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Abstract
Background: Prediction of protein-protein interaction sites is one of the most challenging and
intriguing problems in the field of computational biology. Although much progress has been
achieved by using various machine learning methods and a variety of available features, the problem
is still far from being solved.

Results: In this paper, an ensemble method is proposed, which combines bootstrap resampling
technique, SVM-based fusion classifiers and weighted voting strategy, to overcome the imbalanced
problem and effectively utilize a wide variety of features. We evaluate the ensemble classifier using
a dataset extracted from 99 polypeptide chains with 10-fold cross validation, and get a AUC score
of 0.86, with a sensitivity of 0.76 and a specificity of 0.78, which are better than that of the existing
methods. To improve the usefulness of the proposed method, two special ensemble classifiers are
designed to handle the cases of missing homologues and structural information respectively, and
the performance is still encouraging. The robustness of the ensemble method is also evaluated by
effectively classifying interaction sites from surface residues as well as from all residues in proteins.
Moreover, we demonstrate the applicability of the proposed method to identify interaction sites
from the non-structural proteins (NS) of the influenza A virus, which may be utilized as potential
drug target sites.

Conclusion: Our experimental results show that the ensemble classifiers are quite effective in
predicting protein interaction sites. The Sub-EnClassifiers with resampling technique can alleviate
the imbalanced problem and the combination of Sub-EnClassifiers with a wide variety of feature
groups can significantly improve prediction performance.

Background
Protein-protein interactions are critical to nearly all
aspects of cellular function, such as regulation of meta-
bolic and signaling pathways, immunological recogni-
tion, DNA replication and gene translation, as well as
protein synthesis [1]. In particular, identifying the bind-

ing sites between two interacting proteins provides impor-
tant clues to the function of a protein and the structural
elucidation of protein complexes, thus helps identifying
pharmacological targets and guides drug design. Hence,
solving the puzzle of predicting the interaction sites is of
great significance to molecular recognition.
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Many of the existing studies focus on the identification of
protein-protein interaction sites with specific physico-
chemical and geometric characteristics. Binding sites have
been widely observed to be more hydrophobic, planar,
globular and protruding than outer surfaces [2-6]. Differ-
ent amino acid compositions have also been found
among the interaction sites of homo-permanent com-
plexes, homo-transient complexes, hetero-permanent
complexes, and hetero-transient complexes [7]. Interfaces
have a significant number of polar residues [8,9], where
usually the interactions are less permanent [10]. Through
alanine-scanning mutagenesis, it has been observed that
the binding free energy is not distributed equally across
these protein interfaces. Residues of interface, protein
core, and non-interface surface are found significantly dif-
ferent in sequence entropy and secondary structure [11].
However, secondary structure composition appears to be
of little discriminatory power, because neither α-helices
nor β-sheets dominate at transient binding sites [12]. Fur-
thermore, evolutionary profiles and conservation score
have been used in locating binding sites [13-15] with
some success, since the interface core tends to be more
conserved than the periphery in both obligate and non-
obligate cases [16].

Based on different kinds of characteristics, several
machine learning approaches have been proposed for pre-
dicting protein-protein interaction sites, such as neural
networks [15,17-19], support vector machines [13,14,20-
24], Bayesian network [25], hidden Markov models [26]
and conditional random fields [27]. For these methods, a
local neighborhood or a window is used as input, to pre-
dict protein-protein interface residues at a particular
amino acid sequence, with a single characteristic or a com-
bination of features, such as hydrophobic distribution,
residue composition, sequence profile, evolutionary con-
servation, accessible surface area, structural conservation
score, and so on.

Although much progress has been made, the problem of
predicting interaction sites is still far from being solved.
There are several reasons for this difficulty. Firstly, specific
biological properties for precisely identifying protein-pro-
tein interaction sites are not fully exploited [28], no single
parameter can absolutely differentiate interfaces from
other surface patches [22,29]. For example, hydrophobic-
ity is an average characteristic of interacting surfaces in
homodimers, but has only limited power of predicting
interaction sites in some types of complexes. A number of
studies have attempted to combine more than one of
these characteristics discussed above. Secondly, the exist-
ing techniques, which use conventional orthogonal
encoding or information derived directly from the amino
acid sequences as input to predict the protein-protein
interaction residues, are similar in performing string anal-

ysis on protein sequences [23]. Thirdly and also most
importantly, the imbalanced problem exists widely in
protein interaction site prediction because the number of
interacting sites of a protein is usually much smaller than
that of non-interacting sites [28]. The imbalanced data
tends to cause over-fitting and poor performance, in par-
ticular on the interacting class. To solve the imbalanced
problem, a series of solutions have been proposed at both
algorithmic and data levels, including one-class learning
algorithm, feature selection, and resampling technique.

Recently, Zhao et al. [30] proposed a new algorithm with
a hybrid sampling technique and a committee of classifi-
ers, which have been successfully applied to protein
homology detection. Chen and Jeong [28] developed a
random forest-based integrative model, which consists of
multiple decision tree predictors with randomly selected
variable subsets. Improved performance was achieved in
comparison with two other sequence-based methods
[13,31] by aggregating the predictors. In this study,
inspired by the methods used by Zhao and Chen, we pro-
pose a hybrid approach, which incorporates bootstrap
resampling technique, SVM-based fusion classifiers and
weighted voting strategy, to overcome the imbalanced
problem and consequently improve the performance of
protein interaction sites prediction. Also, a wide variety of
features are extracted from amino acid sequences and
structures. They are grouped into four categories and
transformed by two methods. Therefore, a total of eight
different feature spaces are obtained to further improve
the performance of the hybrid approach. The experi-
ments, using a 10-fold cross validation procedure on 99
polypeptide chains, produce promising results and vali-
date the effectiveness of the proposed approach.

