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Abstract
Background: While substitution matrices can readily be computed from reference alignments, it
is challenging to compute optimal or approximately optimal gap penalties. It is also not well
understood which substitution matrices are the most effective when alignment accuracy is the goal
rather than homolog recognition. Here a new parameter optimization procedure, POP, is
described and applied to the problems of optimizing gap penalties and selecting substitution
matrices for pair-wise global protein alignments.

Results: POP is compared to a recent method due to Kim and Kececioglu and found to achieve
from 0.2% to 1.3% higher accuracies on pair-wise benchmarks extracted from BALIBASE. The
VTML matrix series is shown to be the most accurate on several global pair-wise alignment
benchmarks, with VTML200 giving best or close to the best performance in all tests. BLOSUM
matrices are found to be slightly inferior, even with the marginal improvements in the bug-fixed
RBLOSUM series. The PAM series is significantly worse, giving accuracies typically 2% less than
VTML. Integer rounding is found to cause slight degradations in accuracy. No evidence is found that
selecting a matrix based on sequence divergence improves accuracy, suggesting that the use of this
heuristic in CLUSTALW may be ineffective. Using VTML200 is found to improve the accuracy of
CLUSTALW by 8% on BALIBASE and 5% on PREFAB.

Conclusion: The hypothesis that more accurate alignments of distantly related sequences may be
achieved using low-identity matrices is shown to be false for commonly used matrix types. Source
code and test data is freely available from the author's web site at http://www.drive5.com/pop.

Background
Sequence alignment is a fundamental tool in contempo-
rary biology. Most algorithmic formulations of the prob-
lem seek an alignment maximizing a function known as
the objective score. Objective scores are usually defined as
a sum of terms for matching pairs of letters (tabulated in
a substitution matrix) and penalties for gaps. While the
effects of different substitution matrices and gap parame-
ters have been extensively studied in the context of local
alignment and homolog recognition (see for example [1]

and references therein), their effects on alignment accu-
racy, especially for global alignment, are not so well
understood. Several heuristics are in common use, for
example CLUSTALW's choice of low-identity matrices for
aligning low-identity sequences [2], which have not to the
best of my knowledge been empirically tested. One factor
impeding such testing is the lack of effective automated
methods for optimizing parameters for a given objective
function. Previous work in this area has included unsuper-
vised expectation maximization [3], discriminative train-
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ing [4], inverse parametric alignment [5-9] and
maximum-margin structured learning [10,11]. Katoh et al.
[12] reported using golden section search to optimize gap
penalties, but this generally assumes a unimodal function
which does not hold in this case. Exhaustive search has
been attempted several times, for examples see [1,13].

In this work I describe a new parameter optimization pro-
cedure, POP, compare it with the IPA method of [6], and
use it to investigate a number of questions related to glo-
bal protein alignment accuracy, including: which is the
best substitution matrix, do the best choices of matrix and
gap penalties vary with sequence identity, should terminal
gaps be penalized differently from internal gaps, and does
the loss of precision due to integer rounding in substitu-
tion matrices degrade alignment accuracy? IPA was cho-
sen for comparison because it is a recently published
method, code was readily available, and because it opti-
mizes parameters exactly equivalent to those studied in
this work. To the best of my knowledge there has been no
prior comparative study of alternative gap optimization
methods, so IPA's effectiveness relative to other
approaches is not known. In the tests performed here,
POP was shown to achieve from 0.2% to 1.3% higher
training-set accuracy than IPA, and evidence is presented
that POP finds parameters within about 0.1% of the true
optimum, i.e. an improvement in training set error of up
to an order of magnitude. Differences of a fraction of a
percent will be shown to be informative in assessing dif-
ferences between substitution matrices, for which a
method with the improved precision of POP is required.
POP, like IPA, is designed to maximize training set accu-
racy, which may be achieved at some cost in generaliza-
tion error, i.e. worse performance on novel data. In the
case of POP this is by design: the problem of minimizing
training set error is simpler than minimizing generaliza-
tion error and the experiments reported here were not
designed to compute the most biologically appropriate
parameters for a given algorithm but rather to compare
models with small and equal numbers of free parameters.
It is then reasonable to assume that training set accuracy
is a good measure of the relative performance of those
models.

