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Background

As the breadth, depth, and quantity of biological data has
continued to grow, these data have increasingly been rep-
resented as graphs or networks for the purposes of analy-
sis and visualization. Historically, biological networks

Abstract

Background: A wide variety of biological data can be modeled as network structures, including
experimental results (e.g. protein-protein interactions), computational predictions (e.g. functional
interaction networks), or curated structures (e.g. the Gene Ontology). While several tools exist
for visualizing large graphs at a global level or small graphs in detail, previous systems have generally
not allowed interactive analysis of dense networks containing thousands of vertices at a level of
detail useful for biologists. Investigators often wish to explore specific portions of such networks
from a detailed, gene-specific perspective, and balancing this requirement with the networks' large
size, complex structure, and rich metadata is a substantial computational challenge.

Results: Graphle is an online interface to large collections of arbitrary undirected, weighted
graphs, each possibly containing tens of thousands of vertices (e.g. genes) and hundreds of millions
of edges (e.g. interactions). These are stored on a centralized server and accessed efficiently
through an interactive Java applet. The Graphle applet allows a user to examine specific portions
of a graph, retrieving the relevant neighborhood around a set of query vertices (genes). This
neighborhood can then be refined and modified interactively, and the results can be saved either
as publication-quality images or as raw data for further analysis. The Graphle web site currently
includes several hundred biological networks representing predicted functional relationships from
three heterogeneous data integration systems: S. cerevisiae data from bioPIXIE, E. coli data using
MEFIT, and H. sapiens data from HEFalMp.

Conclusions: Graphle serves as a search and visualization engine for biological networks, which
can be managed locally (simplifying collaborative data sharing) and investigated remotely. The
Graphle framework is freely downloadable and easily installed on new servers, allowing any lab to
quickly set up a Graphle site from which their own biological network data can be shared online.
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have been used to represent the organization of metabolic
pathways [1], protein complexes [2,3], and regulatory net-
works [4,5], often based on laboratory work carried out
before the advent of high-throughput technologies. With
the introduction of genome-scale data, datasets from pro-
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tein-protein interaction networks (PPIs, [6,7]) to microar-
ray correlations [8,9] have all been represented as graphs;
computational predictions including regulatory networks
[10,11] and functional relationships [12,13] are generally
presented as network structures as well. Most commonly,
each vertex indicates a gene and each edge a biological
relationship, weighted or unweighted (e.g. expression cor-
relation versus PPIs) and undirected or directed (e.g. PPIs
versus regulator/target interactions). Not only do graph
structures represent a well-understood computational
platform for the analysis of these networks on a whole-
genome scale [14], they offer a rich visual representation
of the varied molecular interactions underpinning sys-
tems biology.

The visualization of biological networks has inspired sub-
stantial research and tool development, ranging from the
detailed organization of small, sparse networks as path-
ways (e.g. Cytoscape, Osprey, VisANT, and others [15-
18]) to visual overviews of entire genomes [19]. Another
class of online tools focus on visualization of multiple
network alignments [20,21]. Unfortunately, many biolog-
ical networks of interest fall between these two extremes
of size and detail. Genomic data is often large (most
organisms of interest have tens of thousands of genes),
but not so large that it falls into the class of "huge" net-
work visualization (e.g. maps of the Internet, with some
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half a billion current hosts); tools for exploring such tre-
mendous networks typically hide the details that are vital
for understanding biological networks. Similarly, while
many types of biological networks have a small-world-like
property [22] and are thus relatively sparse, other graphs
are dense or even fully connected (e.g. microarray correla-
tions); standard visualizations of such graphs usually
degenerate into uninformative "hairballs" [23]. Moreover,
regardless of network size, useful biological graph visuali-
zations must allow for wide variation in scale and detail:
most biologists, when presented with a biological net-
work, want to see both the big picture and the specific
interactions surrounding their gene(s) of interest. This
introduces a need for biological network visualization
that appropriately balances scalability, interactivity, and
specificity of data presentation.

