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Abstract

Background: Experts in peptide:MHC binding studies are often able to estimate the impact of a
single residue substitution based on a heuristic understanding of amino acid similarity in an
experimental context. Our aim is to quantify this measure of similarity to improve peptide:MHC
binding prediction methods. This should help compensate for holes and bias in the sequence space
coverage of existing peptide binding datasets.

Results: Here, a novel amino acid similarity matrix (PMBEC) is directly derived from the binding
affinity data of combinatorial peptide mixtures. Like BLOSUM®62, this matrix captures well-known
physicochemical properties of amino acid residues. However, PMBEC differs markedly from
existing matrices in cases where residue substitution involves a reversal of electrostatic charge. To
demonstrate its usefulness, we have developed a new peptide:MHC class | binding prediction
method, using the matrix as a Bayesian prior. We show that the new method can compensate for
missing information on specific residues in the training data. We also carried out a large-scale
benchmark, and its results indicate that prediction performance of the new method is comparable
to that of the best neural network based approaches for peptide:MHC class | binding.

Conclusion: A novel amino acid similarity matrix has been derived for peptide:MHC binding
interactions. One prominent feature of the matrix is that it disfavors substitution of residues with
opposite charges. Given that the matrix was derived from experimentally determined
peptide:MHC binding affinity measurements, this feature is likely shared by all peptide:protein
interactions. In addition, we have demonstrated the usefulness of the matrix as a Bayesian prior in
an improved scoring-matrix based peptide:MHC class | prediction method. A software
implementation of the method is available at: http://www.mhc-pathway.net/smmpmbec.

Background acids. They are utilized throughout computational biol-
Amino acid similarity matrices define a quantitative meas-  ogy in areas such as phylogenetics, protein structure mod-
ure of likeness between each of the 20 canonical amino  eling, and prediction of protein ligand interactions.
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Depending on the application, different measures of sim-
ilarity are appropriate. For example, the commonly used
PAM and BLOSUM matrices [1,2] have been built based
on the frequencies of amino acid substitutions observed
in aligned protein sequences. This measure, routinely
used in programs such as BLAST [3], represents both evo-
lutionary and functional similarity between amino acids.

Our group has been interested in amino acid similarity in
the context of peptides binding to proteins. Given binding
data for several peptide ligands, the challenge is to predict
the affinity of any peptide of arbitrary sequence. Our spe-
cific interest is in peptide binding to proteins involved in
antigen processing and presentation, such as the TAP
transporter [4,5] and MHC molecules. In recent large-
scale benchmark studies, the best performing prediction
method for peptide:MHC class I binding is the NetMHC
artificial neural network, outperforming linear methods
such as SMM [6,7]. NetMHC is trained using a BLOSUM
matrix based encoding of peptide sequences [8-13]. This
provides the neural network with information on amino
acid similarity, and allows it to predict the impact of resi-
dues on binding that are not represented in the training
set.

In this study, we tested the hypothesis that amino acid
similarity in the context of peptide binding to MHC mol-
ecules is distinct from previously defined metrics. We fur-
ther examined if this similarity measure can be used to
improve peptide:MHC binding predictions, and if incor-
porating it into the SMM approach can close the gap in
prediction quality to NetMHC.

Results

Combinatorial peptide library binding affinity data

A library of combinatorial peptide mixtures was used to
measure the binding affinity contribution of each residue
in a 9-mer peptide to an MHC molecule. The library con-
tains mixtures of 9-mer peptides all sharing the same res-
idue type at one position, while the remaining positions
are allowed to sample all residue types. For instance,
XAXXXXXXX' represents a mixture of peptides with an
Alanine at position P2, and any one of the possible resi-
dues at the remaining positions. A total of 180 mixtures
covering 20 residue types in all positions of a 9-mer pep-
tide were synthesized, and tested for binding to 24 MHC
class T molecules listed in the methods section. Thus, a
total of 180 x 24 = 4320 binding affinities in terms of ICs
values were measured (Additional file 1: Dataset S1). We
then transformed these values to approximate a relative
binding energy contribution of an amino acid aa at pep-
tide position pos for a given MHC molecule:

1
AEua,pos,A/IHC = log(ICSOaa,pos,MHC) - % Z lOg(IC50aa’,pos,MHC)

aa’
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Building the peptide:MHC binding energy covariance
(PMBEC) matrix