Let w = wi, i = 1...N be the parameters of interest (e.g., gap
open and extend penalties), and Q(w) be the function to
be optimized (e.g., an alignment accuracy or homolog
recognition measure on some benchmark). The goal is to
find values wOPT = argmax(w) Q(w) that maximize Q. This
optimization problem is challenging for several reasons.
Sufficiently small changes in w will leave all alignments
unchanged and hence most Q functions of interest have
zero partial derivatives almost everywhere. Also, Q is typ-
ically expensive to compute, requiring seconds to hours to

evaluate at a single point, and is non-convex with many
local maxima (Fig. 1).

Methods
IPA
Kim and Kececioglu [6] described an inverse parametric
alignment method that can be trained on so-called "par-
tial examples" such as those found in BALIBASE [14] in
which only a subset of columns are annotated as reliably
aligned. Eagu Kim (personal communication) kindly pro-
vided a software implementation of this algorithm (IPA).
This implementation extended the method to allow sepa-
rate terminal and internal gap penalties to be learned.

POP
The central idea in POP is to search for changes in param-
eters that result in "Goldilocks" changes in Q--not too big,
not too small, but changes in just of the right size to have
a good chance of indicating coarse trends rather than
small-scale noise. This approach can be regarded as a gen-
eralization of line search optimization (see for example
[15]). As theoretical and empirical methods for dealing
with non-convex, non-continuous Q functions are cur-
rently limited, practical experience, especially examina-
tion of plots such as Fig. 1, is the best guide to determining
the size of a "just right" change. In the experiments
reported here, values around 0.5% were most effective.

POP proceeds in three stages. In the first stage, an N-
dimensional hypercuboid is explored by evaluating Q(w)
at each point in a regularly spaced grid. Local maxima are
identified as points at which Q is greater than all neigh-
boring points, and the best of these are used as starting
points for the second stage. (It is important to do this
rather than to use the best Q values found in the grid
because these will tend to cluster around the same
maxima and it is better to find a diverse set of starting
points to avoid local maxima.) The second and third
stages use a hill-climbing strategy to approach a local max-
imum given a starting point. The second stage uses a faster
but less accurate variant of the hill-climbing method than
the third stage, which starts from the best local optima
found in the second stage. The final result is the best max-
imum found by the third stage. To save computation time,
the three stages typically use increasingly large subsets of
the training samples, with the first two stages using ran-
domly chosen subsets and the third stage the entire train-
ing set.

Hill-climbing

Hill climbing repeats the following procedure until no
improvement is found. Starting from a point w, each axis
i is explored in both the positive and negative direction;

i.e., all parameters are held fixed but one (wi). Let δ be a
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proposed change in wi,  = wi + δ, w' = {wj, j ≠ i, }, Q'

= Q(w'), i.e. Q' is the value of Q after a proposed move

along one axis, and Δ = Q' - Q. In each direction a δ is
found that gives Δ > 0 (improves Q), or, failing that, a δ
that reduces Q by an amount that is small, but not too
small, say in the range 0.1% to 1%. Very small changes are
undesirable because they will tend to be dominated by
"noise" (Fig 1) rather than indicating a systematic trend.
Large reductions in Q will tend to take wi out of the range

where it might make an improvement when combined

with a change along another axis (further discussed
below). A heuristic designed to minimize these problems

introduces a maximum (μ) and minimum (λ) reduction

in Q (i.e., λ ≤ -Δ ≤ μ). After computing the proposed
changes, a new w is determined as described in Making a
move below.