Methods
Datasets
The datasets used in this study are quite similar to those in
the works by Chen and Jeong [28]. Firstly, the individual
proteins are extracted from a set of 70 protein-protein het-
erocomplexes used in the study of Chakrabarti and Janin
[32]. Proteins with sequence identity less than 30% are
subsequently obtained after removing redundant proteins
and molecules with less than 10 residues. Some proteins
that are not available in HSSP [33] and DSSP [34] pro-
grams are also omitted. As a result, 99 polypeptide chains
are extracted from 54 heterocomplexes, which can be
grouped into six categories according to the scheme of
Chakrabarti and Janin [32]. The categories and the
number of representatives in each category (the values in
the parentheses) are as follows: antibody antigen (29),
protease-inhibitor (19), enzyme complexes (14), large
protease complexes (8), G-proteins (13) and miscellane-
ous (16). The surface residues are defined based on their
relative solvent accessible surface area (RASA), which is
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calculated by the DSSP program [34]. A residue is consid-
ered as a surface residue if its RASA is greater than 25%. A
total of 13,771 surface residues are collected from all these
polypeptide chains. Furthermore, a surface residue is
defined to be an interface residue if its calculated ASA in
the complex (CASA) is less than that in the monomer
(MASA) by at least 1Å2 [8]. By this way, the number of
protein-protein interaction sites is about 10% (2,828 res-
idues) of the whole set of residues contained in the
selected polypeptide chains (27,442 residues). Therefore a
total of 2,828 interaction sites are obtained as positive
samples and 24614 non-interface residues are defined as
negative samples (Additional file 1: Dataset).

Evaluation measures
The performance of the proposed ensemble method is
measured using 10-fold cross-validation. Each data set is
randomly divided into ten subsets with an approximately
equal number of polypeptide chains. Each classifier is
trained and tested ten times with one dataset. And for
each time, nine subsets are used as training data and the
remaining subset is used as test data.

Some widely used measures in information retrieval
research are adopted in this study, such as sensitivity
(recall), specificity, correlation coefficient (CC) and AUC
(area under ROC curve) score. These measures are defined
as follows:

where the TP, FP, TN and FN are abbreviations of the
number of true positive, the number of false positive, the
number of true negative and the number of false negative,
respectively. The AUC score is the normalized area under
the ROC curve. The ROC curve is plotted with true posi-
tives as a function of false positives for various classifica-
tion thresholds.

Feature extraction
In our experiment, a wide variety of characteristics are
selected for the protein interaction sites classification,
including physicochemical features, evolutionary conser-
vation score, information entropy, position-specific scor-
ing matrices (PSSMs), solvent accessible area (ASA),
normalized atom contacts (NCa) and normalized residue
contacts (NCr).

Physicochemical features
The six physicochemical properties of amino acids are
hydrophobicity, hydrophilicity, polarity, polarizability,
propensities and average accessible surface area (Addi-
tional file 2: Physicochemical features). The original val-

ues of the six physicochemical properties for each amino
acid are obtained from the AAindex database [35].

Evolutionary conservation score
Evolutionary conservation score is based on multiple
sequence alignments (MSAs) and phylogenetic tree. Fol-
lowing the method used by ConSurf [36], amino acid
sequences similar to each other in the PDB [37] are col-
lected by using PSI-BLAST [38] and then multiple aligned
by using MUSCLE [39]. The evolutionary conservation of
each amino acid position in the alignment is calculated by
using the Rate4Site algorithm [40].

Sequence entropy
Sequence entropy values for residues are extracted from
the HSSP database [33]. They are normalized over the
range of 0-100, with the lowest sequence entropy values
corresponding to the most conserved positions [11].

Position-specific scoring matrices (PSSMs)
PSSMs are taken from multiple sequence alignment
obtained by PSI-BLAST [38] searching against NCBI non-
redundant database ftp://ftp.ncbi.nih.gov/blast/db/, with
parameters j = 3 and e = 0.001.

Solvent accessible area (ASA)
ASA features represent the relative accessible surface areas,
which are calculated by using DSSP program [34] for each
residue in the unbound state.

Normalized atom contacts (NCa)
The normalized atom contacts (NCa) of a residue (e.g. the
i-th residue) are computed by summing all atom contacts
(Ca) between the residue and any other amino acid (e.g.
the j-th residue) in the sequence, then dividing the sum by
the number of atoms in the residue (Na(i)), as described
by Equation (1). Contact between two atoms (Ca) is
defined in Equation (2). This equation shows that if two
atoms are located within a cutoff distance of 5.0Å [41-43],
then they are in contact. Atoms contained in neighboring
residues are not considered to be in contact.
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Normalized residue contacts (NCr)
Similarly, the normalized residue contacts (NCr) of the
target residue are calculated by summing all residue con-
tacts of the residue and dividing the sum by the number
of atoms in the residue, as represented in Equation (3).
The contact between two residues is defined in Equation
(4), which indicates that if one residue contact exists, at
least one atom contact exists between the two residues.