We have created Graphle as a tool to address these issues
and to provide biologists with a tool for exploring large
biological networks. As shown in Figure 1, Graphle con-
sists of two parts, the main one being a Java-based client
that runs in a user's web browser to display interactive,
controllable portions of large biological networks (as well
as associated data on genes, protein functions, and exper-
imental datasets). This client allows a user to navigate
within a biological network either horizontally, by focus-
ing different sets of one or more query genes and viewing
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Overview of the Graphle system architecture. The Graphle server manages up to hundreds of gigabytes of weighted
undirected graphs; while any graph data can be used, Graphle is specifically designed for biological networks in which vertices
represent genes and edges represent experimental results (microarray correlations, protein-protein interactions, etc.) or com-
putational predictions (e.g. probabilities of functional interactions). The server also associates metadata with graphs (such as
what organism or biological context they are drawn from), vertices (gene identifiers, aliases, known cellular functions, etc.), and
edges (e.g. what experiments or data contributed to that edge). The Graphle client communicates user-provided queries to the
server consisting of one or more genes of interest, receives an appropriate subgraph, and displays it interactively for the user
in a web browser. The user can then change the focused genes or the stringency cutoff for vertex or edge weights and can
access the associated metadata to interactively explore tractable portions of the large underlying graphs.
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their network neighborhood, or vertically, by limiting the
view to more or less heavily weighted edges and vertices.
For example, if edge weights represent microarray correla-
tions, this allows a user to view only the most correlated
pairs of genes or to decrease the cutoff and see additional,
weaker relationships. Underlying the Graphle client is a
server that can run in a centralized location to manage up
to hundreds of biological networks, possibly representing
several hundred gigabytes of data. Communication
between the server and client is optimized so that only the
small, focused portions of the underlying networks sur-
rounding a user's query are communicated to the client,
which in turn fine-tunes the visualization of this sub-
graph. Graphle thus allows a user to flexibly explore any
biological network and to interactively scale between very
general and very detailed visualizations of specific genes
of interest. An implementation of Graphle is available
online at http://function.princeton.edu/graphle, showing
functional relationship networks predicted for S. cerevisiae
by the bioPIXIE system [24], for E. coli by the MEFIT sys-
tem [25], and for human beings by the HEFalMp system
[26]; a downloadable Java implementation with source
code and documentation are also available at this address.

Implementation

Graphle is implemented in Java using a client/server archi-
tecture to modularize the two main components of the
system: a graph server that manages a (potentially very
large) collection of weighted graphs and associated meta-
data, and a user interface client that provides an interac-
tive visualization of portions of this data. This partitions
the system to allow hundreds of gigabytes of biological
network data to be managed on the server while still pro-
viding a focused, responsive user experience. The respon-
sibilities of the graph server include accessing large
amounts of graph data on disk in a query-driven manner,
caching this data to improve performance, executing
graph query algorithms based on client input, and provid-
ing information on genes (vertices) and underlying data
(edges) as needed. The graph client must run in a web
browser and provide rapid, interactive access to all data
managed by the server in an informative visualization.
Fundamentally, just as Google acts as a query-driven
server to present an informative subset of the web, the
Graphle server acts in a query-driven manner to filter and
present the content of biological networks.

Graph server

The Graphle server is based on a Java port of portions of
the Sleipnir C++ library for computational genomics [27]
that allow it to efficiently manage multiple large biologi-
cal networks. Subgraphs are retrieved from these networks
using any graph query algorithm. The bioPIXIE [13] and
HEFalMp [26] algorithms are currently implemented and
can be configured in the server; the former selects high-
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scoring genes based on their total connection weight to all
query genes. The HEFalMp algorithm scores each gene by
the ratio of its average connection weight to the query
genes over its total average connection weight. Regardless
of graph query algorithm, the resulting neighborhood is
communicated to the client using a standard socket con-
nection. The graph data organized by the server can
include continuous or discrete experimental results (e.g.
pairwise correlations from microarray data or protein-
protein interaction networks), predicted interaction net-
works, ontological structures such as the Gene Ontology
[28], or any undirected weighted (or unweighted) graphs.

Graph data is stored using the Sleipnir CDat interface, and
can thus be interconverted between human-readable text
(referred to as the DAT format) and a compact binary
(DAB) format. Graphs stored as DABs are automatically
indexed and memory mapped; due to memory mapping
restrictions on many platforms, an LRU cache is used to
maintain a subset of currently mapped graphs. Retiring a
graph from this cache, loading a new ~25,000 gene graph,
and performing a complete graph query takes at most ~20
s on a modern server, most of which is spent in disk
access.

The graph server also maintains metadata describing
graphs, vertices, and edges. Each graph is assigned to a
particular organism (or other broad category) and to a
"context" within that organism, where a context can be a
biological process, tissue type, or other specific subcate-
gory. Vertices are described by a unique identifier (e.g.
OREF 1Ds for yeast genes, HGNC [29] symbols for human
genes, etc.) and zero or more synonymous aliases; they
may also possess zero or more categories of metadata,
with each category consisting of an arbitrary dictionary of
key/value descriptors (e.g. textual descriptions, Gene
Ontology annotations, etc.) Similarly, edges may also be
decorated with arbitrary category dictionaries of meta-
data; this is particularly useful in the case of graphs repre-
senting predicted biological networks, as it provides a
convenient way to indicate what experimental data was
integrated to produce each predicted interaction [13].

