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Abstract

Background: The prediction of the secondary structure of a protein is a critical step in the
prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral
angles, highly correlated with secondary structures, provide crucial information about the local
three-dimensional structure.

Results: We predict independently both the secondary structure and the backbone dihedral angles
and combine the results in a loop to enhance each prediction reciprocally. Support vector
machines, a state-of-the-art supervised classification technique, achieve secondary structure
predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other
methods on the same dataset. The dihedral angle space is divided into a number of regions using
two unsupervised clustering techniques in order to predict the region in which a new residue
belongs. The performance of our method is comparable to, and in some cases more accurate than,
other multi-class dihedral prediction methods.

Conclusions: We have created an accurate predictor of backbone dihedral angles and secondary
structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/

disspred/.

Background researchers have been predicting secondary structure with

The rapid growth of the number of protein sequences has
far outpaced the experimental determination of their
structures, but knowledge of the three dimensional struc-
ture of a protein can help to determine its function. Thus,
computational methods are often used to predict the
structures of sequences for which no experimental infor-
mation is available. Such approaches are based on the
premise that all the information needed to determine the
three dimensional structure is encoded in the amino acid
sequence [1]. A critical first step is the accurate prediction
of the protein secondary structure, the local, regular struc-
ture defined by hydrogen bonds. Over the past 40 years,

various approaches. Notably, the predictive accuracy has
improved substantially over the past 20 years through the
use of evolutionary information and machine learning
algorithms [2]. In 1988, Qian and Sejnowski pioneered
the application of artificial neural networks (ANNs) to
predict secondary structure [3]. Different ANN architec-
tures have been used to predict the secondary structure,
such as feed-forward back-propagation ANN [4-6], bidi-
rectional recurrent ANN [7], cascade-correlation ANN [8]
and cascaded ANN with linear discriminant analysis [9].
The most successful methods in the 1990s, such as PHD
[4] and PSIPRED |[6], used multi-layer feed-forward ANNs
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and achieved predictive accuracies of around 77%-78%.
Moreover, other approaches have been used over the past
20 years, such as analysis with hidden Markov models
[10,11], multiple linear regression [12,13] and, more
recently, non-linear dynamic systems [14]. Other predic-
tors, such as JPRED [15,16], make consensus secondary
structure predictions. Since 2001 [17], the support vector
machine method (SVM) has been applied to predict sec-
ondary structure [18-21]. PMSVM [18] enhanced the pre-
diction of the single SVM scheme with a dual-layer SVM
approach. More recently, YASSPP [21] improved the SVM-
based predictions by combining position-specific and
nonposition-specific information with better kernel func-
tions. Despite relatively accurate predictions, there is still
an opportunity for additional information and novel
methods to boost the predictions.

The backbone dihedral angles, ¢ and y, can provide
important information about the three dimensional struc-
ture of the protein. They vary from -180° to +180°, but
they cannot adopt all possible values, because of steric
restrictions. The famous Ramachandran plot [22] illus-
trates the sterically allowed regions of the dihedral angles.
The experimental determination of dihedral angles is usu-
ally time-consuming and expensive, but can be acceler-
ated by algorithms that use sequence information and
chemical shifts [23]. Accurate prediction of dihedral
angles can facilitate tertiary structure prediction. It has
been suggested that if none of the dihedral angles of an
eight-residue fragment differs from another eight-residue
fragment by more than 120°, the RMSD between the two
segments is less than 1.4A [24]. The Rosetta server [25],
the most successful method for three dimensional struc-
ture prediction, uses predictions from HMMSTR [26] of
the secondary structure and the dihedral angles, which are
described with an alphabet of eleven states. Apart from
protein structure modelling, predicted dihedral angles
have been used successfully to improve sequence align-
ment [27], fold recognition [28] and secondary structure
prediction [8,29]. Early studies used simple models to
explore protein conformational space and facilitate 3D
structure prediction [30,31]. Over the past few years, sev-
eral methods have been developed to predict dihedral
angles based on different numbers of structural states. De
Brevern and colleagues [32] used self-organising maps
and hidden Markov models to identify a structural alpha-
bet of 16 "protein blocks". This alphabet was used in
LOCUSTRA [33] and by Dong and colleagues [34] to pre-
dict structural states using SVMs and ANNSs, respectively.
Kuang and colleagues [35] developed an SVM-based
method that makes three-state and four-state predictions
with an accuracy of 78.7% and 77.3%, respectively, based
on the dihedral regions proposed by a previous study
[36]. DHPRED [37], another SVM-based method,
achieved 80% three-state accuracy based the dihedral
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regions defined by Lovell and colleagues [38]. The defini-
tion of the dihedral angle regions is important in this kind
of approach. Other methods predict the real value of the
dihedral angles. ANGLOR [39] uses ANNs and SVMs to
predict the backbone ¢ and y angle, respectively. Further-
more, Zhou and co-workers developed Real-SPINE [40-
42], a method that predicts the real-valued dihedral
angles, using consensus predictions from five ANNs. Real-
SPINE has achieved the best mean absolute error [42] and
correlation coefficient [41] reported to date.

The backbone dihedral angles and the secondary structure
elements are highly correlated and, therefore, can be used
together to boost the predictions. DESTRUCT [8] imple-
mented this idea using an iterative set of cascade-correla-
tion neural networks to predict independently both the
real value y angle and the secondary structure and it used
the results to enhance the predictions. The predictive sec-
ondary structure accuracy on a non-redundant set of 513
proteins [43] is, until now, the highest reported score on
that particular dataset. Even though the dihedral predic-
tion was limited, it provided additional information,
which improved the secondary structure prediction signif-
icantly. Furthermore, the inclusion of secondary structure
prediction improved the y angle prediction.