Based on previous studies and our experimental valida-
tion, the above characteristics are combined into four
groups so as to get better performance.

• Group 1 - physicochemical features, evolutionary
conservation score and sequence entropy.

• Group 2 - position-specific scoring matrices
(PSSMs), evolutionary conservation score and infor-
mation entropy.

• Group 3 - position-specific scoring matrices
(PSSMs), solvent accessible area (ASA), normalized
atom contacts (NCa) and normalized residue contacts
(NCr).

• Group 4 - physicochemical features, solvent accessi-
ble area (ASA), normalized atom contacts (NCa) and
normalized residue contacts (NCr).

Thus, we can extract 8, 22, 23, 9 features for group 1,
group 2, group 3 and group 4, respectively. No structure-
based feature is contained in the first two feature groups,
while there is no evolutionary information included in
the last feature group. In order to build predictors for
interaction site classification, each polypeptide chain with
these features needs to be converted into a fixed length
feature vector. Most of the existing techniques use the con-
ventional orthogonal encoding for this transformation. In
this paper, we utilize both conventional orthogonal encoding
and auto covariance (AC) transformation for each feature
group. The conventional orthogonal encoding uses input
vector of 21 contiguous amino acid residues, correspond-
ing to a sliding window containing the target residue and
10 neighboring residues on either side of the target resi-
due. Each of the 21 residues in the window is represented

by 8-bit, 22-bit, 23-bit and 9-bit vector for the four feature
groups respectively.

Auto cross covariance transformation (ACC) is a new fea-
ture representation, which has been adopted by more and
more investigators for protein classification [44,45]. ACC
results in two kinds of variables, AC between the same
descriptor, and cross covariance (CC) between two differ-
ent descriptors. For each residue sequence, AC variables
describe the average interactions between residues, in a
certain range of d throughout the whole sequence, as rep-
resented in Equation (5). Here j represents one descriptor,
j = 1,2, �, D (D is the number of descriptors); i denotes
the position in the sequence; L is the length of the amino
acid sequence and lg is the maximum of d (d = 1,2, �, lg).
The number of AC variables for each sequence can be cal-
culated as lg*D.

In this paper, we use only the AC variables to transform
the numerical vectors of 21 contiguous amino acid resi-
dues into uniform matrices, with parameter lg = 10. Since
the total number of CC variables is about D - 1 times as
many as that of AC variables, there will be thousands of
dimensions in feature space after ACC transformation. If
a combination of AC and CC variables is adopted,
although a little better performance may be obtained, it
would be rather costly in running time and unsuitable
especially for an ensemble classifier. More details about
auto cross covariance transformation can be seen in our
previous work [46].

With the four feature groups and the two transform meth-
ods described above, we can obtain eight different feature
spaces.

Sub-Ensemble classifiers
In this section, we first present a component ensemble
classifier, namely Sub-EnClassifier, to effectively utilize
every feature space and to handle the imbalanced classifi-
cation problem. Figure 1 shows the overview of the pro-
posed component ensemble classifier. As in most cases,
the number of non-interaction sites (majority class) is
much more than that of interaction sites (minority class),
and the ratio of sizes between them is usually larger than
three. To deal with the imbalanced problem, the Sub-
EnClassifier uses an ensemble of m classifiers and decision
fusion technique on the training set of each feature space.
An asymmetric bootstrap resampling approach [47,48] is
adopted to generate subsets for all component classifiers.
It performs random sampling with replacement only on
the majority class so that its size is equal to the number of
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minority samples, and keeps the entire minority samples
in all subsets.

In the first step, the majority class of non-interaction sites
is under-sampled and split into m groups by random sam-
pling with replacement, where each group has the same or
similar size as the minority class of interaction sites. After
the sampling procedure, we obtain m new datasets from
the set of non-interaction sites. Each of the new dataset
and the set of interaction sites are combined into m new
training sets. Then, we train m classifiers by using the m
new training sets as inputs, with one classifier correspond-
ing to one training set. Each of these classifiers is a Support
Vector Machine (SVM). Here the LIBSVM package 2.8
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ is used with

radial basis function as the kernel. Finally, a simple major-
ity voting method is adopted in the fusion unit, and the
final result is determined by majority votes among the
outputs of the m classifiers for further processing with 10-
fold cross-validation.

Combination of Sub-Ensemble classifiers of different 
feature spaces with weighted voting
Since there are eight different feature spaces established by
the four feature groups and the two transform methods,
for each feature space, we generate a Sub-EnClassifier. Fig-
ure 2 is the schematic diagram for an ensemble classifier
that combines eight Sub-EnClassifiers. The final output of
the ensemble classifier is the weighted fusion of the out-
puts produced by the eight individual Sub-EnClassifiers.

Overview of the sub-ensemble classifierFigure 1
Overview of the sub-ensemble classifier. The number of non-interaction sites is much more than that of interaction sites.
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Suppose the ensemble classifier  (called Ensemble-1) is
expressed in Equation (6), where 1, 2, �, 8 represent the
eight Sub-EnClassifiers, the symbol ⊕ denotes the fusing
operator.

Concretely, the process that the ensemble classifier
(Ensemble-1) works by fusing the eight Sub-EnClassifiers
i (i = 1,2, �, 8) can be formulated as follows:

where wj is the weight of the j-th Sub-EnClassifier, Pj indi-
cates the prediction made by the j-th Sub-EnClassifier.