User interface client

The Graphle client is a Java applet designed to interac-
tively visualize configurable subgraphs of biological net-
works (or other graph data) in a web browser. The client
uses the Prefuse library http://prefuse.org for graph lay-
out, supplementing it with an interface for selecting
organisms and contexts, displaying vertex/edge metadata,
exporting image or text representations of the current
graph, and performing graph queries. These queries con-
sist of a user-provided set of genes (or other vertex identi-
fiers) sent to the Graphle server, which performs a
configurable graph query algorithm to return the most rel-
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evant portion of the selected (potentially very large) com-
plete graph. In addition to controlling which genes make
up the current query, the client also provides realtime fil-
ters for vertex and edge inclusion (based on the weight of
the graph's edges and the confidence with which the
server indicates that vertices are included in the graph
query results). The combination of these three features
allows a user to fluidly and tractably navigate through
large, dense, weighted graphs.

Results

Graphle provides a web-based system for interactively
browsing large biological networks. These graphs can rep-
resent experimental results (e.g. protein-protein interac-
tion networks, microarray  correlations, etc.),
computational predictions (e.g. probabilities of func-
tional interaction), or any other undirected, weighted
graphs. Each underlying graph can be very large (tens of
thousands of vertices, hundreds of millions of edges, giga-
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bytes of data), and the Graphle server can manage hun-
dreds of such graphs along with associated metadata
(organism, biological context, gene, and dataset descrip-
tors). The Graphle client executes in a user's web browser
and retrieves subgraphs focused on a specific set of query
genes. This query and the displayed subgraph can be inter-
actively modified in realtime, allowing a user to conven-
iently explore targeted subgraphs of interest extracted
from the large body of underlying data.

Graph queries and exploration

A Graphle query consists of two components: a particular
underlying graph specified by an organism and biological
context (Figure 2D), and one or more gene identifiers spe-
cific to that organism (Figure 2B and 2C). For example, a
Graphle server may have access to several graphs, each
covering a specific context in yeast, human, mouse, or
another organism's data; contexts represent variables such
as biological processes (the cell cycle, apoptosis, glucose
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The Graphle client user interface. A user can specify one or more genes that are sent as a query to the server. This infor-
mation allows the server to execute a graph query in the underlying large biological network specified by the requested organ-
ism and biological context. A subgraph comprising ~50 vertices total is returned to the client, which then lays out and displays
in real time the most informative portion of this subgraph. The visible subgraph can be controlled by modifying the edge and
vertex cutoffs. Detailed information on the numerical scores of the selected vertex and its incident edges are shown on the
right. The current subgraph can be exported as an image (e.g. for publication) or as raw data (e.g. for further analysis).
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metabolism, etc.), tissue or cell types, or developmental
stages. A user of the Graphle client selects an organism
and context from the server-provided list and queries on
one or more of the organism's genes. These genes are sent
to the server, which uses a configurable graph query algo-
rithm [13,26], described above) to select the subgraph of
the requested network most relevant to the query genes
(Figure 2A). This subgraph is of sufficiently small size
(~50 fully connected vertices and the associated edge
weights) to be sent to the client in full; the client then pro-
vides a configurable visualization of the subgraph for the
user.

Edge weights in biological networks often represent the
strength of our confidence in an experimental outcome:
greater sequence similarity, higher correlation between
gene expression values, or larger probabilities of func-
tional interactions, for example. Similarly, using the con-
cept of guilt by association, most graph query algorithms
assume that vertices more strongly connected to the query
set in the aggregate are in turn more biologically related to
those query genes. Correspondingly, the Graphle client
allows a user to fine-tune the visualization of a queried
subgraph by filtering edges by weight and vertices by score
(Figure 2E); filter changes automatically rerun the graph
layout algorithm, which is animated to maintain visual
context. A biologist can thus easily visualize both strong
and diffuse clusters in the data, expand from the most
related genes to more distant neighbors, and easily track
the relationship(s) of the original query genes to these
neighbors.

