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Abstract
Background: Genome sequencing projects generate massive amounts of sequence data but there
are still many proteins whose functions remain unknown. The availability of large scale protein-
protein interaction data sets makes it possible to develop new function prediction methods based
on protein-protein interaction (PPI) networks. Although several existing methods combine
multiple information resources, there is no study that integrates protein domain information and
PPI networks to predict protein functions.

Results: The domain context similarity can be a useful index to predict protein function similarity.
The prediction accuracy of our method in yeast is between 63%-67%, which outperforms the other
methods in terms of ROC curves.

Conclusion: This paper presents a novel protein function prediction method that combines
protein domain composition information and PPI networks. Performance evaluations show that
this method outperforms existing methods.

Background
Genome sequencing projects are generating massive
amounts of sequence data, and the functional annotation
of these sequences became one of the most challenging
tasks, especially for the many proteins whose functions
remain unknown. Traditional computational methods
have utilized sequence features and machine learning
algorithms to predict functions. In recent years, high-
throughput technologies, such as yeast-two hybrid, have
provided large scale protein-protein interaction data,
making it possible to develop new function prediction
methods based on protein-protein interaction (PPI) net-
works [1,2].

Existing protein function prediction methods based on
PPI can be categorized into two classes: direct methods
based only on the protein interactions and module-
assisted methods [3]. Direct methods directly infer pro-
tein functions from interactions in the PPI networks while
module-assisted methods first try to find functional mod-
ules in the PPI networks and then assign protein functions
based on the module functions.

Direct methods are based on the assumption that interact-
ing proteins probably have identical or similar functions
[4-7]. This assumption is supported by previous studies
which show that 70%-80% of proteins share at least one
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identical function with their interacting partners.
Schwikowski et al [8] used a neighbor counting method to
predict protein functions. They took up to three most fre-
quent functions of interacting partners as indicators of the
function of each protein, which turned out to cover over
70% of the known functions. Hisigaki [9] et al tried to pre-
dict protein functions by computing the Chi-square statis-
tics as an indicator of functions that were statistically
significantly frequent among neighboring proteins. Chua
et al [10] investigated the relationships between func-
tional similarity and network distance. They utilized func-
tional information from proteins within 1 or 2
neighborhoods of a protein by giving different weights to
different network distances.

Vazquez et al [11] assigned functions to proteins via an
iterative algorithm by maximizing the number of edges
that connect proteins with the same function. Other
graph-based methods include those of Karaoz et al [6] and
Nabieva et al [7].

Instead of predicting individual protein functions, mod-
ule-assisted methods first identify functional modules in
PPI networks and then assign functions to the proteins
according to functions of the module members. These
methods are based on previous observations that a group
of cellular components and their interactions usually can
be attributed to a specific function [3,12,13]. The
approaches of different module-assisted methods vary
mainly on the methods for identifying functional mod-
ules, which divide the methods into those based on net-
work topology only and those which integrate multiple
data sources. Network topology based methods include
MCODE [13], a module-assisted method based on clus-
tering coefficients, the clustering method of Rives et al
[14] and the hierarchical clustering method of Spirin et al
[15]. Ge et al [16] showed that proteins having similar
functions tend to have similar expression patterns, which
can be used to predict protein functions. Ideker et al [17]
developed a framework to identify active sub-networks by
detecting significant changes in expression over a particu-
lar set of conditions. Hanisch et al [18] applied a co-clus-
tering methodology that combined similarities in gene
expression patterns and network topologies. Hierarchical
clustering was then used to define functional modules.

Although several existing methods have combined multi-
ple information resources, such as gene expression infor-
mation, gene regulatory networks and PPI networks, none
of them have yet integrated protein domain information
and PPI networks to predict protein functions. This paper
presents a novel protein function prediction method that
uses protein domain composition and PPI networks. This
paper first demonstrates that proteins having similar func-
tions are often in similar domain contexts in PPI networks

and then develops the protein function prediction
method based on this observation. The method gives sat-
isfactory results compared to several existing methods.

Methods
Yeast PPI network data was obtained from DIP database
[19]. 4,389 proteins and 14,338 protein-protein interac-
tions were included in the network. The yeast PPI network
was chosen because it is comparatively more complete
with fewer missing interactions. Nearly 70% of the 6,375
ORFs of yeast are covered by the yeast PPI network, which
is the highest coverage ratio among PPI networks of all
organisms. Besides, the yeast PPI network is the most fre-
quently used in previous protein function prediction stud-
ies, which allows accuracy comparison to other methods.