In order to get proper weight parameters (wj) that would
result in a classifier with good predicting performance, a
restricted grid search method is introduced in this work.
Comparing with many other optimization algorithms, the
grid search may find a global, rather than a local, opti-
mum, but it might be rather costly in computation time.
We develop a restricted grid search strategy to select the
values of these eight weight parameters. The principles of
this strategy are: (1) the weight of any Sub-EnClassifier
can only take the values from 0 to 1, with a step of 0.05;
and (2) the sum of the weights of all eight Sub-EnClassifi-
ers should be equal to 1. With the two restrictions, the
search space for the eight parameters is effectively limited

C C C C C C C C C= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕1 2 3 4 5 6 7 8
(6)

Y w Pj j

j

= ×
=

∑
1

8

(7)

Schematic diagram of ensemble classifiersFigure 2
Schematic diagram of ensemble classifiers. The Ensemble-1 utilizes all features while Ensemble-2 and Ensemble-3 use the 
first four and the last two feature spaces respectively.
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to a reasonable size. To evaluate the performance of the
ensemble classifier, a two-level 10-fold cross-validation is
conducted. For each round in the first level, nine folds of
examples are utilized to train the Sub-Ensemble classifiers
and the remaining fold is used as test set, based on the test
results of which, a second level 10-fold cross-validation is
implemented, where nine folds of the test results are used
to select optimal parameters for weighted voting and the
remaining test results are used to test.

In some occasions, the evolutionary information cannot
be obtained if no homologue of the query protein is
found. On the other hand, the structure information is
often unavailable for many proteins since the number of
proteins with known structures is much smaller than that
of proteins with known sequences. To handle the prob-
lem of incomplete or missing data, two special ensemble
classifiers are designed. The sequence-based classifier
(called Ensemble-2) uses the first four feature spaces that
contain no structure-based feature, formally, 1⊕2⊕3⊕4,
and the Ensemble-3 utilizes the last two feature spaces
without evolutionary information, that is, 7⊕8. These two
ensemble classifiers are trained in the same way as Ensem-
ble-1.

Results and Discussion
Evaluation of different feature combinations
In previous studies, many combinations of features have
been adopted to get improved predictions of protein
interaction sites, these combinations include: sequence
profile and evolutionary rate [13]; position-specific scor-
ing matrix (PSSM) and accessible surface area (ASA) [23];
sequence profile, ASA and evolutionary conservation
score [27]; sequence profile, ASA and structural conserva-
tion score [21]; physicochemical features, evolutionary
conservation score, amino acid distance and PSSM [28].
Based on these studies, we construct a variety of compo-
nent ensemble classifiers (Sub-EnClassifiers) to investi-
gate the performance of different feature combinations,
the detailed results are depicted in Table 1. It can be seen
that classifiers with combined features outperform the
classifiers based on component attributes alone. When
the physicochemical features are combined with evolu-
tionary conservation score and sequence entropy, there is
at least 5% increase in AUC score, 4% increase in sensitiv-
ity and specificity. The combination of PSSM, evolution-
ary conservation score and sequence entropy outperforms
the combination of PSSM and evolutionary conservation
score, with a 2% improvement on AUC score, which
means that sequence entropy is helpful to performance
enhancement. When the feature ASA is combined with
normalized atom contacts (NCa) and normalized residue
contacts (NCr), the improvement on performance is
impressive, at least 3% increase in AUC score and sensitiv-
ity, which implies that the novel features NCa and NCr

play an important role in performance improvement.
Among these feature groups, the combination of PSSM,
ASA, NCa and NCr obtains the best performance, with a
AUC score more than 0.84. The combination of physico-
chemical features, ASA, NCa and NCr also gains a rela-
tively high performance. These enhancements on
performance indicate that the features contained in the
combinations may be complementary, and that exploit-
ing this complementarity is helpful for predicting interac-
tion sites.

Performance of Sub-EnClassifiers
Before applying the proposed method to predict protein
interaction sites, the value of parameter m in Figure 1
needs to be determined. The parameter m represents the
number of negative examples (non-interaction sites) par-
titions and the number of classifiers in the Sub-EnClassi-
fier to be trained. In this study, four Sub-EnClassifiers are
constructed for each feature group with different values of
m. Figure 3 shows the impact of parameter m on the AUC
score. A remarkable improvement can be found on AUC
score when m increases from 1 to 20. However, after m is
larger than 20, its impact on performance is slight. In
order to maximize the use of negative examples and
restrict the computational cost to a reasonable level, a
value of 100 is chosen for the parameter m in this paper
after carefully tuning.

To evaluate the performance of the proposed Sub-EnClas-
sifiers, a comparison experiment is conducted by using
imbalanced data, randomly trimmed data and our re-
sampled data. Such comparison experiment has been
widely conducted in previous studies. The imbalanced
data includes the complete examples in the original data-
sets, and the the randomly trimmed data is generated by
selecting negative examples randomly with a 1:1 ratio of
positive to negative examples. The imbalanced data and
the trimmed data are used directly for SVM classifier train-

Table 1: The results of the classifiers with different features and 
feature combinations.