Proposed changes
A proposed change δ is determined as follows. In the first
iteration δ is set to a small fraction (say, 10%) of the abso-
lute value of wi or a small value (say, 0.1) if wi is zero, or a

′wi ′wi

A typical Q functionFigure 1
A typical Q function. The graphs show alignment accuracy (vertical axis) on all pairs in BALIBASE v2 as a function of exten-
sion penalty e (horizontal axis) with fixed gap-open penalty g = 6.5 and the BLOSUM70 matrix. The interval outlined in the 
dashed box on the left is expanded on the right. Note the many local maxima, and that trends are apparent with changes in Q 
of around 0.01 (left), while smaller changes are typically "noise". (right).
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"hint" value set by the user. In subsequent iterations the
initial value of δ is its final value from the previous itera-
tion. Having set the initial value, the following procedure
is then repeated. The value of Δ is computed. If Δ = 0, δ is
multiplied by 4. If Δ < 0 and -Δ <λ, i.e. Q is reduced by too
small an amount, δ is doubled. If Δ < 0 and -Δ >μ, i.e. Q is
reduced by too much, δ is halved. Otherwise, Δ > 0 (Q is
improved) and further exploration is tried. First, smaller
values of δ (specifically, mδ/4 for m = 1, 2 and 3) are eval-
uated in an attempt to discover an intermediate maxi-
mum; if one is found this is repeated to investigate
increasingly small changes. If smaller values give no fur-
ther improvement, larger values are tried (mδ/4 for m = 5,
6, 7 and 8) in a similar way. A maximum improvement in
Q, denoted Γ, is imposed in order to avoid extreme
changes in a single parameter when far from an optimum
(except when the smallest improvement found gives Δ >Γ,
in which case it is accepted).

Making a move
The search for proposed changes yields a set of 2N values
{δi+, δi-, i = 1 ... N} where the + and - superscripts indicate
moves in the positive and negative directions respectively.
All moves are considered that apply the proposed changes
on from k = 1, 2 ... K axes simultaneously, where K is a
user-settable parameter may be 1, 2 ... N. When k > 1, new
evaluations of Q are required. For example, K = 2 consid-
ers eight moves for each pair of parameters: (+, +), (+, 0),
(+, -), (-, +), (-, 0), (-, -), (0, +), and (0, -) where + or -indi-
cates an increase or decrease in the parameter and 0 indi-
cates no change. The move giving the best improvement
in Q is accepted, otherwise the routine terminates.
Naively, one might expect that consideration of single-
axis moves only (K = 1) would suffice, but in practice it
turns out that allowing moves on two or more axes some-
times gives a significantly better final result, with K = 2 suf-
ficient in most cases. It is desirable to keep K small as the
number d of evaluated moves per iteration grows very rap-
idly with K:

It also turns out that allowing moves along axes that
reduce Q can, when combined with moves on other axes,
improve Q and that allowing this possibility also gives sig-
nificantly improved optimization in some cases. For
example, a small increase in the gap open penalty and a
small decrease in the gap extend penalty might each
reduce Q, but increase Q when both changes are made
simultaneously.

Fast hill-climbing
A "fast" variant of the hill-climbing procedure sets K = 1
(no multi-axis moves) and immediately applies any pro-
posed move that is found to improve Q. Speed is also
improved by increasing μ, λ and Γ. These modifications
reduce the number of times the Q function is invoked,
saving execution time but sometimes yielding signifi-
cantly inferior parameters. Directions to try, and the sign
(+ or -) first tried, may be selected at random or cycled to
minimize systematic bias.

Gap models and substitution matrices
Let a model be the set of parameters associated with a
given objective function. In this work the substitution
matrix is regarded as fixed; only gap penalty parameters
are included. A gap is a series of indel symbols; formally,
a maximal consecutive sequence of indels. If a gap
includes the first or last column of an alignment it is
described as terminal; all other gaps are internal. While
POP has been implemented for a wide variety of models,
most of these are works in progress and I will therefore
report results for just two models: g2, in which the same
affine penalties are applied to all gaps, and g4, in which
internal and terminal gaps have different open and extend
penalties. The parameters are g, e, G and E; the penalty for
an internal gap of length L is g + (L - 1) e and G + (L - 1) E
for a terminal gap. Thus g2 is a special case of g4 in which
G = g and E = e. The objective score is then the sum of sub-
stitution scores minus gap penalties; a maximum-scoring
global alignment is found using standard dynamic pro-
gramming techniques.