The domain annotation information was retrieved from
the PFAM database [20,21]. The HMMER software pack-
age was used to annotate domains in the yeast ORFs.
6,402 domains of 4,618 domain types were obtained
from 3,901 proteins. The protein function annotation
information was provided by the Gene Ontology database
[22].

Domains are basic functional units in proteins. Cellular
functions are accomplished by the cooperation of many
domains in proteins. Therefore, the PPI network was
decomposed into the domain level to investigate protein
functions in terms of domain. Figure 1 shows a simplified
model. Protein A has 3 neighbors in the PPI network,
which all-together contain 4 different domains, while pro-
tein B has 2 neighbors with the same 4 domains. Domain
shuffling or recombination during evolution may have
changed the domain distribution among proteins. One
possible situation is that domain 1 (represented as the
diamond in Fig. 1) is in the same protein with domain 2
(represented as the octagon) in one organism, while in
another organism, it is combined with domain 3 (repre-
sented as the triangle). Despite the different domain dis-

Illustration of domain context similarity in PPI networkFigure 1
Illustration of domain context similarity in PPI net-
work.
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tribution, similar domain compositions of neighbors of
protein A and B in the PPI network may indicate both
functional similarity and evolutionary relationship. Thus
proteins with similar domain contexts in the PPI network
may share similar functions.

The domain context similarity (denoted as f) is defined as:

Where M is the number of domain types in the PPI net-
work. Given proteins A and B, SA and SB are the sets of
domains included in A's neighbors and in B's neighbors.
The number of domain types in SA is a, while the number
of domain types in SB is b. The intersection of SA and SB
is S, containing s types of domains. C(M:s) denotes com-
binatorial numbers. The larger f indicates a greater proba-
bility that A and B share similar functions.

For each GO term, there is a positive data set composed of
present proteins, and a negative data set including absent
ones. For example, GO:0009277 is used to describe 107
yeast proteins, so these proteins were treated as positive
samples. Since some GO terms contains only a few pro-
teins and other GO terms are too general, only GO terms
containing 10-200 proteins were considered.

Given a protein P with unknown function, in order to
examine its function with regard to each particular GO
term, the domain context similarities, f, between P and
each protein in both the positive and negative data sets
were calculated. The function annotation of the protein
with the highest f value was then assigned to P.

The 7-fold cross validation, which has been widely imple-
mented in previous researches [23,24], was used to evalu-
ate the performance of our prediction. For every GO term,
both the positive and negative data sets were divided into
seven equal parts randomly. Every time six positive parts
and six negative parts were used as the training data set
while the remaining parts was used as the test data set.
This procedure was repeated 7 times to ensure that every
part was used once as the test data set for one GO term.
Then the whole procedure was repeated for every GO
term. The final accuracy was the average of the evalua-
tions.

Four frequently used measurement indices, accuracy, pre-
cision, recall and Mathew correlation coefficient (MCC),
were used to evaluate the prediction performance. The
Mathew correlation coefficient (MCC) was calculated to
assess the prediction performance when the numbers of
proteins in the positive and negative data sets differed sig-
nificantly. MCC ranges from -1 to 1, a larger MCC indicat-

ing better prediction performance. For data with positive
predictions, the real positives are defined as true positives
(TP), while others are defined as false positives (FP). For
data with negative predictions, the real positives are
defined as false negatives (FN), while the others are
defined as true negatives (TN). Then, the measurement
indices are defined as:

Results
The relationships between protein function similarity and
domain context similarity in the PPI network were inves-
tigated based on the measurement indices. First, 1000
pairs of proteins were randomly extracted from one GO
term with the domain context similarity, f, then calculated
for each pair (denoted as set A). Secondly, another 1000
random protein pairs were generated using pair of pro-
teins from different GO terms. Their f values are also cal-
culated (denoted as set B). The two sets of similarities
were then compared to demonstrate the positive signifi-
cant relationship between functional similarity and
domain context similarity. The results showed that set A
has a mean similarity, f, of 9.23 compared to 0.46 for set
B. Kolmogorov-Smirnov test showed that set A is signifi-
cantly higher than set B with a p-value less than 10-15. The
distributions of the similarity for sets A and B are shown
in Figures 2 and 3. There are many values between 0 and
150 in set A, while most values in set B are near 0. Hence,
the domain context similarity can be a useful index to pre-
dict protein function similarity.

