure simulates
the performance of the classifier over a blind test set since
only randomly chosen one-half of the data is used for
training while the other half is used for testing. Two runs
of hold-out method were therefore carried out at the same
parameters as obtained from LOO since this would be
used for final prediction. The three classifiers achieved
around 85% (Table 1) accuracy in both the runs, reflecting
the strong discriminative power of the models.

ROC plot
ROC curves show the trade-off between true positive rate
(sensitivity) and false positive rate (specificity) over their
entire range of possible values. It is considered as the most
robust approach for classifier evaluation [28]. The area
under the ROC curve (AUC) is used as a reliable index of
classifier performance. To validate the threshold-inde-
pendent performance of our SVM models, we compared
the ROC curves for the best SVM models obtained for each
feature as well as combination of up to three features (Fig-
ure 1).

A comparison of AUCs for various ROC curves revealed
that the models followed almost the same increasing
order of AUC as the prediction accuracies in SVM: AAC
(84.6%), PSSM-DPC (88.3%), DPC (90.6%), SSC
(91.0%), PSSM (93.9%), DPC-SSC (94.2%), PSSM-DPC-
SSC (94.3%), PSSM-SSC (95.4%). Only in one case,
namely for the PSSM model, the AUC did not follow the
order of prediction accuracy in SVM. There was a complete
overlap for the curves for DPC-SSC and PSSM-DPC-SSC as
also reflected in their exactly similar accuracies (85.76%
for both).

This analysis verified the efficacy of the SVM classifiers.
These AUC values are significantly higher than that of ran-
dom guessing (0.5).

Testing
Performance on independent datasets
LOO and hold-out tests may give over-optimistic esti-
mates of performances because the model parameters are
optimal for the datasets used for training but may not per-
form well on unseen data [29]. To confirm the behaviour
of the models, we tested the performance of the classifiers
on independent datasets. Table 2 depicts the performance
of the classifiers on three independent datasets- two nega-
tive and one positive dataset.

Negative datasets: These consisted of other members of
the calcyin superfamily, one set having 25 FABPs and the
other with 28 triabins, which are highly likely to be picked
up as positives due to sharing evolutionary ties with lipoc-
alins. Due to structural and functional grounds, lipocalins
and FABPs have been merged into one Pfam signature
(PF00061). However, FABPs have a ten-stranded discon-
tinuous beta-barrel structure as against the continuous
eight strand barrel of lipocalins. Triabins also differ from
lipocalins in having an inverted stand topology for two
beta strands in the beta barrel [1]. Since we aimed to
develop a classifier exclusively for lipocalins, we tested the
performance of our final models on this set to gauge the
selectivity of the models for lipocalins. Whereas the PSSM
model could predict all of the 25 FABPs as negatives, only
18 out of 25 triabins were predicted as negatives. The
PSSM-SSC and SSC models picked up 25 and 17 FABPS
respectively while both predicted all of the 28 triabins as
non-lipocalins.

Positive dataset: In order to evaluate the practical predic-
tion ability of the final prediction models, an independ-
ent dataset consisting of 42 lipocalin sequences was used.
While the PSSM model could predict 39 sequences, the
PSSM-SSC model predicted 38 sequences as lipocalins.
The SSC model picked up only 34 as lipocalins.

Comparison of classifier's performance with random prediction
Table 3 depicts the prediction reliability of all the SVM
models using the S measure i.e. the normalized prediction
accuracy which compares the prediction efficiency over
the random prediction. While the AAC and DPC models
stood low with S at 49.87 and 67.76% respectively, the
SSC and PSSM models performed fairly better with 72.63
and 78.65% respectively. The DPC-PSSM hybrid was even
worse with 60.77 with the DPC-SSC at 71.29%. The triple
hybrid DPC-PSSM-SSC model had S as 71.29 whereas the
PSSM-SSC performed better than PSSM getting S as
81.247. Thus the three best classifiers were models based
on PSSM-SSC, followed by PSSM and SSC.

Implementation
The prediction algorithm presented in this study is imple-
mented as a freely accessible web server at http://bio
info.icgeb.res.in/lipocalinpred (Figure 2). The web server
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is hosted on a T1000 SUN server. PHP is used to generate
the front-end HTML pages.