The following substitution matrix types are considered:
BLOSUM [16], RBLOSUM [17], PAM [18], JTT [19] and
VT/VTML [20,21]. The RBLOSUM matrices were con-
structed using a bug-fixed version of the program used to
compute BLOSUM matrices from the BLOCKS database
[22]. Surprisingly, the corrected BLOSUM62 matrix was
found to slightly degrade performance in homolog recog-
nition [17]. Each matrix family is a series with members
defined by a measure of evolutionary distance: percent
identity cutoff in the case of BLOSUM and RBLOSUM,
PAM distance for the rest. Conventionally, integer valued
matrices are used in which log-odds scores in fractional
bits have been rounded to one or two significant figures.
Presumably this is for historical reasons: in older compu-
ter processors integer arithmetic was faster than floating
point. This is no longer the case for many general-purpose
processors, and regardless it is of interest to investigate
whether the loss of precision due to integer rounding has
an effect on alignment accuracy. Unless otherwise stated,
full precision, one bit unit matrices were used.
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Benchmark data
Reference data was taken from three protein alignment
benchmarks: PREFAB [23] version 4 and BALIBASE ver-
sions 2 and 3. There are 1,681 pair-wise reference align-
ments in PREFAB v4. Extracting all pairs from the multiple
alignments in BALIBASE versions 2 and 3 gives 8,135 and
297,960 pairs respectively. The large number of pairs in
version 3 motivated the use of the more tractable version
2 for all-pairs tests. Subsets 4 (alignments with long termi-
nal gaps) and 5 (long internal gaps) of version 3 were used
to investigate optimizing terminal gap penalties.

Accuracy measure
The accuracy measure (q) for a single pair is the number
of correctly aligned residue pairs divided by the number of
residue pairs in the reference alignment. The total accu-
racy score (Q) is the weighted average of q over all pairs,
where the weighting is uniform in the case of PREFAB and
the inverse of the number of pairs in the original multiple
alignment in the case of BALIBASE. It would have been
desirable to estimate error bars using a method such as the
Bayesian bootstrap [1]; however this proved to be infeasi-
ble due to limitations in available computer time (a CPU
year was needed to generate the results reported here). For
brevity, the reference sets will be denoted Bali (all-pairs
from BALIBASE v2), Prefab (all-pairs from PREFAB v4),
TermGaps (1,000 randomly selected pairs from BALIBASE
v3, subset 4), and IntGaps (1,000 randomly selected pairs
from BALIBASE v3, subset 5). To investigate the effects of
evolutionary distance three subsets of BALIBASE v3 pairs
were constructed: 1,000 randomly selected pairs with
identities in the range 0-33% (Id0_33), 33-66%
(Id33_66) and 66-99% (Id66_99), respectively. These
were selected from the full-length rather than domain-
trimmed sequences.

Results
Comparison of POP and IPA
I compared POP and IPA using the TermGaps set, where
the biggest difference between g2 and g4 might be
expected, and on Bali. The BLOSUM62 matrix in 1/3 bit
units was used as this was hardcoded into IPA. Results are
shown in Table 1. POP was found to be from 0.2% to
1.3% more accurate than IPA; these improvements are
typical (additional results not shown).

Substitution matrix family
Fig. 2 shows the results of optimizing model g2 on the
Bali and Prefab sets. The results are qualitatively similar
on the two sets, giving confidence that they indicate gen-
eral trends rather than artifacts of benchmark construc-
tion, of overtraining or of significantly suboptimal local
maxima. This is further confirmed by cross-training (Fig.
3), which again gives similar, albeit noisier, results, as
would be expected. The results show VTML to be the best

matrix series, with VTML > VT > BLOSUM > JTT > PAM
holding for most members, though the differences
between VTML, VT and BLOSUM are small except at the
extreme high and low-distance ends of the series. The
PAM series is significantly inferior to VTML, giving accu-
racy scores around 2% lower.