Features AUC Sensitivity Specificity

Phy 0.67536 0.58547 0.66764
PSSM 0.75496 0.68039 0.68796
ASA 0.74781 0.76540 0.65852

Phy+ECS+Entropy* 0.72944 0.62285 0.70575
PSSM+ECS 0.75812 0.69484 0.67211
PSSM+ECS+Entropy* 0.77802 0.69670 0.71086
ASA+NCa+NCr 0.77408 0.79943 0.65921
PSSM+ASA+NCa+NCr* 0.84647 0.76836 0.76798
Phy+ASA+NCa+NCr* 0.83079 0.73978 0.75002

Phy means physicochemical features while ECS is the abbreviation of 
evolutionary conservation score. The symbol '*' denotes the selected 
feature group.
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ing. It is worth pointing out that all of the SVM classifiers
use the same parameters. Table 2 shows the experimental
results, where the first column denotes the inputs of four
feature groups. It can be seen from Table 2 that the results
on the balanced data are better than that on imbalanced
data and trimmed data for any feature group. The results
also show that imbalanced data can lead to higher specif-
icity but lower sensitivity. The comparison results confirm
that Sub-EnClassifiers with the proposed re-sampling

technique can effectively deal with imbalanced data and
obviously improve prediction performance.

Parameter selection with restricted grid search
Based on each fold of the first level cross-validation results
from Sub-EnClassifiers, a restricted grid search method is
conducted to select optimal weight parameters for
weighted voting with a second level 10-fold cross-valida-
tion. It uses AUC score as weighting scheme to assess the
performance of different parameter combinations. For
each time in the second level cross-validation, the test
results from Sub-EnClassifiers are divided into ten folds,
nine folds of which are utilized to select optimal parame-
ters that maximize the AUC score, and the remaining fold
is used as test set. The parameters of Ensemble-1 selected
in each round are shown in Table 3, Sub-EnClassifiers
with higher predicting performance seem to get relatively
higher weight.

Performance of ensemble classifiers with weighted voting
In this section, the performance of ensemble classifiers
with weighted voting is investigated. Figure 4 shows the
ROC curves of the ensemble classifiers with different
inputs. The ROC curves are constructed by changing the
threshold we put on the results of weighted voting. The
classifier Ensemble-1 uses all of the eight feature spaces,
while the sequence-based Ensemble-2 uses the first four
feature spaces without structure-based features and
Ensemble-3 uses the last two feature spaces without evo-
lutionary information. The random shuffle test uses ran-
domly labeled sets that are generated by randomly
shuffling the class labels for all the examples. From Figure
4 we can see that the areas under the four curves are about
0.86, 0.79, 0.83 and 0.49 respectively. This clearly indi-
cates that the three ensemble classifiers are all significantly

Performance vs. the value of mFigure 3
Performance vs. the value of m. The curves illustrate 
AUC scores obtained from Sub-EnClassifiers for four feature 
groups, with different values of m.

Table 2: The results over imbalanced, trimmed and balanced 
data. 

Features Dataset AUC Sensitivity Specificity

Group 1 Imbalanced 0.71815 0.23618 0.95589
Trimmed 0.69259 0.60103 0.67216
Balanced 0.72944 0.62285 0.70575

Group 2 Imbalanced 0.74139 0.26960 0.96100
Trimmed 0.74575 0.73217 0.62533
Balanced 0.77802 0.69670 0.71086

Group 3 Imbalanced 0.81745 0.37526 0.95015
Trimmed 0.81670 0.72653 0.74426
Balanced 0.84647 0.76836 0.76798

Group 4 Imbalanced 0.80099 0.27180 0.96929
Trimmed 0.79362 0.72478 0.71542
Balanced 0.83079 0.73978 0.75002

The imbalanced data includes all examples in the original datasets; the 
trimmed data owns all positive examples and randomly selected 
negative examples, with a 1:1 ratio of positive to negative examples; 
the balanced datasets are generated by Sub-EnClassifiers with 
resampling technique.

Table 3: Optimal weight parameters of Ensemble-1 selected by 
the restricted grid search on each round of 10-fold cross-
validation. 

Round w1 w2 w3 w4 w5 w6 w7 w8

1 0.0 0.0 0.2 0.1 0.0 0.4 0.05 0.25
2 0.05 0.0 0.1 0.1 0.0 0.35 0.0 0.4
3 0.05 0.15 0.0 0.1 0.0 0.35 0.0 0.35
4 0.0 0.0 0.0 0.05 0.0 0.35 0.05 0.55
5 0.0 0.0 0.05 0.0 0.0 0.6 0.0 0.35
6 0.05 0.15 0.0 0.05 0.2 0.35 0.0 0.2
7 0.05 0.0 0.05 0.3 0.1 0.4 0.0 0.1
8 0.0 0.0 0.0 0.0 0.0 0.4 0.05 0.55
9 0.0 0.0 0.05 0.0 0.0 0.75 0.1 0.1
10 0.1 0.1 0.0 0.0 0.15 0.4 0.0 0.25

A total of 100 groups of parameters are obtained in the two-level 10-
fold cross-validation. Since the parameters selected in the second 
level cross-validation are similar to that of each round, only a 
representative group of parameters for each second level cross-
validation is listed here.
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better than a random predictor. Also, the performance of
Ensemble-1 is better than that of Ensemble-2 and Ensem-
ble-3. For example, with a specificity rate of 0.75, the sen-
sitivities of Ensemble-1, Ensemble-2, Ensemble-3 and
random shuffle test are 0.80, 0.69, 0.74 and 0.25, respec-
tively.