To quantify how similar two amino acids aa and aa' are in
the context of peptide:MHC binding, covariance of their
relative binding energy contributions, AE,, . muc and
AE 44 pos, My Was calculated as follows:

24 9

PP

MHC=1 pos=1

COV(LlLl, LlLl') = (AEaa,pos,MHC - AEaa )( AEaa',pas,MHC - AEaa' )

Variables AE,, and 4E,, are averages over all positions and
MHC molecules for amino acids aa and aa', respectively.
These covariance values define the Peptide:MHC Binding
Energy Covariance (PMBEC) Matrix. A positive covari-
ance between two residues indicates that, on average, they
contribute similarly to binding free energy in different
environments. Conversely, a negative covariance indicates
that when one residue contributes favorably to binding,
the other contributes unfavorably. Figure 1 shows the
PMBEC matrix, which is symmetric and has dimensions
of 20 x 20. The matrix is also provided as a text file (Addi-
tional file 2: Dataset S2). Clustering amino acids based on
their covariances resulted in amino acid groupings similar
to their classically known physicochemical properties:
aromatic (W, F, and Y); hydrophobic (L, I, V, and M);
acidic (D and E); basic (R, H, and K); small (G, A, and P);
small and polar (S and T); and polar (N and Q). This indi-
cated that the PMBEC matrix was in agreement with exist-
ing heuristic groupings of amino acids.

Comparing the PMBEC matrix to previously established
measures of amino acid similarity

Numerous amino acid similarity matrices have been pub-
lished to date. Some of more prominent matrices such as
BLOSUM series have been, in fact, used in peptide:MHC
binding predictions to represent peptide sequences,
despite fundamental differences in context of their use
[13]. Apparent success of their use indicates that it is
worthwhile to investigate how similar the PMBEC matrix
is to these matrices.

Toward this end, we retrieved all 135 matrices out of 141
without missing entries from the AA Index Database [14],
centered these matrices, and calculated their Pearson's
correlation coefficients with respect to the PMBEC matrix
(See Methods for details). Table 1 lists the 10 matrices
from the AA Index database that are most similar to the
PMBEC matrix. In the table, BLOSUMS50 has the highest
correlation coefficient of 0.64, followed by OPTIMA,
Johnson & Overington, BLOSUMG62, and BLOSUMSO0,
among others. OPTIMA was derived by optimizing a
matrix to distinguish between remote homologues and
non-homologues. The Johnson & Overington matrix was
derived from a tabulation of amino acid substitutions
observed in sequences that were aligned using three-
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Figure |

The peptide:MHC binding energy covariance (PMBEC) matrix. The 20 amino acid residues are shown at the top and
right. Each matrix entry corresponds to the covariance in peptide:MHC binding energies between two residues. Values greater
than 0.05 indicate similarity between residues, and are colored green. Values less than -0.05 indicate dissimilarity between res-
idues, and are colored red. Note that the diagonal values are the residue specific statistical variances (defined as the average

squared values), which indicate how much the binding energies associated with the residue varies over all alleles and positions.
Cysteine (C), Glycine (G), Asparagine (N), and Glutamine (Q) are relative outliers because they have no partner residue with
absolute covariance > 0.05. Agglomerative clustering with complete linkage was used to group the amino acid residues, corre-
sponding to ordering the matrix rows and columns. The distance measure between two residues aa and aa' used for clustering
is (K - PMBEC(aa, aa')), where K is the maximum value in the PMBEC matrix. The resulting dendrogram on the right provides
a classification of amino acids which largely corresponds to classical groupings of amino acids by physicochemical properties.

dimensional protein structures. Furthermore, BLOSUM-X
matrices with increasing X (i.e. based on alignments with
increasing sequence homology) decrease in similarity to
PMBEC. Taken together, these observations indicate that
the PMBEC matrix most strongly resembles amino acid
similarity matrices that were assembled based on align-
ment of evolutionarily distant protein sequences.

Another observation one can make about the matrices in
the table is that the PMBEC matrix falls outside the cluster

of matrices that most resembles it. Specifically, in contrast
to a correlation coefficient of 0.64 between PMBEC and
BLOSUMS50, seven out of ten matrices in the table have
more than 0.93 with respect to BLOSUMS50. This further
adds to evidence that the PMBEC matrix is novel.

To further characterize the PMBEC matrix, we carried out
additional comparisons with BLOSUMG62. Figure 2 plots
correlation of matrix elements between BLOSUMG62 and
PMBEC with a correlation of 0.62. BLOSUMG62 was cho-

Table I: Ten most similar matrices to PMBEC out of all complete matrices from the AA Index Database.