Here, we take the approach one step forward. Using vari-
ous definitions of dihedral states created by two unsuper-
vised machine learning algorithms, our method improves
the predictions of backbone dihedral angles and second-
ary structure. Multi-state dihedral prediction offers some
advantages over real-value prediction, such as easy sam-
pling and detailed analysis of the dihedral space. Moreo-
ver, clustering techniques, often called class discovery
techniques, can provide important insight into specific
regions of the dihedral space which cannot be easily
addressed with real-value prediction. We use the SVM
method, which is superior in many practical applications,
because it finds the optimal hyperplane to separate two
classes. The results we present in this paper show that our
method predicts the three-state secondary structure signif-
icantly more accurately than other contemporary meth-
ods, due to the dihedral information used. Additionally,
the multi-state predictive accuracy of dihedral clusters
enhanced with predicted secondary structures is compara-
ble to, and in some cases more accurate than, other meth-
ods.

Methods

Support Vector Machines

The SVM [44] is an algorithm for learning classification
and regression rules from data. The SVM method has
become an area of intense research, because it performs
well with real-world problems, it is simple to understand
and implement and, most importantly, it finds the global
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solution, while other methods, like ANNs, have several
local solutions [45]. The SVM can find non-linear bound-
aries between two classes by using a kernel function,
which maps the data from the input space into a richer
feature space, where linear boundaries can be imple-
mented. Furthermore, the SVM effectively handles large
feature spaces, since it does not suffer from the "curse of
dimensionality", and, therefore, avoids overfitting, a com-
mon drawback of supervised learning techniques.

Since an SVM is a binary classifier, it cannot be used to
separate data with more than two classes. However, sev-
eral techniques allow combinations of SVM models to cre-
ate a multi-class SVM method. The most popular methods
are called one-against-one and one-against-all. The former

n(n-1)
2

one trains on data from two different classes. A voting
scheme is applied at the end to decide the final prediction.
The one-against-all method constructs n binary models
for n classes and each one decides whether an instance
belongs to a class or not. At the end, winner-takes-all
decides the final prediction. In this work, we use the Lib-
SVM package [46], which offers multi-class SVM using the
one-against-one approach.

constructs

binary models for n classes and each

The ultimate goal is to classify previously unseen exam-
ples correctly. Therefore, it is not useful to achieve high
training accuracy if the prediction is not accurate enough.
In order to estimate the generalisation error, we use n-fold
cross-validation. The training data are split into n subsets
and, sequentially, n - 1 of them are used for training and
the remaining one for testing. This approach is repeated n
times, until all subsets are used once for testing. In our
case, 10-fold cross-validation was used.

The selection of the kernel function, which maps the
input data into a high-dimensional feature space, is one of
the main challenges in SVM methods. The radial basis
function (RBF), shown in equation 1, is the most suitable
kernel function for complex problems. Secondary struc-
ture prediction appears to be such a problem and RBF has
been used by the majority of SVM-based secondary struc-
ture prediction methods [17-19]. Hence, we use the RBF
kernel.

K(x;,x;) = exp(=y(x; = x;)?), fory >0 (1)

where x; and x; are the input vectors for instances i and j,
respectively. To optimise the learning process, one can
adjust parameters C and y. The regularisation parameter,
C, controls the trade-off between training error and the
margin that separates the two classes, while y controls the
width of the RBF kernel. The parameter optimisation was
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performed using a grid search approach, where pairs of
(C, ») were tried on the training set and the one with the
best cross-validated accuracy was selected. A practical
method [47] to identify good parameters is to try expo-
nentially growing sequences of C and y. We tried the fol-
lowing values: C = 2-5, 23, .., 215and y= 2-15, 2-13, , 23,
After the best pair of values was found, a finer search on
that specific region was conducted to identify the optimal
values. Here, the optimised parameters for CB513 dataset
were found to be C = 1.5 and y = 0.08. However, the pre-
dictive accuracy was similar for C and yin the ranges [1,2]
and [0.06, 0.1], respectively.

Clustering of dihedral angles

There is no clear optimal way to separate the dihedral
space into regions in order to provide structural informa-
tion. Other dihedral prediction methods [33,35,37] have
used various definitions of the dihedral angle regions,
taken from previous studies [32,36,38]. Here, we attempt
to discover the best clusters using two unsupervised
machine learning techniques, k-Means and expectation
maximisation (EM), that group a given collection of pat-
terns into clusters based on a similarity measure [48]. This
approach is often called data clustering and has been suc-
cessfully used in bioinformatics, especially to identify new
classes for gene expression data [49]. Both the clustering
algorithms we use are partitional methods, which divide
the data into k clusters without overlap and each cluster
can be represented by a centroid.

K-Means [50] is one of the simplest and fastest clustering
algorithms. The main goal is to divide a dataset into k
clusters, where k must be defined a priori. It starts with an
initial selection of k centroids, which is usually random,
and keeps reassigning the data points into clusters based
on the similarity between the data point and the cluster
centres, until a convergence criterion is met. Euclidean
distance is used as a similarity measure in our method.
The k-Means algorithm is popular, because it is easy to
implement, and its time complexity is O(n), where n is the
number of instances in the dataset. A drawback is that the
algorithm is sensitive to the selection of the initial parti-
tion and may converge to a local minimum [48].

Another way to tackle clustering problems is using Gaus-
sian mixture models, in which the underlying assumption
is that the data points are drawn from one of k Gaussian
distributions with mean z; and standard deviation o;. The
goal is to identify the parameters of each Gaussian distri-
bution. The most popular algorithm in this case is the
Expectation Maximisation (EM) algorithm [51], whose
steps are similar to those of the k-Means algorithm. EM
starts with a random assignment of the & Gaussian distri-
bution parameters, x4 and o;, and computes the cluster
probability for each data point based on the probability
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density function. The probability parameters are re-esti-
mated and the procedure is repeated until a termination
criterion is met. EM is useful when one wants to identify
and separate several probability distributions in the data.
On the other hand, like k-Means, EM can get stuck in local
minima [48].