Matrix selection by evolutionary distance
It has been suggested that different substitution matrices
might be more effective at different evolutionary dis-
tances. For example, CLUSTALW uses more distant matri-
ces to align more distant sequences, and Lassmann and
Sonhammer [24] report that "softer", i.e. more distant,
matrices are better at aligning more more distant
sequences while are equally good with more closely
related sequences. To investigate this, I optimized g2 on
the Id0_33, Id33_66 and Id66_99 sets, with the results
shown in Fig, 4. Interestingly, the plots are qualitatively
similar for the three sets despite increasing pair-wise iden-
tity and the increasingly narrow variation in optimal Q.
Remarkably, in the case of Id66_99 accuracies are all
above 99.5% and the difference between the best matrix
(VT50) and worst (BLOSUM30) is only 0.17%, yet trends
observed at lower identities are still clearly discernible.
The peak in each curve that identifies the best matrix in
each family is at approximately the same evolutionary dis-
tance on each set, showing that the best choice of matrix
is almost independent of sequence divergence. Similar
results are found with g4 (not shown), suggesting that the
best matrix is also approximately independent of the gap
model, as might be expected.

Recommended matrix choice
In all the tests reported here, and others not shown,
VTML200 is the best or close to best choice and is recom-
mended as the general-purpose choice. In the VT and
BLOSUM series, VT200 and BLOSUM70 respectively are

Table 1: Training set accuracy

Set Model POP IPA >Acc

Bali g2 80.3% 80.0% 0.4%

Bali g4 80.6% 79.6% 1.3%

TermGaps g2 80.2% 79.7% 0.6%

TermGaps g4 84.0% 83.8% 0.2%

Training set accuracy (Q) for the g2 and g4 models on Bali and 
TermGaps using BLOSUM62 1/3-bit units. in The numbers in the POP 
and IPA columns are the Q values achieved by the gap para-meters 
reported by each method. In all cases, POP achieves higher accuracy, 
the >Acc column shows the amount by which the POP accuracy is 
better than IPA.
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recommended. In the clearly inferior PAM series, PAM100
to PAM150 appear to be best.

Improving CLUSTALW accuracy
The above results lead to the conclusion that CLUSTALW's
heuristic use of distance-dependent matrices is probably
not effective and suggest that a superior strategy would be
to use a single high-accuracy matrix. I tested this in CLUS-
TALW v2.0.9 [25] by setting the matrix to VTML200. This
was necessarily an integer-rounded version as floating-
point matrices are not supported by the software; I chose
to use 1/3-bit units. The gap-open penalty was set to 2.0

and gap-extend to 0.1. These penalties were chosen after
trying a few reasonable values; no attempt was made at
systematic optimization. Results are shown in Table 2. An
8% improvement is seen in the column score on BALI-
BASE v3. This suggests that a small reduction in pair-wise
alignment errors due to a better choice of substitution
matrix can have a cumulative effect in a multiple align-
ment and yield a substantial improvement. However, it is
not sufficient to raise the accuracy of CLUSTALW to those
of more recent methods such as MUSCLE [23,26] or
PROBCONS [3], as shown in Table 2.

Matrix accuracyFigure 2
Matrix accuracy. Optimal accuracy (Q) according to POP for the VTML, VT, BLOSUM, JTT and PAM series using the g2 
model on the Bali (upper) and Prefab (lower) training sets. The horizontal axis is the evolutionary distance of a matrix; the cor-
respondence between PAM and BLOSUM distance is arbitrary.
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Terminal gaps
The g4 model allows terminal gaps to be assigned differ-
ent open and extend penalties versus internal gaps (see
results in Table 3). On Bali and Prefab optimized terminal
gap open penalties are roughly half those of internal pen-
alties, validating the scheme used in MAFFT [12] and
MUSCLE in which terminal gaps have the same extension
penalty as internal gaps and half the open penalty. How-
ever, these results should be interpreted with caution since
sequences in both Bali and Prefab are trimmed to domain
boundaries. Multi-domain proteins are common, and dif-
ferent parameters and indeed different alignment algo-
rithms may be appropriate when sequences have different
domain organizations and are thus not globally alignable
[27].