Matrix ldentifier Cor.|PMBEC Cor.|BLOSUMé62 Description
HENS920104 0.64 0.96 BLOSUMS50 [I]
KANMO000101 0.63 0.96 OPTIMA [23]
JOHM930101 0.63 0.87 Johnson & Overington [24]
HENS920102 0.62 1.00 BLOSUMS®2 [1]
KOSJ9501 15 0.62 0.81 Koshi & Goldstein [25]
HENS920103 0.61 0.97 BLOSUMSO [I]
OVEJ920105 0.61 0.69 Overington et al. [26]
BENS940103 0.61 0.93 Benner et al. [27]
VOGG950101 0.61 0.93 Vogt et al. [28]
GONG920101 0.61 0.93 Gonnet et al. [29]

From the AA Index Database [14], all complete 35 amino acid similarity matrices out of 141 were downloaded and compared to PMBEC based on
their Pearson's correlation coefficients in the second column. See Methods for details. Also shown are correlation coefficients with respect to

BLOSUMS®2 in the third column.
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A scatter plot of non-diagonal elements of PMBEC
versus those of BLOSUMGé62. The two matrices were cen-
tered as described in the method section.

sen because it is representative of the matrices in Table 1;
it has high correlations (i.e. > 0.90) with most of the
matrices in the table including BLOSUM50. Also, it is
widely used in programs such as BLAST.

Accordingly, Figure 3 depicts detailed comparisons
between the matrices for three residues: Serine, Glutamic
acid, and Histidine. While Serine-specific amino acid sim-
ilarity profiles of BLOSUM62 and PMBEC share a high
correlation of 0.91, those of Glutamic acid share a rela-
tively low correlation of 0.61. A closer look at the substi-
tution profiles indicates that PMBEC highly disfavors
substitution of oppositely charged residues, Glutamic acid
(E) with Arginine (R), while BLOSUMS62 is neutral. Simi-
larly, PMBEC disfavors substitution of Glutamic acid (E)
with Lysine (K), while BLOSUMS62 favors this slightly. For
Histidine specific profiles, we see that substitution of sim-
ilarly charged residues, Histidine (H) and Lysine (K)/
Arginine (R), are favored by PMBEC while BLOSUM con-
siders them essentially neutral. Furthermore, five amino
acids with the lowest correlation coefficients include
Glutamic acid (E), Cysteine (C), Asparagine (N), Lysine
(K), and Aspartic acid (D) (data not shown). Taken
together, these observations indicate that differences
between BLOSUMG62 and PMBEC are most pronounced
where charged residues are involved.

http://www.biomedcentral.com/1471-2105/10/394
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Figure 3

Comparisons of amino acid similarity profiles of
PMBEC and BLOSUMA®é2. Each amino acid profile of 20
elements was normalized to a length of 1.0 with zero mean
to allow direct comparison between the two matrices. Ser-
ine-specific amino acid similarity profiles of the two matrices
share a high correlation. Glutamic Acid-specific ones, how-
ever, significantly differ for the substitutions involving
charged residues: (Glutamic Acid (E) -> Lysine (K)) and
(Glutamic Acid (E) -> Arginine (R)).
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In the following sections, a novel peptide:MHC binding
prediction method SMMPMBEC js introduced, and its bene-
fits are illustrated. SMMPMBEC improves upon the original
SMM approach [15] by using PMBEC as a Bayesian prior.
The details of how a Bayesian prior used in the SMM
approach is described in the Methods section.

SMMPMBEC can compensate for the absence of important

subset of binding data

Peptide binding affinity measurements available for MHC
class I molecules can vary from less than a hundred to
thousands for each allele. Furthermore, peptide sequence
space coverage in the binding data can be limited even for
alleles with large data sets, due to biases when selecting
peptides for binding measurements. Here, we examined
how well SMMPMBEC gddresses the problem of missing
data. We then compared its performance to that of
SMMBLOSUM which uses BLOSUMG62 as a prior.

To establish a reference point, SMM was trained on the
1869 peptide binding affinity measurements available for
HLA A*3101 [7], resulting in a 20 x 9 scoring matrix.
Because SMM has been shown to train an accurate model
for this allele and because of the large amount of data
available, we assumed that the scoring matrix closely
approximated the 'true' binding specificity. The SMM
matrix entries for peptide position P1 for 20 residues are
shown as black bars in Figure 4. According to this scoring
matrix, Lysine, Arginine, Methionine, and Histidine (K, R,
M, and H) contribute the most favorable binding energies
(i.e. negative values); while Aspartic acid, Glutamic acid,
Proline, and Asparagine (D, E, P, and N) contribute the
least favorable binding energies (i.e. positive values).