We used the WEKA implementations [52] of the above
algorithms to cluster the dihedral space into regions. In
order to study many different partitions, we used different
numbers of clusters, from two to 12. To prevent the algo-
rithms from getting stuck in local minima, the clustering
process was carried out several times with different initial
partitions. Because of periodicity, the dihedral angles
+180° and -180° are identical. However, this cannot be
captured by distance-based clustering algorithms, like k-
Means and EM. In order to reduce the effect of the angle
periodicity, we perform a single transformation of the
angle, originally proposed [41] in Real-SPINE 2.0, by
shifting the y angles between -180° and -100° by 360°.
Hence, the y angles were in the range -100° and +260°.
There are few dihedral angles with values at either end of
this range, which improves the clustering.

Datasets and SVM design

DISSPred was trained and tested on three different data-
sets. The first was CB513 [43], a non-redundant non-
homologous set of 513 protein sequences. CB513 was
used to study the impact of various input coding schemes
and to tune the kernel parameters. All 513 proteins have
less than 25% sequence similarity to ensure that there is
very little homology in the training set. Since CB513 was
used to train many secondary structure prediction meth-
ods, we can compare the cross-validated accuracy of our
method directly with other methods. The second dataset
was PDB-Select25 (version October 2008) [53], a set of
4018 chains from the PDB with less than 25% sequence
similarity and X-ray resolution less than 3.0 A. After
removing chains with regions of unknown structure, the
final dataset contained 3978 chains from 3852 proteins
with a total number of 560 073 residues. In order to make
the training process faster and validate the performance
on an independent dataset, PDB-Select25 was divided
into two subsets, one of which was used for training and
the other one for testing. The subsets have approximately
the same composition of three-state secondary structure
elements: 35% for helix, 23% for strand and 42% for coil.
Moreover, we ensured that both datasets have a similar
distribution of small/large protein chains. Thus, subset
one contains 280 128 residues from 1989 chains, whereas
subset two contains 279 945 residues from 1988 chains.
Finally, we also report DISSPred's predictive accuracy on
four subsets of the dataset provided by the EVA secondary
structure prediction server [54]. The PDB codes and chain
identifiers as well as the SCOP class [55] of each chain in
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the above datasets are listed at DISSPred's website http://
comp.chem.nottingham.ac.uk/disspred.

The secondary structure can be assigned using DSSP [56],
STRIDE [57] or DEFINE [58]. Here, we use DSSP, the most
established method, which assigns the secondary struc-
ture using eight states: H (o-helix), G (3;4-helix), I (7-
helix), E (extended f-strand), B (isolated A-bridge), T
(turn), S (bend) and "_" (other/coil). Most of the existing
methods predict the secondary structure using a three-
state assignment. Therefore, we reduce the above repre-
sentation to three states, by assigning H, G and I to the
helix state (H), E and B to the extended state (E) and the
rest (T, Sand "_") to the coil state (C).

Since their first use by PSIPRED [6], PSI-BLAST [59] posi-
tion specific scoring matrices (PSSMs) are employed by
the majority of secondary structure prediction methods.
PSSMs are constructed using multiple sequence align-
ments and they provide crucial evolutionary information
about the structure of the protein. PSSMs have N x 20 ele-
ments, where the N rows correspond to the length of the
amino acid sequence and the columns correspond to the
20 standard amino acids. PSSMs represent the log-likeli-
hood of a particular residue substitution, usually based on
a weighted average of BLOSUMG62 [60], and are created
using the PSI-BLAST algorithm. We generated the PSSMs
using the BLOSUM®62 substitution matrix with an E-value
of 0.001 and three iterations against the nr database,
which was downloaded in February 2009. The data were
filtered by pfilt [61] to remove low complexity regions,
transmembrane spans and coiled coil regions. The PSSM
values were linearly scaled simply by dividing them by
ten. Typically, PSSM values are in the range [-7,7] but
some values outside this range may appear. Linear scaling
maintains the same distribution in the input data and
helps avoid numerical difficulties during training.

We used different coding schemes for the secondary struc-
ture prediction and the dihedral angle prediction. After
testing different local window sizes (w), we selected w =
15 for secondary structure prediction and w = 11 for dihe-
dral prediction, which give the highest predictive accuracy
for each case. Hence, using the PSSM values for each resi-
due, the input vector has length 15 x 20 for secondary
structure prediction and 11 x 20 for prediction of dihedral
angles. A local window, rather than just the individual res-
idue, allows the classifier to capture useful additional
information [2].

Our method consists of two different models, M1 and M2,
that predict secondary structure and backbone dihedral
angles, respectively (figure 1). M1 uses a local window of
15 residues. The input vector of M1 contains 15 x 20
scaled PSSM values, 20 for each residue in the fragment,
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Figure |

Schematic representation of our method. Firstly, the PSSM-only predictions are calculated. Then, they are used to aug-

ment the input vector and enhance the results.

and the output is one of the three states of secondary
structure: H, E or C. M2 uses a shorter window of 11 resi-
dues and the input vector consists of 11 x 20 scaled PSSM
values. The output of the model is an integer in the range
[0, n - 1], where n is the number of clusters used to identify
the dihedral angle regions. We systematically partitioned
the dihedral space into different numbers of clusters, from
two to 12. After the first run of the models using only the
PSSM values, the input vector of M1 was augmented with
n binary values, which were equal to unity if the residue
was predicted to be in that particular cluster and zero oth-
erwise. Only one of the n values can be equal to unity,
since the residue is predicted into a single cluster. Simi-
larly, the input vector of M2 was augmented with three
binary values, one for each secondary structure. This sec-
ond stage is iterated several times to improve the predic-
tions further. In other words, the predicted secondary
structures from model M1 and the predicted dihedral
clusters from model M2 at step m are used to augment the
input vector of models M2 and M1 respectively at step m
+ 1.