Random element
POP has a random element due to the selection of ran-
dom subsets of the training data in its first two stages. It is
therefore of interest to investigate how results vary for the
same training data when different random number seeds
are used. I chose to do this using the TermGaps set as prac-
tical experience shows it to have the most challenging
parameter landscape of the sets considered here. I ran
POP ten times for the g4 model on this set and found the
following characteristics of the resulting Q values: mean
0.8412, standard deviation 5.3 × 10-4, maximum 0.8419,
minimum 0.8401. These results suggest a low sensitivity
to subset selection and are consistent with finding the glo-
bal optimum to within approximately three significant
figures.

Cross-training resultsFigure 3
Cross-training results. Cross-trained results in which g2 parameters optimized for Bali were used to compute alignments 
on Prefab.
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Subsets by sequence identityFigure 4
Subsets by sequence identity. Results for the Id0_33 (top), Id33_66 (middle) and Id33_99 (bottom) sets. Observe that the 
curves on the three sets are qualitatively similar with no evident trend for the peak in a given family to move towards higher or 
lower identities.
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Integer rounding
Integer rounding causes a small, but consistent, degrada-
tion in accuracy of around 0.1% to 0.3% in VTML and
0.05% to 0.1% in BLOSUM (detailed results not shown).

Corrected BLOSUM matrices
RBLOSUM gave a small but again consistent improve-
ment in accuracy over BLOSUM of around 0.1%. This
result is surprising considering that the opposite effect was
found when testing homolog recognition [17].

Discussion
POP is an ad hoc algorithm without a strong theoretical
foundation and has more heuristic parameters than one
would ideally like. It does not scale well to larger numbers
of parameters. Implementing and using POP requires an

understanding of the input data and some trial and error.
However, consistency of trends across different bench-
marks, even when differences are very small, and consist-
ency when run with different random number seeds
combine to suggest that POP may find a global optimum
to within approximately three significant figures on the
pair-wise global alignment tests considered here, and
regardless provide strong evidence that POP provides a
sensitive test of differences between models with the same
number of parameters. It is also readily parallelized and,
unlike some other approaches, can easily be applied to
multiple alignment. The hill-climbing in POP can start
from parameters proposed by some other method, such as
IPA, providing a lower bound on the training set error. It
should be noted that the reduced training set error
achieved by POP may come at some cost in generalization
error; this is a topic for further study.

Table 2: Improvement in CLUSTALW using VTML200

Test Defaults VTML200 >Acc MUSCLE PROBCONS

B3 TC 44.8% 48.4% 8% 53.2% 61.3%

B3 SPS 78.6% 80.9% 3% 84.4% 88.3%

P4 SPS 61.7% 64.6% 5% 67.7% 71.7%

Improvement in accuracy of CLUSTALW v2.0.9 by using the VTML200 matrix. B3 is BALIBASE v3, P4 is PREFAB v4. TC and SPS are the average 
fraction of correctly aligned columns and residue pairs, respectively. In PREFAB reference alignments are pair-wise so SPS and TC are equivalent. 
Defaults is the accuracies using default parameters, VTML200 with that matrix and gap parameters given in the main text, and >Acc is the 
improvement due to VTML200. Accuracies of the more recent methods MUSCLE v3.7 and PROBCONS v1.12 are given for comparison.

Table 3: Example parameters

Set Model g e G E Q

Bali g2 5.370 0.423 80.7%

Bali g4 5.874 0.473 2.332 1.488 81.0%

Prefab g2 6.914 0.320 61.2%

Prefab g4 6.742 0.476 3.964 0.322 62.3%

TermGaps g2 6.508 0.133 80.8%

TermGaps g4 5.010 0.635 15.507 0.026 84.2%

IntGaps g2 5.725 0.304 78.3%

IntGaps g4 5.725 0.304 6.419 3.343 78.4%

Optimized gap parameters reported by POP for the Bali, Prefab, 
TermGaps and IntGaps sets. Models are g2 (affine gaps) and g4 
(different affine penalties for internal and terminal gaps). Penalties are 
g (gap-open), e (gap-extend), G (terminal gap-open) and E (terminal 
gap-extend). Q is the accuracy score. The matrix was the full-
precision, one-bit unit version of VTML200, one of the best matrices 
according to the tests reported here.