We then derived a subset from the original binding data
for HLA A*3101 such that all peptides with an Alanine at
P1 were excluded. When SMM was trained on this subset,
its scoring matrix gave a value of zero at P1 for residue
Alanine since SMM had no information on it available
from the training data. When training SMMPMBEC on this
subset, its scoring matrix entry for Alanine at P1 gave a
non-zero value. This step was repeated for the remaining
19 residues, and their corresponding scoring matrix entry
values are shown as gray bars in Figure 4. In the figure,
three out of four residues with the most favorable binding
energy contribution - Arginine, Lysine, Histidine (R, K,
and H) - are shared between SMM and SMMPMBEC_ Simj-
larly, three out of four residues with the least favorable
binding energy contribution - Glutamic acid, Aspartic
acid, and Proline (E, D, and P) - are shared between the
two methods. The binding energy profiles of SMM and
SMMPMBEChad a Pearson's correlation value of 0.92. Thus,
these observations indicate that SMMPMBEC can infer bind-
ing energies of missing residues from those present in the
binding data.

http://www.biomedcentral.com/1471-2105/10/394
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Comparison of binding contributions of 20 amino
acids at position | of the scoring matrices generated
by SMM, SMMPMBEC and SMMBLOSUM SMM was trained
on the 9-mer peptide binding data set (total of 1869 data
points) for HLA A*3101, yielding a single scoring matrix with
dimensions 20 x 9, where the rows represent 20 residues
while the columns represent 9 positions of a peptide. The
scoring matrix generated by SMM serves as a reference point
when binding data is well covered. SMMPMBEC and SMMBLO-
SUM, on the other hand, were trained on the 20 derived data
sets, each one lacking peptides containing a residue at posi-
tion |. The figure plots the scoring matrix values for the resi-
due specified on the x-axis in the second column of the
scoring matrix of SMM alongside corresponding elements
from the 20 scoring matrices of SMMPMBEC 3nd SMMBLOSUM,

When we repeated this exercise for SMMBLOSUM, resulting
in a binding energy profile shown in blue in Figure 4, we
saw that SMMBLOSUM can also infer binding energies of
missing residues (r = 0.69). However, approximated bind-
ing energies for Lysine (K) and Histidine (H) are sharply
different between SMMPMBEC and SMMBLOSUM The obvi-
ous benefit of using SMMPMBEC for HLA A*3101 binding
data set is by no means true for all other data sets. How-
ever, this example highlights what can be achieved with a
properly tuned amino acid similarity matrix.

SMMPMBEC consistently outperforms SMM over a wide
range of training data set sizes

To further compare SMMPMBEC and SMM, we tested
whether SMMPMBEC can outperform SMM over a wide
range of training data sizes. Figure 5 shows averaged pre-
diction performances of SMMPMBEC and SMM trained on
randomly sampled data sets for each size, all sampled
from the binding data of HLA A*1101. The allele HLA
A*1101 was chosen mainly because of its relatively large
data size, thereby allowing data sampling with a wide
range of data sizes. Five-fold cross validation was used for
each data set sampled (See Methods). The figure shows
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Prediction performances of SMMPMBEC and SMM,
trained on data sets with variable amounts of peptide
binding data. For each data set size, 20 data sets were ran-
domly drawn from the peptide binding data of HLA A*|101.
The average AUC (Area-Under-Curve) values of the two
prediction methods are plotted as a function of the dataset
size.

that for small training data sets where a lack of sequence
coverage is more likely, SMMPMBEC hag statistically signifi-
cant performance improvements over that of SMM. For
example, for the data set size of 100 measurements, aver-
aged prediction performances for SMMPMBECand SMM are
0.860 and 0.836 respectively (p-value = 2.0E-05).

Application of SMMPMBEC jn peptide:MHC-I binding
predictions

Motivated by the promising performance of SMMPMBEC,
we carried out a large-scale performance evaluations as
described in [7], where neural network based NetMHC
[13] was shown to be the best performing method, fol-
lowed by SMM, which uses scoring matrices [15]. Predic-
tion performances of SMM, SMMPMBEC, and NetMHC are
shown in Table 2 for 46 alleles.