The program predicts lipocalins based on the two best
classifiers, namely the ones based on PSSM profile alone
and PSSM-SSC. It accepts the sequences in FASTA format
and allows the user to select different thresholds of predic-
tion ranging from -1.5 to 1.5. The default thresholds on
the server are the ones which yielded the best accuracies in
cross-validations. The output consists of the sequence ID,
the SVM score and the decision of the model regarding the
sequence based on the threshold chosen. The higher the
SVM score, the better is the confidence level of prediction.
The web-server also allows the user to scan a set of
sequences for lipocalin-related Pfam signatures. An
indexed database of lipocalins is also included to allow
the user to search lipocalin sequences sharing regions of
similarity to the query sequence set using ViroBLAST [30].

Perspectives
The performance of AAC and DPC-based models is con-
sistent with the fact that the lipocalins show remarkable
diversity at the primary structure level. Hence, it is not sur-
prising that the SVM models trained on AAC and DPC
miss out a significant chunk of the training sequences.

For the SSC and its hybrid models, the inability to cor-
rectly predict some sequences can be reconciled in light of
factors like limitation of the PSIPRED algorithm itself,

which is used for secondary structure prediction in the
study.

Even the models based on PSSM and its hybrid models
fail to predict few lipocalins due to extreme divergence
amongst the proteins. The dynamism of evolutionary
forces which finally shape the structural and functional
aspects of families of diverse proteins like lipocalins
results in extreme sequence divergence amongst its mem-
bers.

The prediction statistics obtained from models based on
implementation of features used to develop the best
model are highly encouraging. In future, inclusion of
additional lipocalin sequences, features and more effi-
cient methods for secondary structure prediction will fur-
ther improve the efficiency of LipocalinPred.

Conclusions
Current lipocalin identification methods include experi-
mental determination and homology modelling, which
require enormous efforts. The study presented here repre-
sents an initiative towards easy identification of lipocalins
from other proteins with high selectivity. Apart from solv-
ing the lipocalin identification problem in particular, it
advocates and reinforces the rational application of
machine-learning algorithms like SVMs to classification
problems in biology. The study could be extended to
other families sharing low pairwise sequence similarity,
e.g. to develop an SVM classifier exclusively for FABPs.
Since lipocalins are widely spread across the different bio-
logical kingdoms, the algorithm may be used for the pro-
teome-wide prediction of lipocalins, especially in cases
where their existence is dubious as for archaebacteria.
Though identification of a protein sequence as a lipocalin
would speak little about function because of the high
functional versatility, yet it would provide significant
clues about the protein structure and hence lead the way
towards providing mechanistic insights about the protein.

Methods
Generation of training datasets
A raw pool of lipocalin sequences was compiled from dif-
ferent databases like SwissProt, Refseq and GenBank by
keyword search. These were filtered for entries annotated
as 'hypothetical', 'putative', 'truncated', 'partial', 'similar
to', 'fragment' etc. and then for non-specific hits obtained
by keyword search to obtain only full-length and anno-
tated lipocalin protein sequences. The non-lipocalins
were also compiled using a similar approach. To remove
redundancy in the dataset, the positive and negative data-
sets were subjected to PISCES [31] program at 40% iden-
tity threshold. After this step, the final training datasets
consisted of 136 lipocalin and 166 non-lipocalin (Addi-
tional files 2 and 3) sequences.

ROC curves of the different SVM classifiersFigure 1
ROC curves of the different SVM classifiers. ROC plot 
of SVMs based on different protein sequence features depict-
ing relative trade-offs between true positive and false posi-
tives. The diagonal line (line of no-discrimination) represents 
a completely random guess. The corresponding area under 
curve (AUC) is given in brackets in the legends.
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Datasets for blind test performance
In order to benchmark the unbiased prediction efficiency
of our best SVM models, we tested their performance on
datasets not used in training or testing. This dataset con-
sisted of 42 lipocalin sequences of which only 3 are more
than 60% similar to those in the positive dataset (Addi-
tional file 4). 38 out of 42 sequences are no more than
50% similar to positive dataset. We also tested the per-
formance of the models for non-lipocalins comprising
closely related family members- FABPs and triabins (Addi-
tional file 5).