Figure 5 shows the distribution of the number of proteins
against different performance measures of Ensemble-1 for
99 polypeptide chains. This experiment is based on the
complete dataset, with which eight Sub-EnClassifiers are
constructed for weighted voting. In Figure 5, The horizon-
tal axis stands for thresholds of different performance
measures, including AUC, sensitivity, specificity and accu-
racy; the vertical axis means the number of proteins in the
prediction results satisfying different performance thresh-
olds, a larger value corresponds to better prediction per-
formance. It can be seen that the AUC scores are greater
than 0.7 for over 85% of the proteins. The distributions
against sensitivity and specificity values indicate that there
is a quite good balance of prediction accuracy between
positive examples and negative examples. When the meas-
ure threshold exceeds 0.6, there are at least 75% of pro-
teins for sensitivity, while more than 78% of proteins for
specificity. Furthermore, at least 60% residues are cor-
rectly classified for over 85% of the proteins.

In order to compare the effectiveness of the ensemble clas-
sifiers with that of component Sub-EnClassifiers, we list in

Table 4 the performance of these classifiers. For the AUC
score, Ensemble-1 with complete features outperforms all
component Sub-EnClassifiers, while Ensemble-2 and
Ensemble-3 are also more effective than the first four
sequence-based Sub-EnClassifiers. Some component Sub-
EnClassifiers have lower sensitivities though their specifi-
cities are relatively higher, which indicates that these clas-
sifiers have more false negatives. The results in Table 4
also verify the effectiveness of the ensemble strategy with
weighted voting.

ROC curves of ensemble classifiers with different inputsFigure 4
ROC curves of ensemble classifiers with different 
inputs. The four curves are obtained based on Ensemble-1, 
Ensemble-2, Ensemble-3 and randomly shuffled test, respec-
tively. The Ensemble-1 classifier uses all the features, while 
Ensemble-2 uses only sequence features without structure 
information and Ensemble-3 uses the last two feature spaces 
without evolutionary information.

Interaction site prediction: the distribution of the number of proteins against different performance measure thresholds for 99 polypeptide chainsFigure 5
Interaction site prediction: the distribution of the 
number of proteins against different performance 
measure thresholds for 99 polypeptide chains. The 
horizontal axis stands for thresholds of different perform-
ance measures, including AUC, sensitivity, specificity and 
accuracy; the vertical axis means the number of proteins in 
the prediction results satisfying different performance 
thresholds, a larger value corresponds to better prediction 
performance.

Table 4: Performance comparison: ensemble classifiers vs. Sub-
EnClassifiers

Methods AUC Sensitivity Specificity

Sub-EnClassifier1 0.65289 0.45974 0.73808
Sub-EnClassifier2 0.72944 0.62285 0.70575
Sub-EnClassifier3 0.70759 0.46654 0.81004
Sub-EnClassifier4 0.77802 0.69670 0.71086
Sub-EnClassifier5 0.70238 0.47541 0.79535
Sub-EnClassifier6 0.84647 0.76836 0.76798
Sub-EnClassifier7 0.64221 0.39094 0.76555
Sub-EnClassifier8 0.83079 0.73978 0.75002

Ensemble-1 0.86273 0.76334 0.78611
Ensemble-2 0.79189 0.74009 0.70019
Ensemble-3 0.83117 0.73637 0.75139
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Comparison with other classification methods
Since the datasets utilized in our experiments are quite
similar to those in the work by Chen and Jeong [28], it is
reasonable to compare our ensemble classifier with Chen
and Jeong's method directly. As described in Chen and
Jeong's paper, with a specificity of 0.7, they achieved a
sensitivity of 0.73 and a CC value of 0.28, while our
ensemble method with complete features (Ensemble-1)
obtains a sensitivity of 0.83 and a CC value of 0.37, and
our sequence-based classifier (Ensemble-2) reaches a sen-
sitivity of 0.74 and a CC value of 0.29. Comparing with
the random forest-based model, both our ensemble clas-
sifier with complete features and our sequence-based clas-
sifier achieves better prediction performance. It is worth
emphasizing that the number of features used in our
sequence-based classifier is much smaller than that in
Chen and Jeong's work.

Moreover, we compare our proposed classifiers with other
two methods. The first method was proposed by Wang et
al. [13], which uses PSSM and evolutionary conservation
score with 11 neighbor residues, the second was intro-
duced by Nguyen et al. [23], which uses PSSM and acces-
sible surface areas (ASA) with 15 neighbor residues. Both
of the two methods use SVM to construct classifiers. For
the sake of making a fair performance comparison, we
implement Wang' and Nguyen's methods to classify the
same datasets of ours with 10-fold cross-validation. The
results are shown in Table 5, which indicate that our
ensemble classifier (Ensemble-1) produces the best AUC
score of 0.86, compared to Wang's 0.72 and Nguyen's
0.80. The classifier Esemble-3 without using evolutionary
features also outperforms Nguyen's and Wang's methods
considerably. For the sequence-based ensemble classifier
Ensemble-2, its performance is nearly similar to that of
Nguyen's method but better than that of Wang's method.
In addition, prediction results of Nguyen's are also
observed a lower sensitivity and a higher specificity, which
indicates that positive examples are predicted much worse
than negative examples, probably because of the imbal-
anced datasets used in the experiments. Furthermore, the
distribution of protein number versus AUC score thresh-
old for the four methods are plotted in Figure 6, where a
higher curve corresponds to more accurate performance.
We can also see that the classifier Ensemble-1 and Ensem-
ble-3 outperform all the other methods and the perform-
ance of the sequence-base ensemble classifier (Ensemble-
2) is comparable with that of Nguyen's method.