When looking at these measured prediction performances
in Table 2, some precautions are in order. It has been
observed earlier that accuracy of a predictor tends to
increase with more training data [7]. Likewise, reliability
of a predictor's accuracy also increases with more training
data, because larger peptide sequence space is sampled.
Thus, apparently high prediction accuracy of a predictor
for Patr B*0101, for instance, should not be taken at its
face value, because the predictor was trained on relatively
small training data (132 data points).

With these precautions in mind, as shown in Table 2,
SMMPMBEC gutperformed SMM in 39 out of 46 cases, and
the average performance of SMMPMBEC was higher than

http://www.biomedcentral.com/1471-2105/10/394

Table 2: Prediction performances as measured by AUC values of
ROC curves.

MHC Data Size SMM SMMPMBEC  NetMHC
H-2_Db 303 0.909 0.901 0.933
H-2_Dd 85 0813 0.837 0.925
H-2_Kb 223 0811 0.833 0.850
H-2_Kd 176 0.928 0.931 0.939
H-2_Kk 164 0.772  0.793 0.790
H-2_Ld 102 0.932 0.942 0.977
HLA_A-0101 1157 0.977 0977 0.982
HLA_A-0201 3089 0.946 0.946 0.957
HLA_A-0202 1447 0.898 0.899 0.900
HLA_A-0203 1443 0916 0916 0.921
HLA_A-0206 1437 0913 0916 0.927
HLA_A-0301 2094 0.927 0.928 0.937
HLA_A-1101 1985 0.938 0.939 0.951
HLA_A-2301 104 0.793 0.840 0.852
HLA_A-2402 197 0.803 0.801 0.825
HLA_A-2403 254 0919 0932 0918
HLA_A-2601 672 0916 0.924 0.956
HLA_A-2902 160 0912 0916 0.935
HLA_A-3001 669 0.935 0.941 0.947
HLA_A-3002 92 0.878 0.830 0.744
HLA_A-3101 1869 0.925 0.925 0.928
HLA_A-3301 1140 0.923 0.925 0915
HLA_A-6801 1141 0.885 0.885 0.883
HLA_A-6802 1434 0.899 0.899 0.899
HLA_A-6901 833 0.867 0.880 0.880
HLA_B-0702 1262 0.959 0.960 0.965
HLA_B-0801 708 0.932 0.956 0.955
HLA_B-1501 978 0.937 0.940 0.941
HLA_B-1801 118 0.881 0.880 0.838
HLA_B-2705 969 0.936 0.941 0.938
HLA_B-3501 736 0.883 0.889 0.875
HLA_B-4002 118 0.832 0.843 0.754
HLA_B-4402 19 0.731 0.739 0.778
HLA_B-4403 119 0.757  0.753 0.763
HLA_B-4501 114 0.825 0.866 0.862
HLA_B-5101 244 0.876  0.895 0.886
HLA_B-5301 254 0.889 0.885 0.899
HLA_B-5401 255 0.923 0.935 0.903
HLA_B-5701 59 0.826 0.843 0.826
HLA_B-5801 988 0.942 0.945 0.961
Mamu_A-0l 525 0.855 0.854 0.861
Mamu_A-02 283 0.765 0.783 0.809
Mamu_A-11 468 0.883 0.894 0.894
Mamu_B-01 205 0.949 0.956 0.967
Mamu_B-17 300 0.934 0.943 0.954
Patr_B-0101 132 0.964 0.975 0.969
average AUC 0.887 0.894 0.897
t-test|SMM NA 0.001 0.057
t-test|NetMHC 0.057 0.470 NA

For each MHC-specific binding data set, 5-fold cross validation was
carried out using one of the four methods listed. Area-Under-Curve
(AUC:s) from the 5-fold cross validations are presented here. Also
shown are p-values of average AUC values calculated using Student's
t-test (2-tail, paired) with respect to the SMM and NetMHC
prediction methods.
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SMM (0.894 vs. 0.887 AUC values). The small but consist-
ent improvements are statistically significant with p-value
of 0.001 using Student's t-test (paired two tailed; the test
assumes that AUC values over data sets follow a normal
distribution). The same comparison for SMMPMBEC and
NetMHC indicated that their difference of average per-
formances was not statistically significant (p-value =
0.47). Thus, the use of PMBEC as a Bayesian prior
improves performance for SMMPMBEC, yielding a perform-
ance that is overall comparable to that of NetMHC. Given
that NetMHC uses neural networks to represent a model
of peptide:MHC binding specificity, it is noteworthy that
the use of a simple scoring matrix coupled with a Bayesian
prior can match its prediction performance.