Assessment of training dataset for the presence of lipocalin 
signatures
We tested the positive dataset sequences for the presence
of lipocalin related PROSITE (PS00213) and PFAM
(PF00061, PF08212, PF02087, PF07137, PF02098) signa-
tures using the locally installed pfscan and HMMER (ver-
sion 2.3.2) [32] programs respectively. While 88 out of
136 were missed by pfscan, 11 were missed by the five
lipocalin-related Pfam signatures and 10 were not picked
by Pfam signatures as well as pfscan. This demystifies the
fact that all the known annotated lipocalins are not repre-
sented by Pfam domains or PROSITE signatures.

SVM algorithm and problem formulation
We used the freely available package SVMlight [33,34] to
implement SVM on our training datasets. This package
allows optimization of a number of parameters and offers
the choice to use different kernel functions to obtain the
best classification hyperplane. The separating hyperplane
generated by SVM model is given by

Where, w is a vector normal to the hyperplane and b is a

parameter that minimizes  ||w||2 and satisfies the fol-

lowing conditions:

for xi of one class

for xi of the second class.

which may be re-written as:

for all 1 ≤ i ≤ n, n being total number of examples.

However, the above holds true for the linearly separable
case which is generally not the case. When the two classes
are not linearly separable (e.g., due to noise), the "soft-
margin" SVM [35] is used in which the condition for the
optimal hyperplane can be relaxed by including a slack

variable xi, so that now the optimization problem is to

minimise ||w||2 + Cxi subject to the following con-

straint:

for all 1 ≤ i ≤ n.

Here C is a regularization parameter that controls the
trade-off between maximization of the margin and mini-
mization of the training error. Small C tends to emphasize
the margin while ignoring the outliers in the training data,
while large C may tend to over fit the training data.

In the present work, two types of SVM models were devel-
oped: (1) based on single sequence features (2) those
based on two or three protein features called hybrids.

f x x w b( ) ( )= −Φ

1
2

w x bi⋅ − ≥ 1

w x bi⋅ − ≤ −1

c w x bi i( )⋅ − ≥ 1

1
2

c w x bi i i( )⋅ − ≥ −1 x

Table 2: Quality estimation of SVM models over random 
prediction

Model Correctly predicted (total 302) S (%)

AAC 227 49.869
DPC 254 67.767
PSSM 270 78.653
SSC 261 72.632
DPC-SSC 259 71.297
PSSM-SSC 274 81.247
DPC-PSSM 243 60.772
DPC-PSSM-SSC 259 71.297

The table estimates the quality of the models generated from each 
module as compared to random prediction(S).

Table 3: Performance on independent datasets

Model tested Positive (total 42) Negative-FABPs (total 25) Negative-Triabins (total 28)

SSC 34 17 28
PSSM 39 25 18
PSSM-SSC 38 21 28

The three best models were used for testing on independent datasets. The numbers show the correctly predicted sequences out of the total given 
in the first row.
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Cross-validation methods
We performed training testing cycles using in-house perl
scripts. We used linear, polynomial and radial basis func-
tion (RBF) kernels to train and test our SVM models. Each
kernel was optimized to yield the best classification by
changing the kernel parameters (C, d and g). Our
approach was to choose the best parameters in a way so as
to maximize accuracy as well as get nearly equal sensitivity
and specificity, wherever possible.

Leave-one-out cross validation (LOO CV)
This is a stringent mode of evaluation wherein one dataset
sequence is left out for testing, while the rest are used to
generate the model. This is iterated on each sequence till
each sequence becomes the testing data exactly once. The
best parameters as measured by the various performance
measures are picked up and then averaged for the final
assessment of the model. It has been shown to give an
almost unbiased estimator of the generalisation proper-
ties of statistical models, and therefore provides a sensible
criterion for model selection and comparison.

Hold-out procedure
In this method, the dataset is split randomly into two sets
having roughly equal number of training sequences; one
is used for training while the other for testing and this is
repeated for both sets. The accuracy is then averaged for
the two cycles.