The method was then used to predict protein functions in
yeast. GO terms were divided into 4 groups according to
the number of proteins in each GO term. GO terms con-
taining less than 10 proteins were excluded due to the lack
of a satisfactory number of proteins for accurate predic-
tions. GO terms including more than 200 proteins were
also eliminated because the function annotations in these
GO terms are usually too general. The results are shown in
Table 1.

The prediction accuracies are between 63%-67%. The
results show that the method has satisfactory robustness
for various numbers of proteins within one GO term. As
number of proteins increases from 10-30 to 100-200, the
accuracy only decreases slightly, by about 4%. The phe-
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nomenon that accuracies decrease as number of proteins
in the GO term increases can be attributed to the fact that
functional annotations in larger GO terms are not as spe-
cific as in smaller GO terms. Fuzzy, general annotation
information may affect the prediction performance. Fur-
ther investigation is required to explain this observation.
Besides, the recall is higher than the precision, demon-
strating that false positive predictions are more common
than false negative predictions.

This method was then compared with existing methods
based on the ROC curves. The three previously developed
methods included in comparison are MRF [25], Neighbor
counting [8] and Chi-square method [9]. The random pre-
diction performance was also presented. The ROC curves
shown in Figure 4 indicate that the current method out-
performs the other methods.

Discussion
A new prediction method for protein function based on
protein-protein interaction and domain context was pre-
sented in this research. Domain context similarity in the
protein-protein interaction network was defined and used

as in index for prediction. The underling principle of this
method was that proteins tend to interact with each other
via domain-domain interaction. So the high quality
domain-domain interaction information may improve
the prediction accuracy. Riley at al [26] developed domain
pair exclusion analysis (DPEA) to infer high-confidence
domain interaction from protein interactions. Besides,
DIMA [27,28] try to identify known and predicted
domain interactions which may be helpful if this informa-
tion was utilized in our method.

This research also suggests several future directions of
research. First, domain context similarity measurements
or prediction systems can be improved to reduce false pos-
itive predictions and boost accuracy. For example, the cut-
off value for domain context similarity can be introduced
to improve the accuracy and to deal with multiple func-
tion problems. Since the underlying rationale of this
method is the domain-domain interaction, high-quality
domain interactions can definitely contribute to the accu-
racy. As mentioned above, the newly developed domain
interaction inferring method [26-28] can be used in our
future algorithm improvement. Second, as shown by
Chua et al [10], functional similarities exist between

f value distribution of set AFigure 2
f value distribution of set A.

f value distribution of set BFigure 3
f value distribution of set B.

Table 1: Prediction performance measurements

Protein number in each GO term GO term number Accuracy Precision Recall MCC

10-30 387 67.29% 64.73% 75.98% 0.43
30-50 81 66.71% 64.63% 73.83% 0.41
50-100 63 65.47% 65.60% 65.07% 0.37
100-200 8 63.06% 62.70% 64.46% 0.30
In total 539 66.29% 64.83% 71.18% 0.40
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neighbor proteins with distances equal to or larger than 2,
which may be useful information to be included in func-
tion prediction. Third, other data resources, such as gene
expression profiles and gene regulatory networks, could
be combined with domain context information to predic-
tion functions. Different weight can be assigned to differ-
ent types of information. Machine learning methods, such
as SVM, can also be utilized to take the information listed
above as input features. Finally, since protein domains are
conserved and can be easily detected in various organ-
isms, this method should be promising in comparing pro-
tein functions across species.

Conclusion
The availability of large scale protein-protein interaction
data sets makes it possible to predict protein functions
based on protein-protein interaction (PPI) networks. Sev-
eral existing methods combine multiple information
resources to predict protein functions. We present a novel
protein function prediction method that combines pro-
tein domain composition information and PPI networks.
Performance evaluations show that this method outper-
forms existing methods. The results are used to analyze
the relationships between domain context similarity and
protein function similarity, while this research may have
potential future research directions.
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