Although considerable performance improvement is
observed by our classifiers, one problem is: do the ensem-
ble classifiers or the new combinations of features con-
tributes to the performance improvement? and which
contributes more? To investigate this problem, we gener-
ate two classifiers with our component Sub-EnClassifiers

based on the features of Wang's and Nguyen's. The AUC
scores of the two classifiers are 0.75, 0.82 respectively,
which outperform the results of Wang's and Nguyen's
methods based on the same features by a rate of 3% and
2%. On the other hand, the ensemble classifiers with our
four new combinations of features, achieve a AUC score of
0.86. These results imply that both the component Sub-
EnClassifiers and the new combinations of features play
important role in performance improvement, and the
new combinations of features seem to make a little more
contribution.

In previous studies, some researchers predicted interac-
tion sites only from surface residues rather than the ways
used in our experiments, which directly classify all resi-
dues (including surface and non-surface residues) into
interaction residues and non-interaction residues. To fur-
ther evaluate the robustness of the proposed ensemble
classifiers, three additional experiments are implemented

Performance comparison of our method with Wang's and Nguyen'sFigure 6
Performance comparison of our method with 
Wang's and Nguyen's. The graph plots the total number 
of proteins whose AUC scores are higher than specific 
threshold. Each curve corresponds to one prediction 
method.

Table 5: Performance comparison: our method vs. Wang's and 
Nguyen's methods

Methods AUC Sensitivity Specificity CC

Wang-All 0.72867 0.69760 0.66619 0.23023
Nguyen-All 0.80262 0.43635 0.92561 0.34937

Ensemble-1 0.86273 0.76334 0.78611 0.37627
Ensemble-2 0.79189 0.74009 0.70019 0.29368
Ensemble-3 0.83117 0.73637 0.75139 0.32403
Page 10 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:426 http://www.biomedcentral.com/1471-2105/10/426
to predict interaction sites from surface residues by utiliz-
ing the methods of Wang's, Nguyen's and ours (Ensem-
ble-1). The results of the three experiments are reported in
Table 6. It clearly shows that the performance of our
ensemble method outperforms the other two methods to
a great extent, especially the sensitivity value. As is well
known, a higher sensitivity means a better prediction in
positive classes, and is very useful for correct identification
of interface residues. Though Nguyen's method obtained
a higher specificity, its sensitivity is very low, such a pre-
dictor is useless in practical applications. For our pro-
posed ensemble classifiers, predicting interaction residues
from surface residues is as effective as that from all resi-
dues.

Finally, a test on protein complex 1IAI (PDB code) is con-
ducted as an example to further illustrate the effectiveness
of our approach by using the RasMol software [49]. The
prediction results are shown in Figure 7, the green sphere
denotes true positives (true interaction residues that are
correctly predicted) and the red sphere indicates false neg-
atives (true interaction residues that are predicted as non-
interaction residues). Both green spheres and red spheres
denote all the interaction sites in 1IAI. We can see that
most interaction residues can be predicted correctly by our
ensemble method, and our method can identify more
interaction residues than the other two methods.

Evaluation with the independent test dataset
An independent test is constructed to further validate the
usability of our ensemble method (Ensemble-1). We train
the classifiers based on the dataset of interaction residues
and non-interaction residues from the 99 proteins with
the proposed ensemble methods and the same parameters
as before. Then we test our constructed classifiers against
the dataset of Bradford and Westhead [22]. The test data-
set contains 180 proteins taken from 149 complexes, with
sequence identity <20% and the number of residues >20.
The results of the test are very encouraging, with an AUC
score of 0.81, a sensitivity of 0.72 and a specificity of 0.75.
More than 74% of the residues are successfully predicted.
The CC value in the test is 0.35, while a CC value of 0 cor-
responds to random guessing.

Locating potential drug targets
Since many diseases are caused by abnormal protein-pro-
tein interactions, locating potential sites of these interac-
tions on a protein surface is critical to designing inhibitor
drugs. Here, we concentrate on demonstrating by our
method how to predict protein-protein interaction sites
involved in the non-structural protein of influenza A
virus, which causes the current world-wide flu pandemic.
The natural host of influenza A viruses is waterfowl, how-
ever, influenza A viruses also infect humans and other ani-
mals such as pigs, horses and various avian species [50].
Influenza pandemics seems to occur when a pathogenic
avian type virus acquires the capability of efficient human
to human transmission [51], which may occur due to
mutations or reassortment of human and avian RNA seg-
ments [52]. The non-structural proteins (NS, including
NS1 and NS2) of influenza A viruses play important role
in the infectious life cycle of the virus. NS1 is a non-essen-
tial virulence factor that has multiple accessory functions
during viral infection. The major role ascribed to NS1 has
been its inhibition of host immune responses, especially
the limitation of both interferon (IFN) production and
the antiviral effects of IFN-induced proteins [53]. It is clear
that NS1 also acts directly to modulate other important
aspects of the virus replication cycle. The NS2 protein is
referred to as nuclear export protein (NEP) according to its
role in mediating the export of viral ribonucleoproteins
from the nucleus to the cytoplasm through nuclear export
signals and independent interaction with human chromo-
some region maintenance protein Crm1 [54]. It is poten-
tially involved in viral assembly through its interaction
with the M1 protein that plays a key role in virus assembly
[55].