Prediction accuracy assessment

We used several measures to assess the performance of
DISSPred, most of them defined in the EVA server [54]. Q,4
is the three-state overall percentage of correctly predicted
residues:

3
1
Q;=100—— Y M; (2)
Nyes “=
where N,

s is the total number of residues and M;; is the
number of residues observed in state i and predicted in
state j, with i and j € {H, E, C} (i.e. M;;is the number of
residues predicted correctly in state 7). In the case of dihe-
dral prediction, i and j can be any number from 0 to nc -
1, where nc is the number of clusters. Moreover, we calcu-
late the per-state accuracy, the percentage of correctly pre-
dicted residues in a particular state:

M..
Q; =100 (3)
obs'
where obsi is the number of residues observed in state i.

Additionally, the Matthew's correlation coefficient [62],
C,;, provides a measure for the performance at each state:
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3 3
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j#i ki

3 3

j#i j#i

i

Finally, ErrSig is the significant deviation for three-state
accuracy, a measure used to distinguish between two
methods. It is defined as the standard deviation divided
by the square root of the number of proteins (SD/

\/Nprot )-

We use two additional measures to assess the accuracy of
dihedral prediction. Firstly, the mean absolute error
(MAE) is the average of the absolute distance between the
predicted and the real (observed) value, p and x, respec-
tively. In order to take in account the periodicity of the
dihedral angles, the MAE is calculated by:

N

res

min(| p; —x; |,[ 360 —(p; — x;)[)

MAE = !
Nres 4

(5)

The predicted value corresponds to the centre of the pre-
dicted cluster. Finally, it is interesting to see the fraction of
residues whose dihedral angles are predicted close to the
real value. Q;, score is the percentage of residues whose
predicted value is within 30° of the real value.

Results and Discussion

In the additional file 1, the cluster centroids and the
standard deviation of each cluster are shown, while addi-
tional file 2 shows all the different partitions of the ¢ - w
space as well as the distribution of secondary structure ele-
ment in each cluster. The helical residues belong mainly
to one compact, highly-populated cluster, while there are
clusters that consist mostly of strand residues, the most
difficult secondary structure element to predict. For the
above reason, the predictive accuracy of both helical and
extended residues is improved significantly after the pre-
dicted dihedral information is used. On the other hand,
the coil residues are distributed in different clusters, which
makes their prediction more difficult.

Table 1 shows the predictive accuracy of the secondary
structure at every stage of the iterative algorithm. Our
method achieves a cross-validated predictive accuracy of
80% after the first iteration when using predicted dihedral
data from EM clustering with seven clusters (figure 2).
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There is an improvement of 1.7% in the predictive accu-
racy when the predicted dihedral clusters are used
together with the PSSM values. The Q, score does not
improve in the subsequent iterations of the method.
However, the predictive accuracy of helical and extended
residues in some cases improves after each iteration; it is
up to 3.6% and 3% higher, respectively, after the third
iteration. On the other hand, the prediction of coil resi-
dues decreases slightly for a small number of clusters, but
it increases for large number of clusters after the first iter-
ation. In general, the prediction of coil residues is not
improved significantly when the dihedral information is
used. The explanation can be derived from the Ramachan-
dran plot. The coil residues are not highly localised in ¢ -
w space and, since there are no compact coil clusters, the
dihedral information given to the classifier is not particu-
larly useful. Interestingly, regardless of the clustering algo-
rithm or the number of clusters used, the predictive
accuracy improves significantly after the first iteration,
showing that even limited dihedral information can boost
the secondary structure prediction. Finally, the applica-
tion of the smoothing rules originally proposed in PHD
[4], which were used to improve the performance of
DESTRUCT [8], did not improve the predictive accuracy of
DISSPred.

Table 2 shows a comparison of DISSPred with other sec-
ondary structure prediction methods. Most of the meas-
ures presented show that DISSPred is more accurate than
other predictors. The three state accuracy (Q) achieved is
over 2% higher than other SVM-based methods (YASSPP
[21], PMSVM [18], SVMfreq [17] and SVMpsi [19]). More-
over, the predictive accuracy is higher than the accuracy
reported by the most successful methods that use multi-
layer ANNs (PSIPRED [6] and PHD [4]). The difference is
larger than the value of ErrSig measure (0.5), which shows
that DISSPred is significantly more accurate than other
methods. DESTRUCT [8], which achieves the closest Q4
accuracy to our method, also uses predicted dihedral
information to boost the results, which highlights the util-
ity of predicted dihedral angles in secondary structure pre-
diction.

Table 3 shows the analysis of the results for the two main
types of secondary structure: helix and strand. In particu-
lar, we analyse the predictions for helices and sheets with
more than three and more than two residues, respectively.
We assume that a secondary structure element is correctly
predicted if more than 65% of its residues are predicted
correctly. We find that 83.7% of the helices and 72.6% of
the strands are predicted correctly. Furthermore, we divide
the secondary structure elements into three categories
based on their length. Interestingly, long strands are more
difficult to predict than the short ones, whereas long heli-
ces are predicted more accurately than the short ones.
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Table I: The secondary structure prediction for CB513 dataset after three iterations.