A closer look at Table 2 reveals that the most significant
performance improvements of SMMPMBEC gyer SMM tend
to come from alleles with smaller data sets (e.g. HLA
A*2301, HLA B*4501). This is in agreement with what
has been observed earlier that at smaller data size, the
benefits of PMBEC as a Bayesian prior compensating for
missing binding data are more apparent.

We have also carried out performance evaluations for
SMMBLOSUM (Additional file 3: Dataset S3). The difference
between averaged prediction performances of SMMBLOSUM
and SMMPMBEC was 0.0003, which is not statistically sig-
nificant (p-value = 0.83). We attribute their similar per-
formances mainly to a feature of SMM approach where
prior is relied on less as more binding data become avail-
able for training. In fact, when prediction performance
differences of SMMPMBEC and SMMBLOSUM are plotted
against training data set sizes, a clear pattern emerges
where larger training data sizes correlate with smaller per-
formance differences (data not shown). About 80% of
data sets are contained within + 0.01 AUC of zero per-
formance difference.

Of the remaining 20% of the data sets, we see that three
MHCs with the highest performance differences favoring
PMBEC have binding motifs with strong preference for
Glutamic acid at the anchor residue position. (Of these
three MHCs, HLA B*4403, followed by B*4002 and H-2
KK, has the largest AUC difference of 0.037.) This latter
observation supports one of the main arguments made in
the present work that amino acid similarities involving
Glutamic acid are the most prominent difference between
PMBEC and BLOSUM. This in turn suggests that those
MHC's with Glutamic acid as anchor residues is where
SMMPMBEC's prediction performances will be superior to
those of SMMBLOSUM,

Discussion
We have derived a novel amino acid similarity matrix
(PMBEC) for peptide:MHC class I binding. Rather than

http://www.biomedcentral.com/1471-2105/10/394

relying on sequence alignments, the matrix was derived
from experimentally measured binding affinities of com-
binatorial peptide mixtures. The use of combinatorial
peptide mixtures afforded us an unbiased sampling of
peptide sequence space. In total, a panel of 24 MHC class
I molecules was probed, corresponding to 4320 binding
affinity measurements of individual residues in diverse
contexts of both peptide ligand and receptor molecule.
This approach can, therefore, directly evaluate amino acid
similarities in the context of peptide:protein binding.

Once the PMBEC matrix was derived, its comparisons
with all complete 135 amino acid similarity matrices
taken from the AA Index Database have shown that the
matrix is different from previously established amino acid
similarity matrices. To determine where PMBEC most dif-
fers, detailed comparisons with BLOSUMG2 (representa-
tive of those matrices most similar to PMBEC) have
revealed that PMBEC considers pairs of amino acids with
opposite charges to be very dissimilar, while BLOSUM62
considers them a neutral exchange. These differences are
most likely due to different molecular consequences of
substituting an amino acid in a protein, and in a peptide
bound to MHC. Specifically, in protein sequences, most
charged residues are on the surface, and a reversal of
charge can often be tolerated well, as it preserves
hydrophilicity. For peptide ligands, on the other hand, a
reversal of charge is likely going to adversely affect their
binding affinities.

Because of these peptide:protein specific features, we
expect the PMBEC matrix will be useful in modelling pep-
tide similarities in the context of immune recognition. In
addition, we also expect that the matrix will be of use to
those studying other types of peptide:protein interactions
(e.g. SH3, PDZ, and WW protein domains). In hindsight,
we are surprised that a novel amino acid similarity matrix
such as PMBEC can still be discovered. Our work further
underscores the importance of application-specific amino
acid similarity matrices in computational biology, since
molecular context determines which matrices are more
meaningful.

In the context of predicting MHC class I binding peptides,
we have shown that SMMPMBEC - which uses PMBEC as a
Bayesian prior - has a significantly better prediction per-
formance than SMM. For those alleles with small data
sets, performance improvements were more apparent,
indicating that the use of PMBEC as a Bayesian prior is
likely compensating for inadequate peptide sequence cov-
erage. We have also shown that SMMPMBEC's ability to
infer 'true' binding energy contributions of intentionally
excluded residues from others present in the binding data
is limited. This is probably due to subtle differences of
MHC molecule binding specificities that have so far not
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been appreciated. For comparison, a Bayesian prior based
on BLOSUMSG62 also displays this property.