Table 4: Typical compute resources required by POP.

Set Model Time (mins.) Memory (Mb)

Bali g2 135 72

Bali g4 840 72

Prefab g2 27 24

Prefab g4 68 24

TermGaps g2 55 26

TermGaps g4 192 27

IntGaps g2 13 12

IntGaps g4 61 25

This following table shows the CPU time (minutes on a 2.2 GHz 64-
bit Athlon processor) and memory (Mb) used to compute the results 
shown in Table 3.
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Compute resources required by POP are relatively modest
(Table 4), needing memory well within the range of cur-
rent commodity computers and times (including align-
ments) ranging from minutes to hours on the tests
considered here. The modern VTML matrices proved to
give the best accuracy, in agreement with studies of
homolog recognition [1]. The VT and BLOSUM series
were not far behind, except for low-identity BLOSUMs
which performed relatively poorly on all tests, even when
aligning low-identity sequences. The RBLOSUM series
(bug-fixed BLOSUM) was marginally better, but still infe-
rior to VTML. Full-precision matrices were also marginally
better than the integer-rounded versions in common use.
It is natural to expect that improved pair-wise alignment
accuracy will lead to improved multiple alignments, and
this is a direction that deserves further exploration. The
accuracy of CLUSTALW was significantly improved by
using VTML200. It is therefore of interest to review the
matrices employed by other multiple aligners. MUSCLE
uses VTML240, which is close to VTML200 on most tests
and therefore appears to have been a fortuitous choice.
MAFFT v2 used PAM250, a clearly suboptimal choice;
possibly this partly explains the lower accuracy of MAFFT
v2 relative to the similar algorithm of MUSCLE v3. It is
not clear to me which matrices are used in more recent
versions of MAFFT, though the authors report testing
members of the BLOSUM and JTT series [12]. ALIGN-M
[28] uses BLOSUM35. Given the rapid drop in accuracy
observed between BLOSUM40 and BLOSUM30 on all
benchmark tests, it seems likely that a significant improve-
ment would result from using a different matrix. KALIGN
[24] uses GONNET250 [29] which I found to perform
comparably with VTML200 (results not shown). MUM-
MALS [30] and PROBCONS use BLOSUM matrices, sug-
gesting the possibility of a small improvement in those
programs by using VTML instead.

An examination of Fig. 2 shows that BLOSUM60-70
achieves almost the same accuracy as VTML150-200 on
BALIBASE but is roughly 1% worse on PREFAB. This sug-
gests that BALIBASE may be biased towards BLOSUM62
due to the use of sequence methods in alignment con-
struction (87% of BALIBASE sequences have unknown
structure, so are necessarily aligned by sequence alone).
The source code for an example implementation of POP
is available from the author's web site at http://
www.drive5.com/pop. This is designed for optimization
of the g2 and g4 models described here, but can be modi-
fied relatively easily for other models by replacing the
appropriate Q and alignment functions.

As I can attest from an abundance of personal experience,
manual optimization of alignment parameters is a tedious
process that rarely leaves the practitioner feeling confident
in the results. Having an automated method at one's

experimentation with new and modified algorithms by
enabling a relatively trustworthy and painless evaluation
of their relative effectiveness. I plan to use POP to explore
ideas for improved pair-wise and multiple global align-
ment algorithms.

Conclusion
On the basis of this analysis, the VTML200 matrix is rec-
ommended as the most appropriate in general when glo-
bal alignment accuracy is desired. My results suggest a bias
in BALIBASE towards the BLOSUM series of matrices of
around 1% in accuracy. While the effect is small, a bias of
this magnitude could be significant in validations of mul-
tiple alignment methods because differences between the
better methods on BALIBASE are of comparable size. Bias
towards substitution matrices or gap penalty functions is
not unexpected as only 13% of BALIBASE sequences have
solved structures, and its alignments were therefore con-
structed mostly by the use of sequence rather than struc-
ture methods. Future studies of alignment accuracy
should use data derived independently of sequence in
order to avoid such biases.
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