CB513
DHR-Ist run DHR-2nd run DHR-3rd run
Category NC Q3(%) Qu(%) Qe(%) Qc(%) Q3(%) Qu(%) Qe(%) Qc(%) Qz(%) Qu(%) Qe(%) Qc(%)
PSSM-only 0 78.3 80.3 66.7 82.6
EM 2 79.3 82.3 68.5 82.5 78.3 8l1.1 68.0 81.2 79.0 83.0 69.1 81.0
3 79.4 82.6 68.7 82.3 78.3 81.3 68.0 81.0 79.1 83.8 68.9 80.6
4 79.5 82.8 68.6 82.4 78.3 81.3 68.0 81.0 79.2 83.8 69.0 80.8
5 79.9 83.4 69.2 82.7 78.4 81.2 68.2 8l.1 79.5 83.6 69.3 8l1.4
6 80.0 83.7 68.9 82.8 78.2 81.2 68.2 80.8 79.5 83.6 69.3 81.3
7 80.0 83.3 69.0 83.1 78.2 8l.4 67.9 80.9 79.4 83.6 69.3 81.3
8 79.8 82.9 68.6 83.1 78.1 81.7 67.8 80.2 79.4 84.2 69.3 81.6
9 799 828 69.2 83.2 78.2 81.6 67.9 80.7 79.3 843 69.5 80.3
10 79.8 83.0 68.5 83.3 78.3 81.7 68.2 80.6 79.4 83.7 69.7 80.9
Il 79.6 824 68.5 83.2 78.2 81.6 67.9 80.5 79.5 83.6 69.6 8l1.4
12 79.9 82.7 68.7 83.5 78.2 81.8 67.7 80.3 79.5 83.6 69.5 8l1.4
k-Means 2 79.3 82.1 68.8 82.5 78.2 8l1.1 68.2 8lI.1 747 84.4 62.2 73.1
3 79.6 82.8 69.2 82.4 78.2 81.3 68.0 8l.1 74.8 85.0 61.8 72.9
4 79.9 83.4 68.8 82.7 78.2 8l1.4 67.9 81.0 79.3 83.7 68.6 81.3
5 79.9 83.3 69.1 82.7 78.2 81.5 67.8 80.9 79.2 83.9 68.8 80.7
6 79.9 83.4 68.6 82.9 78.1 81.5 67.8 80.8 79.0 83.5 68.8 80.6
7 79.9 83.3 67.9 83.3 78.0 8l1.6 67.7 80.5 79.2 83.7 68.8 80.8
8 79.7 82.9 68.3 83.1 78.0 81.6 67.5 80.5 79.3 83.8 68.8 80.9
9 79.8 83.4 67.7 83.2 78.0 81.7 67.4 80.5 79.3 83.6 68.4 81.4
10 79.7 82.8 67.7 83.4 78.0 81.7 67.5 80.5 79.3 83.5 68.3 81.6
I 79.8 83.0 69.0 82.9 78.0 81.6 67.6 80.4 79.2 83.9 68.9 80.7
12 79.7 83.2 68.1 83.1 78.1 81.0 68.0 8l.1 79.2 829 68.7 81.5

The accuracy from the initial PSSM-only prediction is shown in the first row. In bold are the most accurate predictions based on Q3. NC = number
of clusters used to predict dihedral angles, DHR = input vector augmented by predicted dihedral cluster,

Finally, the terminal residues of the secondary structure
elements are more difficult to predict, with the N-terminal
residues predicted better than the C-terminal residues,
particularly in helices.

It is interesting to analyse how the predictive ability
changes in every cluster when the predicted dihedral
angles are used, shown in additional file 3. Unsurpris-
ingly, the prediction accuracy improves the most in clus-
ters that contain mainly helical residues. In particular, the
clusters with centroids around (-62°, -40°), which mainly
consist of residues in right-handed helices, and the clus-
ters with centroids around (75°, 17°), which mainly con-
sist of residues in left-handed helices, show significant
improvement. Moreover, clusters that contain mainly
strand residues are also predicted more accurately. On the
other hand, clusters that contain mainly coil residues or
mixed strand/coil or helix/coil residues do not show any
significant improvement. In fact, in some cases the addi-
tional dihedral information can decrease the predictive
accuracy. However, these clusters are not highly popu-

lated and, therefore, do not affect the overall accuracy sig-
nificantly.

Table 4 shows the predictive accuracy of dihedral angle
regions, using different number of clusters (from two to
12), with two different clustering algorithms. The predic-
tive accuracy improves significantly after the second run
of the method, mainly due to the improved secondary
structure prediction (see Table 1). Although the EM algo-
rithm performs worse than the k-Means algorithm for two
and three clusters, it gives more accurate results for the rest
of the partitions. Interestingly, our method performs par-
ticularly well for a small number of clusters; it achieves
predictive accuracy over 80% for two, three and four
regions of dihedral space. It outperforms other multi-class
prediction methods. Kuang et al. [35] reported three-state
accuracy of 78.7% and four-state accuracy of 77%. The
HMMSTR [26] alphabet can be transformed into four
states with a predictive accuracy of 74% [35]. Moreover,
DHPRED [37] achieved three-state accuracy of around
81% while LOCUSTRA [33] reports three-state accuracy of
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79.2%. DISSPred achieves a three-state accuracy of 81.2%
and a four state accuracy of 80.5%, using the EM cluster-
ing algorithm.