We have also shown that the average performance differ-
ence of SMMPMBEC and NetMHC (the best performing
method for peptide:MHC class I binding prediction
according to recent benchmarks) is not statistically signif-
icant. Our results indicate that, at least for peptide:MHC
class I binding predictions, scoring matrices can provide
competitive prediction performances. This close predic-
tion performances between a non-linear model and a lin-
ear one suggests that the limit of a linear model has been
reached. From a practical standpoint, the key advantages
of using a scoring matrix are that the model is easy to
understand, interpret, and communicate.

Lastly, although the use of PMBEC improves prediction
performance, the simplicity of the approach comes with a
number of inherent limitations. One notable limitation is
that the same set of amino acid similarity rules encoded in
PMBEC is used for all peptide positions. Since there are
position dependent influences observed for peptide:MHC
binding motifs, such information may be used in the near
future with more experimental data.

Conclusion

PMBEC is a novel amino acid similarity matrix derived for
peptide:MHC class I binding. One prominent feature of
the matrix is that it disfavors substitutions of amino acids
with opposite charges. This is likely a general feature of
peptide:protein interactions. We have also demonstrated
the usefulness of PMBEC in the context of peptide:MHC
class I binding predictions, by using it as a Bayesian prior
in a new prediction method SMMPMBEC, Results from a
large-scale benchmark indicate that its prediction per-
formance rivals that of one of the best performing meth-
ods in the field.

Methods

Positional scanning combinatorial peptide library and
peptide synthesis

The combinatorial library was synthesized as previously
described [16]. Each pool in the library contains 9-mer
peptides with one fixed residue at a single position. With
each of the 20 naturally occurring residues represented at
each position along the 9-mer backbone, the entire library
consisted of 180 peptide mixtures. Peptides utilized in
screening studies were synthesized as described elsewhere
[17], or purchased as crude material from Mimotopes
(Minneapolis, MN/Clayton, Victoria, Australia), Pepscan
Systems B.V. (Lelystad, Netherland) or A and A Labs (San
Diego, CA). Peptides synthesized for use as radiolabeled
ligands were synthesized by A and A Labs and purified to
>95% homogeneity by reverse phase HPLC. Purity of
these peptides was determined using analytical reverse-
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phase HPLC and amino acid analysis, sequencing, and/or
mass spectrometry. Peptides were radiolabeled with the
chloramine T method [18]. Lyophilized peptides were re-
suspended at 4-20 mg/ml in 100% DMSO, then diluted to
required concentrations in PBS +0.05% (v/v) nonidet P40
(Fluka Biochemika, Buchs, Switzerland).

Target major histocompatibility complex (MHC)
molecules for the generation of binding data using
combinatorial peptide mixtures

For each one of the 24 MHC molecules, a scoring matrix
was generated. The target MHC molecules came from four
organisms: human (A*0201, A*6802, A*3201, A*3001,
B*5802, B*5801, B*5401, B*5301, B*5101, B*3501,
B*2705, B*1503, B*1501, B*0801, and B*0702); mouse
(H-2 Kk, H-2 Kd, H-2 Dd, and H-2 Db); chimpanzee (Patr
A*0401 and Patr A*0301); and macaque (Mamu B*08,
Mamu B*03, and Mamu B*01). Binding data for human
and mouse have been published in [19]; those for chim-
panzee in [20]; and those for macaque have been submit-
ted.

MHC purification and peptide binding assays

MHC purification and quantitative binding assays based
on the inhibition of binding of a high affinity radiola-
beled ligand were performed essentially as described else-
where [18-21]. In competition assays, each mixture or
individual peptide was tested in 3 or more independent
experiments for its capacity to inhibit the binding of the
radiolabeled peptide. The concentration of peptide yield-
ing 50% inhibition of the binding of the radiolabeled
peptide was calculated. Under the conditions utilized,
where the concentration of the labelled ligand is less than
that of MHC molecule and IC, is greater than the concen-
tration of MHC molecule, the measured IC;, values are
reasonable approximations of dissociation constant, KD.