Using Graphle: investigating genes and sharing data

A typical use of Graphle is for a biologist to investigate
specific genes in a pre-existing biological network. For
example, suppose a yeast biologist is interested in the
roles of SAC1 (a known regulator of the actin cytoskeleton
found in the mitochondrial membrane [30,31]) and the
uncharacterized ORF YIRO03W in the process of mito-
chondrion organization and biogenesis. Using the
Graphle query shown in Figure 2, an investigator can
obtain a visualization of functional interactors (Figure
2A) as predicted by the bioPIXIE system [24]. The number
and minimum confidence of the displayed interactors can
be controlled interactively (Figure 2E), and the data used
to make the predictions (Figure 2G) and their confidences
(Figure 2H) are shown directly within Graphle. From this,
one might conclude that YIRO03W likely participates in
cytoskeletal processes through a variety of potential inter-
action partners (MYO3, MYOS5, ABP1, ARC40, etc.)

Conversely, a biologist who generates a large interaction
dataset or a bioinformatician with predicted interaction
networks can share their data online using Graphle. Par-
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ticularly for higher eukaryotes with large genomes, the
data for a single interaction network can be gigabytes in
size; when tens or hundreds of such networks are pre-
dicted, transmitting them en masse becomes impractical.
A Graphle server can be paired with any web server to
share new data for collaborators to query and explore,
with few limitations on graph size; the Graphle installa-
tion at http://function.princeton.edu/graphle shares
approximately 350 GB of biological networks. The process
for creating a new Graphle server installation is also
detailed on this web site.

Multiple organisms and biological contexts

The Graphle server organizes its collection of graphs using
two biologically motivated levels of abstraction: each
graph is assigned to exactly one organism and one biolog-
ical context (Figure 2D). A graph's organism dictates what
unique gene identifiers (and non-unique gene aliases) are
used to label its vertices, since the server maintains sets of
known genes specific to each organism. A context, practi-
cally speaking, can be any unique identifier of a particular
graph; in practice, a context is often the experiment that
generated the graph data, the computational algorithm
that generated a set of predictions, a specific biological
system (cell/tissue type, pathway or process, subcellular
compartment, etc.), or a combination of these. For exam-
ple, the Graphle system running at http://function.prince
ton.edu/graphle offers graphs generated by bioPIXIE [24]
in yeast, MEFIT [25] in E. coli, or HEFalMp for human data
[26], with contexts representing different biological proc-
esses on which the two algorithms focused.

Gene (vertex) and data (edge) information

Graphle maintains arbitrary metadata optionally describ-
ing each vertex (gene) and edge in its graphs (Figure 2G).
For genes, this metadata is most often useful for convey-
ing standard knowledge associated with genes: synony-
mous gene identifiers, chromosomal location, known
functions cataloged in the Gene Ontology [28] or else-
where, etc. For edges, this metadata can provide informa-
tion on the experimental data underlying the graph
visualization. This is most important in graphs represent-
ing computational data integrations, since each edge
might then summarize information from many experi-
mental results - the specifics of which can be provided in
the appropriate edge metadata.

Exporting graph images and data

Graphle provides the opportunity for users to export the
current subgraph as an image or as raw textual data (e.g.
for further analysis, Figure 2F). Data exported in this man-
ner is provided as a simple edge list linking unique vertex
identifiers (i.e. gene names) with the weight of the edge
joining them (the semantics of which are dependent on
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the source of the underlying graph). The currently visible,
filtered subgraph can be exported as an image of quality
suitable for publication.

Conclusions

We present Graphle, a system for interactively exploring
large, densely connected biological networks. This task
has been particularly challenging in the past due to the
impracticalities of storing these graphs (which can each be
several gigabytes in size) and visualizing them in an
informative manner (as they can be fully connected, but
with edge weights varying over a potentially wide range).
Graphle allows collections of dense, weighted graphs to
be stored on a server and accessed through focused que-
ries by a web-based client. The data comprised by such
graphs can range from experimental results to computa-
tionally predicted interaction networks, and Graphle
allows each vertex (i.e. gene) and edge to be annotated
with arbitrary descriptive metadata. A web-based client
sends sets of query genes from a user to the server and
interactively displays the resulting focused subgraphs,
which can be manipulated in realtime and exported as
data for analysis or as images for publication. The Graphle
source code, documentation, and a demonstration client
can be found at http://function.princeton.edu/graphle.
Graphle thus provides a complete solution for storing,
sharing, and exploring biological networks.

Availability and Requirements
Project name: Graphle

Project home page: http://function.princeton.edu/graphle

Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 1.5 or higher
License: Creative Commons Attribution 3.0
Any restrictions to use by non-academics: No
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