On the other hand, although the predictive accuracy is
low for large number of clusters, the predictions can pro-
vide important information about the local structure. We
explore this by calculating the MAE and Q5 score. Figure
3 shows that the MAE decreases and Q5 increases as we
increase the number of clusters after each iteration using
EM clustering. The best results are obtained after the sec-
ond iteration, which is in agreement with the predictive
accuracy shown in table 4. Additional file 4 shows the
results for the MAE and Q,, score using all different num-
bers of clusters with EM clustering after the second itera-
tion. Six and seven clusters give the lowest MAE and the
highest Q;, score and are presented in table 5. Therefore,
the structural information contained in a dihedral predic-
tion does not necessarily depend on the predictive accu-

racy. In fact, the improvement of secondary structure
prediction was higher when we used predicted dihedral
data from six and seven clusters. Notably, the MAE of our
method is comparable to the MAE reported by Real-SPINE
2.0and 3.0 [41,42], even though we only predict dihedral
states instead of real value dihedral angles. Real-SPINE 3.0
[42] has MAEs of 36° for the w angle (20°, 32° and 56°
for helix, strand and coil, respectively) and 22° for the ¢
angle (10°, 25° and 34° for helix, strand and coil, respec-
tively). Moreover, LOCUSTRA [33] reports MAEs of 24.7°
and 38.4° for ¢ and y, respectively, while ANGLOR [39]
achieves MAEs of 28° and 46° for ¢ and y, respectively.
Since, the above methods are trained on different datasets,
their MAEs should not be compared directly. We present
them here just to give a rough comparison between the
methods.

Tables 6 and 7 show the MAE for g and y, respectively, for
each amino acid. We use the number of clusters that gives

Table 2: Comparison of cross-validated predictive accuracy on CB513 dataset with other secondary structure methods.

Method Q; (%) Qu (%) Qe (%) Qc (%) Ch Ce Cc
DISSPred 80.0 + 0.5 833 69.0 83.1 0.77 0.68 0.62
PSIPRED 782 N/A N/A N/A N/A N/A N/A
PHD 747 N/A N/A N/A N/A N/A N/A
DESTRUCT 794 N/A N/A N/A N/A N/A N/A
YASSPP 778 N/A N/A N/A 0.71 0.64 0.58
PMSVM 75.2 80.4 71.5 72.8 0.71 0.61 0.61
SVMfreq 735 75.0 60.0 79.0 0.65 0.53 0.54
SVMpsi 76.6 78.1 65.6 8l.1 0.68 0.60 0.56
The results for PSIPRED, PHD and DESTRUCT were obtained from reference [8].
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Table 3: Prediction of the two main types of secondary structure:
helix and strand.

CB513
Measure Helix (I > 4 res) Stand (I > 3 res)
Qs¢s 83.7% 72.6%
Short (1< 8) 65.6% 74.8%
Med (8 </ < 15) 94.4% 57.1%
Long (I > 15) 97.3% 27.3%
N-term res 73.4% 62.7%
C-term res 62.5% 59.1%

I: length of the secondary structure element

Q.¢s5: the percentage of elements that have more than 65% of their
residues predicted correctly

Short: Q.5 of elements with length up to eight residues

Med: Q. of elements with length between nine and |5 residues
Long: Q.5 of elements with length more than |5 residues

N-term res: the percentage of elements whose first residue (N-
terminal) is predicted correctly

C-term res: the percentage of elements whose last residue (C-
terminal) is predicted correctly.

the lowest overall MAE (Table 5), which are seven clusters
for ¢ and six clusters for . Glycine has the largest error for
both angles, because is the smallest and the most flexible
amino acid and can take many different conformations
without steric restrictions. On the other hand, proline has
the smallest MAE for ¢, because its ring structure restricts
the ¢ angle to around -60°. Amino acids that have strong
helical preferences [63], such as alanine, methionine and
glutamic acid, have lower MAEs than the others. On the
other hand, amino acids with a high hydropathy index
[64], such as leucine, isoleucine and valine, also have low
MAEs. These residues are usually densely packed in the
hydrophobic protein core and, hence, they have limited

http://www.biomedcentral.com/1471-2105/10/437

flexibility compared to residues on the hydrophilic sur-
face. Finally, apart from glycine and proline, residues that
have coil preferences, such as asparagine and serine, have
the highest MAEs.

The per-residue predictive accuracy of both secondary
structure and dihedral clusters based on the SCOP classi-
fication of the protein chains is analysed in table 8. Unsur-
prisingly, residues in all-a proteins are predicted
particularly well, while the prediction of residues in all-g
proteins is less accurate. However, the secondary structure
prediction of all-f proteins is more accurate than the pre-
diction of strand residues shown in table 1. Notably, the
predictive accuracy of residues in mixed « - S proteins is
similar to the overall predictive accuracy for secondary
structure and dihedral angles, shown in table 1 and table
2, respectively. Residues in «/f proteins are predicted
slightly more accurately than residues in « + § proteins.

From table 1, it is clear that the secondary structure predic-
tion improves significantly after the first iteration when
the predicted dihedral angles from the initial run (PSSM-
only) are used. The subsequent iterations have no impact
on the prediction results. Similarly, there is significant
improvement in the dihedral prediction after the second
iteration when we use the predicted secondary structures
from first iteration. Therefore, we use only the iterations
that improve the predictions significantly to train DIS-
SPred using PDB-Select25 dataset, i.e. the first iteration for
dihedral prediction and the third iteration for both sec-
ondary structure and dihedral prediction are omitted,
because their results do not improve the predictions of the
subsequent iterations. The new design makes the training
process faster and, most importantly, it saves time predict-

Table 4: The cross-validated accuracy of dihedral prediction on CB513 dataset.