Performance measures
In order to assess the accuracy of prediction methods, we
used several measures, namely- Sensitivity: percentage of
lipocalin protein sequences that are correctly predicted as
lipocalins, Specificity: percentage of non-lipocalin protein
sequences that are correctly predicted as non-lipocalins,
Accuracy: percentage of correct predictions, for lipocalins
as well as non-lipocalins, and Matthews Correlation Coef-
ficient (MCC): a measure of both sensitivity and specifi-
city (MCC = 1 indicates a perfect prediction while MCC =
0 indicates a totally random prediction, F1 statistic: It is
the harmonic mean of sensitivity and specificity and is
considered a more robust measure as other measures can
overstate the performance of the classifier, S: the normal-

Snapshot of LipocalinPred web server sample outputFigure 2
Snapshot of LipocalinPred web server sample output. The web server predicts lipocalins based on the two best classi-
fiers, namely based on PSSM profile and the hybrid classifier: PSSM-SSC. The two classifiers may be chosen together for a com-
parative prediction. The server accepts FASTA formatted sequences and allows user defined thresholds of prediction, ranging 
from -1.5 to 1.5.
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ized percentage of correctly predicted samples better than
random.

Mathematical representation of the above mentioned
measures are defined as follows:

Where, TP is the number of True Positives, TN is the
number of True Negatives, FN is the number of False Neg-
atives, and FP is the number of False Positives for a predic-
tion method. Also, R is the anticipated number of proteins
that are correctly classified by random prediction.

Protein features and vector encoding
Amino acid composition (AAC)
It is the fraction of each of the 20 amino acids present in
a protein sequence. This generates a training input vector
of 20 dimensions.

where i can be any of the amino acids.

Dipeptide composition (DPC)
It is the occurrence of a dipeptide divided by the total
number of possible dipeptides in the protein which
equals one less than the length of the protein. This yields
a training input vector of 400 dimensions.

where j can be any of the 400 dipeptides.

Secondary structure composition (SSC)
High structural propinquity is the hallmark of lipocalin
family. Secondary structure prediction was carried out
using PSIPRED v2.2.6. It predicts secondary structure for

each residue and provides a confidence score for three
types of secondary structures: helices, b-sheets and coils.
The scores for each secondary structure corresponding to
a particular residue were added up and divided by residue
frequency generating a 20 × 3 matrix, which was used as
an input for SVM. This was normalized using the follow-
ing logistic function:

where x is the raw value in PSSM profile and g(x) is the
normalized value of x. Following equation was used to
calculate the features corresponding to secondary struc-
ture prediction,

where SS is the score for any of the three secondary struc-
tures (helix/sheet/coil) with the summation running over
the protein length for each amino acid j. For each j, there
exist three Fss,j corresponding to each secondary structure.
Fi (j) is the frequency of the amino acid j in the protein.

PSSM profile
This was obtained by performing PSI-BLAST against
Swissprot (release 57.3) database at the default E-value of
0.001 with three iterations. The matrix contains 20 × N
elements, N being the length of the query sequence, and
each element represents the frequency of a particular resi-
due substitution at a specific position in the alignment.
This was also normalized using the logistic function in the
same way as done by us previously in VirulentPred [36].
Following this, the normalized matrix is organized into a
composition matrix of fixed length pattern of 400 (20 ×
20, for each amino acid, there are 20 substitution scores
from normalized matrix).

ROC plot
SPSS (Statistical Package for the Social Sciences) v11.5 for
Windows was used to obtain the Receiver Operating Char-
acteristic (ROC) plot for each of the SVM classifier devel-
oped in the study. The ROC curves were plotted using the
scores obtained in the LOO cross-validation.
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AAC: Amino Acid Composition; AUC: Area Under Curve;
DPC: Dipeptide Composition; LOO: Leave-One-Out;
MCC: Matthews Correlation Coefficient; PSI-BLAST: Posi-
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PSIPRED: Protein Structure Prediction; PSSM: Position-
Specific Scoring Matrix; RBF: Radial Basis Function; ROC:
Receiver Operating Characteristic; SCR: Structurally Con-
served Region; SPSS: Statistical Package For the Social Sci-
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ences; SSC: Secondary Structure Composition; SVM:
Support Vector Machine.
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non-lipocalins used for training the SVMs. This can be viewed using any 
text editor like wordpad.
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