NS1 is notionally divided into two distinct functional
domains: an N-terminal RNA-binding domain and a C-
terminal effector domain [56]. We first investigate the
structure of the RNA-binding domain (PDB ID: 1NS1),
which is a symmetrical homodimer with each monomer
consisting of three α-helices. Two identical helices from
each NS1 monomer contribute towards dsRNA-binding
by forming antiparallel 'tracks' on either side of a deep
cleft [57]. As shown in Figure 8a, Arg-38 and Lys-41,
which are critical to RNA-binding, are correctly predicted.
Our method also predicts some other residues (colored
yellow), including Pro-31, Arg-35, Arg-37, Ser-42, Gly-45,
Arg-46, Ser-48 and Thr-49, some of which may be investi-
gated as potential drug target sites. Then, we test the struc-
ture of 3D6R, which is the effector domain of avian
influenza virus A/Duck/Albany/76 (see Figure 8b). Many
of the predicted residues are implicated in binding
CPSF30 (the 30-kDa subunit of cleavage and polyadenyla-
tion specificity factor [58], colored yellow), P85β (a regu-
latory subunit of phosphatidylinositol-3-kinase [59],
colored blue) and PKR (the dsRNA-dependent serine/

Table 6: Performance comparison: our method vs. Wang's and 
Nguyen's methods. 

Methods AUC Sensitivity Specificity CC

Wang-All 0.71933 0.68640 0.65417 0.28026
Nguyen-All 0.74943 0.35980 0.92949 0.33247
Our-Ensemble 0.79761 0.76765 0.63158 0.34562

Predicting interaction sites from surface residues, when non-surface 
residues are removed from negative examples.
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threonine protein kinase R [60], colored green), which are
in agreement with previous studies.

For the NS2 protein, the structure of the M1 protein-bind-
ing domain (PDB ID: 1PD3) [61] reveals an amphipathic
helical hairpin, which dimerizes as a four-helix bundle.
The predicted results are shown in Figure 8c. The red
spheres denote the predicted Trp-78, which is surrounded
by a cluster of glutamate residues and considered to be
highly conserved [61]. A variety of other binding sites
(colored blue) are predicted, including residues 64-69,
84-88, Glu-91 and Phe-94. These predicted residues are
very close to the binding sites observed in the study of
Darapaneni et al. [62]. Residues of Arg84, Leu87, Lys88
and Glu91 are located at the protein surface in an apical
position and contain four conserved residues, of which
Arg84 is highly conserved. This may define a previously
unknown interaction site, which could be investigated as

a potential drug target site. At the opposite apex, residues
64-67 are located and contain two highly conserved resi-
dues, Trp65 and Arg66.

Conclusions
In this paper, we have shown a novel ensemble method
using bootstrap resampling technique to handle the
imbalanced problem and SVM-based fusion classifiers to
increase the accuracy of classification on protein-protein
interaction sites. The novelty of our approach also lies in
the way we combine the selected features and the
weighted voting strategy for fusing the results of compo-
nent element predictors (Sub-EnClassifiers). We evaluate
the ensemble classifiers and compare them with several
other existing methods on the dataset of 99 polypeptide
chains with 10-fold cross validation. The results clearly
show that the suggested ensemble classifiers are quite
effective in predicting protein binding sites. Our classifier

The visualization of prediction results of chains 1IAI:LH and 1IAI:MI in 1IAIFigure 7
The visualization of prediction results of chains 1IAI:LH and 1IAI:MI in 1IAI. The residues are obtained by using (a) our 
method, (b)Wang's method and (c) Nguyen's method. Green sphere denotes true positives while red sphere indicates false 
negatives.
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achieves a satisfactory AUC rate of 0.86, which is signifi-
cantly better than that of the compared methods. The
experiment results also show that the Sub-EnClassifiers
with resampling technique can alleviate the imbalanced
problem and the combination of Sub-EnClassifiers with a
wide variety of features can significantly improve predic-
tion accuracy. The robustness of the ensemble method is

evaluated by classifying interaction sites from both surface
residues and all residues in proteins effectively. Moreover,
our classifiers can work well in the occasions of missing
homologues and structure information, and achieves
good AUC scores of 0.83 and 0.79 respectively. Finally, we
demonstrate the applicability of our method to drug dis-
covery process by successfully predicting a number of

Prediction results of the influenza A virus NS proteins using our methodFigure 8
Prediction results of the influenza A virus NS proteins using our method. For all structures (a-c), monomers are 
colored goldenrod and brown. The figures are generated by using RasMol. (a) Structure of 1NS1, red and blue spheres are cor-
rectly predicted atoms of Arg-38 and Lys-41, yellow spheres denotes other predicted atoms. (b) Structure of 3D6R, yellow, 
green and blue spheres denote correctly predicted residues in binding CPSF30, PKR and p85β, respectively. (c) Structure of 
1PD3, red spheres denote correctly predicted Trp-78, blue spheres denotes other predicted residues.
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interaction sites in the NS proteins of influenza A viruses.
These predicted sites may be utilized as potential drug tar-
get sites for developing universal anti-influenza drugs.

For the future work, more effective features and transform
methods will be investigated. Other machine learning
algorithms such as neural networks, k-NN, decision trees
and logistic regression will also be considered in the
ensemble classifiers. In addition, the proposed ensemble
method can also be applied to other protein classification
problems.
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