CB513
PSSM-only SSE-Ist run SSE-2nd run SSE-3rd run
NC EM (%) k-Means (%) EM (%) k-Means (%) EM (%) k-Means (%) EM (%) k-Means (%)
2 81.4 81.7 8l1.8 82.1 83.2 834 81.8 83.5
3 793 79.6 797 79.8 81.2 8l.1 79.6 81.2
4 787 74.5 79.0 744 80.5 76.1 79.0 75.8
5 65.0 63.8 65.2 64.1 66.9 65.3 65.2 65.0
6 63.7 59.2 63.8 59.3 65.5 60.4 63.7 60.1
7 56.5 54.6 56.8 54.7 58.3 56.0 56.8 55.4
8 53.8 53.7 54.0 53.8 55.4 55.1 53.9 54.6
9 53.8 501 54.0 51.0 553 523 54.0 51.7
10 52.9 50.2 53.1 50.3 54.5 51.6 53.0 51.0
I 50.3 48.5 50.6 485 51.8 49.7 50.6 49.1
12 47.0 41.2 472 41.5 484 423 47.2 42.1
NC: the number of clusters,
PSSM-only: input vector with only PSSM values,
SSE: input vector augmented with predicted secondary structure elements.
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(page number not for citation purposes)



BMC Bioinformatics 2009, 10:437

46 T 1 1 T I I 1 I T T 1
. PSSM «seeeeee
45 |- . 1st run .
--,__‘;-\,'_' 2nd run
“ar. 3rd run =
44 + \._“.“"'“‘ 2 run .
-, L TR, . .
. 43 F N e o ) 1
e ‘."v,‘ .- T A a8
g 42 + S mnmn- .
41 | q
40 | .
39 -
38 L 1 L 1 1 1 1 1 L 1 L
2 3 4 5 6 7 8 9 10 11 12
Number of clusters
?4 T T T T T T T T T T
PSSM sresesns
73 Istrun ==« =+ o
2nd run
2 3rd run == .
71 | 8
2 70} |
&
& 69 1
68 |- 8
67 | R
66 |- ’ .
65 1 1 1 L 1 L 1 | L 1 1
2 3 4 5 6 7 8 9 10 11 12
Number of clusters
Figure 3

http://www.biomedcentral.com/1471-2105/10/437

32
31 i

30

MAE (°)

28 |

27

25

2 3 4 5 6 7 8 9 10 11 12

T T T
78 | PSSM serenses |

2nd run
76 |

74 |

72 |

Q30 (%)

L 1 1 1 1 1 1 L L 1

66

3 4 5 6 7 8 9 10 11 12
Number of clusters

Top: the mean absolute error (MAE) after each iteration of the method for i angles (left) and ¢ angles (right).
Bottom: the percentage of predicted dihedral angles within 30° (Q;,) of the real values for i angles (left) and ¢ angles (right).

ing new structures. Table 9 shows the results for secondary
structure prediction using PDB-Select25 dataset. The
models are trained on one subset and tested using the
other. Since no chain in PDB-Select25 has a sequence sim-
ilarity over 25% with another chain in the dataset, the pre-
dictions are independent. The overall accuracy is identical
for both subsets. Models trained on subset one predict
helical and coil residues slightly better the models trained
on subset two, whereas they predict the strand residues
slightly worse. Finally, table 10 shows the results for dihe-
dral predictions on PDB-Select25 dataset. The predictive
accuracy for small number of clusters is similar to the
achieved accuracy using cross validation (table 4),
whereas when the number of clusters increases, the accu-
racy decreases significantly. This suggests that the parti-
tion may depend strongly on the dataset used to create the
dihedral clusters. Nevertheless, despite limited accuracy,
the dihedral prediction can be used to enhance secondary
structure prediction (table 9).

DISSPred server

Our method is available online at http://comp.chem.not
tingham.ac.uk/disspred/. DISSPred is written in Perl using
a CGI interface. Only FASTA files are accepted as input or
compressed archives, containing FASTA files. The user can
choose the preferred clustering algorithm and the number
of clusters. For each input file, one output file is created
that contains the amino acid type, the amino acid number
in the sequence, the predicted secondary structure, the
predicted dihedral cluster and the ¢ and w values of the
predicted cluster centre. The output files, together with the
log files, are sent to the user by e-mail after the calcula-
tions are completed. Table 11 shows DISSPred's predic-
tion accuracy, for different subsets of the dataset provided
by the EVA secondary structure prediction server [54],
compared with other secondary structure prediction serv-
ers: PSIPRED [6], PHDpsi [65], PROFsec [54], SAM-T99
sec [66], PROFking [9] and Prospect [67]. Note that the
results are not independent predictions, since some of the
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Table 5: The MAE and Q;, using six and seven clusters with EM
clustering.

CB513
¢ angle v angle

No. clusters [ 7 6 7

MAE (°) 25.8 25.1 385 385
MAE (°) 12.2 1.3 223 19.7
MAE; (°) 24.1 254 30.7 337
MAE, (°) 384 36.9 56.7 57.3
Q30 (%) 734 75.6 713 70.8
QHs, (%) 90.4 91.9 88.0 89.5
QE;, (%) 729 722 783 76.2
QG5 (%) 59.0 63.3 53.0 51.8

The mean absolute error (MAE) and the percentage of predicted
dihedral angles within 30° of the real value (Qj) for both backbone
dihedral angles ¢ and y after two iterations, using six and seven
clusters with EM clustering.

sequences in EVA dataset are homologous with some
sequences in PDB-Select25 dataset, which was used to
train DISSPred.

Conclusions

Using predicted secondary structure and dihedral angles,
our method improves the predictive accuracy of both sec-
ondary structure and dihedral angle prediction in an iter-

Table 6: The MAE of each amino acid for ¢ angle.

CB513 g-angle
AA MAE (°) MAE,(°) MAE.(°) MAE(°)
A 21.0 9.0 292 36.7
R 23.0 9.6 252 388
N 374 16.0 354 48.6
D 29.1 1.3 326 386
C 258 14.1 21.5 379
Q 22.1 9.4 28.1 36.7
E 21.2 9.1 272 36.7
G 60.3 324 86.9 64.8
H 309 15.9 31.7 41.6
I 17.0 9.7 16.4 29.0
L 17.8 9.1 19.2 317
K 23.3 10.3 27.0 356
M 19.7 9.8 239 324
F 242 12.5 223 39.3
P 13.4 10.4 13.1 14.2
S 30.1 13.2 348 386
T 24.1 12.7 222 324
w 245 12.6 27.3 36.5
Y 253 12.5 24.9 40.2
\% 18.0 9.6 17.0 30.1

The mean absolute error (MAE) of each amino acid for ¢ angle after
two iterations, using seven clusters with EM clustering.

http://www.biomedcentral.com/1471-2105/10/437

Table 7: The MAE of each amino acid for i angle.

CB513 - yangle

AA MAE(°) MAE(°) MAE.(°) MAE(°)
A 329 18.1 328 57.9
R 353 17.5 334 59.2
N 45.5 234 46.3 56.7
D 44.8 23.6 43.0 57.9
C 429 37.0 29.1 58.2
Q 35.0 16.5 383 58.2
E 34.0 17.1 359 59.2
G 56.4 36.5 60.3 63.7
H 434 29.1 372 57.8

[ 27.7 19.4 20.2 527
L 303 18.0 27.7 54.6
K 375 18.5 36.6 58.8
M 328 19.6 29.5 57.0
F 343 238 26.8 54.1
P 47.8 424 25.5 53.1
S 47.3 322 36.8 6l.1
T 41.8 27.6 27.5 60.0
wW 382 26.9 29.6 61.2
Y 37.0 25.6 31.6 55.5
\ 29.1 19.8 21.9 523

The mean absolute error (MAE) of each amino acid for y angle after
two iterations, using six clusters with EM clustering.

ative process using SVMs. The achieved secondary
structure Q accuracy of 80% on a set of 513 non-redun-
dant proteins shows that our method is more accurate
than other secondary structure prediction methods. The
dihedrally-enhanced secondary structure prediction
method significantly improved the predictive accuracy of
helical and extended residues. Moreover, the prediction of
dihedral angles is more accurate than other multi-state
dihedral prediction methods and achieves a MAE compa-
rable to the reported MAE of Real-SPINE 2.0 and 3.0
[41,42], a real-value dihedral predictor. The online ver-
sion of DISSPred was trained using the larger PDB-
Select25 dataset. We are currently investigating the use of

Table 8: Per-residue predictive accuracy based on the SCOP
classification of proteins in CB513 dataset.

CB513
SCOP class SSpred (%) DihPred3 (%) DihPred7 (%)
all-o 83.6 84.2 67.3
all-p 764 778 48.3
alp 8l.6 82.2 61.0
a+f 79.2 81.4 58.4
Other 759 778 533
All residues 80.0 81.2 583

The second column shows the secondary structure predictions while
columns three and four show the dihedral prediction using three and
seven clusters, respectively.
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Table 9: Secondary structure prediction on PDB-Select25
dataset.

http://www.biomedcentral.com/1471-2105/10/437

Table I I: Performance of DISSPred and other secondary
structure predictors on EVA dataset.

PDB-Select25

EVA subsets - Q;(%)

Measure Subsetl Subset2 Method EVAI EVA2 EVA4 EVA6
Qs (%) 79.7 79.7 DISSPred 81.7 81.9 81.9 82.0
ErrSig 0.24 0.24 PSIPRED 76.8 77.4 77.3 77.8
Qg (%) 82.3 82.6 PHDpsi 734 74.3 74.3 75.0
Qe (%) 719 713 PROFsec 755 76.2 76.4 76.7
Q¢ (%) 81.8 82.1 SAM-T99 sec 77.2 77.2 77.1 N/A
Cy 0.76 0.76 PROFking 71.6 71.7 N/A N/A
Ce 0.69 0.69 Prospect 71.1 N/A N/A N/A
Cc 0.62 0.62

Info 0.43 043 The results for the other methods were obtained from EVA

The second column shows the predictions for subset| when SVMs
are trained using subset2 and the converse is shown at the third
column. Info is a measure of the per-residue information content [4].

predicted dihedral angles as constraints for molecular
dynamics simulations and together with the secondary
structure predictions to facilitate predictions of protein
tertiary structure. Finally, we are working on enhancing
the prediction of tight turns in proteins using predicted
dihedral angles.
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Table 10: Dihedral prediction on PDB-Select25 dataset.

PDB-Select25

Subsetl Subset2
NC EM (%) k-Means (%) EM (%) k-Means (%)
2 82.9 83.0 82.5 83.1
3 79.0 79.0 789 79.1
4 74.6 71.5 74.2 72.1
5 59.8 57.3 59.5 57.5
6 58.9 53.4 58.4 535
7 48.6 48.0 48.5 47.8

Columns two and three show the predictions for subset| when SVMs
are trained using subset2 and the converse is shown in columns four
and five.

secondary structure prediction server.

Additional material

Additional file 1

Cluster centroids and standard deviation for each cluster. The cluster
centres with the standard deviation of each cluster are shown for all the
different partitions of the ¢ - \y space are shown using EM and k-Means
clustering.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-437-S1.PDF]

Additional file 2

Clustering and secondary structure distribution in every cluster. All
the different partitions of the ¢ - y space are shown using EM and k-
Means clustering as well as the distribution of secondary structure element
in each cluster.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-437-S2.PDF]

Additional file 3

Secondary structure prediction in every cluster before and after using
additional dihedral information. The impact of additional dihedral
information on the secondary structure prediction in every cluster is pre-
sented.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-437-S3.PDF]

Additional file 4

The MAE and Qj, after the second iteration of DISSPred using EM
clustering. The mean absolute errors (MAEs) and the percentage of pre-
dicted dihedral angles within 30° of the real value (Q;,) for both back-
bone dihedral angles ¢ and \y after two iterations of our method using EM
clustering. In bold are the best results in every case.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-437-S4.PDF]
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