Comparing amino acid similarity matrices from different
sources

An accurate comparison of amino acid matrices was
important in this study because we wanted to determine
whether the peptide:MHC binding covariance matrix
(PMBEC) introduced in this work is significantly different
from others. Toward this, amino acid similarity matrices
were first centered [22] as shown for the matrix A,

AC = 'HAH,

where H = I - J/n, I is an identity matrix, J is a matrix com-
posed of ones, and n is 20. Centering of matrices reduces
the influence of data source dependent expected probabil-
ities. Following this, Pearson's correlation coefficients of
matrices with respect to PMBEC were calculated. Out of
210 unique elements for each symmetric 20 x 20 matrix,
190 non-diagonal elements were considered for the calcu-
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lation of correlation since we are interested in relation-
ships involving two different residues.

Application of PMBEC as a Bayesian prior

We have previously established the SMM prediction
method [15], which models the peptide binding specifi-
city for a given MHC allele as a scoring matrix. Each matrix
entry corresponds to the predicted binding energy contri-
bution of a residue in a fixed length peptide. The matrix is
determined by minimizing the difference between pre-
dicted and measured binding affinities in combination
with a regularization term, which serves to push any entry
in the scoring matrix toward zero for which no clear con-
tribution to binding can be determined from the training
data. This approach has been shown to vastly outperform
other scoring matrix based predictions such as ARB and
Rankpep [6,7], but it is outperformed by NetMHC, which
uses artificial neural networks and amino acid similarity
information.

Motivated by this observation, we reasoned that predic-
tion performances of SMM can also be improved by incor-
porating amino acid similarity information. We reframed
SMM from a Bayesian viewpoint, and assigned prior prob-
abilities to scoring matrices by assuming that their matrix
entries follow the multivariate normal distribution
defined by the covariance values in PMBEC. The minimi-
zation of differences between measured and predicted
affinities corresponds to maximizing the likelihood of
observing the measured binding affinities for a given scor-
ing matrix. It can be shown that the regularization term in
the original SMM approach corresponds to the use of a
Bayesian prior that assumes a multivariate normal distri-
bution for the scoring matrix but assumes no correlation
between different amino acids. In essence, the use of this
Bayesian prior now favors scoring matrices that reflect
amino acid similarity information encoded in PMBEC.
Details of the derivation are shown in the following sec-
tion.

From here on, SMM refers to the original version of the
method, where an identity matrix is used in a prior. Like-
wise, SMMPMBEC and SMMBLOSUM ygse PMBEC and
BLOSUMG62 matrices in their priors, respectively.

Implementation of Bayesian prior into SMM

To build a model of binding specificity of an MHC mole-
cule for 9-mer peptides, a scoring matrix is trained, given
N binding affinity measurements, b,,(Nx1). The scoring
matrix is represented as a vector including an offset varia-
ble, yielding a total of 20 x 9 + 1 = 181 rows: w(181x1).
Peptide sequences are represented using a sparse encoding
scheme, where a binary vector of length 20 is associated
with each residue position. Thus, N 9-mer peptides can be
represented by a matrix, H(Nx181). Binding predictions
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are carried out by a matrix multiplication H and w, result-
ing in a vector of predicted binding affinities for the pep-
tides.

Assuming that errors in binding affinity measurements,
b,, are normally distributed with variance, ¢?, and zero
mean, the likelihood of the binding measurements given
a scoring matrix, w, is:

2
i —(Hw—
likelihood = p(b,, | w) = const * exp %
1)
Assuming that the columns of the scoring matrix, w, fol-
low the multivariate normal distribution specified by the
covariance matrix, C, the prior is:

prior = p(w) = const * exp(—'wC'w)

From this Bayesian viewpoint, it can be seen that the SMM
approach uses an identity matrix for the covariance
matrix, C, in a prior. Using Bayes' theorem, the posterior
can now be defined as:

p(w|by,) = p(by, | w)p(w)

By maximizing the posterior, the model, w, is optimized
to best correlate with the binding measurements, b,,, with
respect to the prior. To solve for w, both sides of the equa-
tion are log transformed and then multiplied by the exper-
imental error, &2, to yield:

-62log(p(w|b,,)) = (Hw —b,,)* + 8> ' wCw

After differentiating the equation and solving for w, it can
be shown that the following equation is an analytical
solution for w that minimizes the above equation:

w=["HH + AC™'|"""Hb,,

where A = 62 now serves as a scaling factor balancing the
influences of p(b,,|w) and p(w). Put it differently, A deter-
mines how much influence the covariance matrix has at
each residue position. The optimal A is determined by
minimizing the cross-validated distance shown below:

D(2) = 2 " Hyjina,iwi(A) = Voiina,i "
i

Here, the binding data was split into five parts where one
part is labelled 'blind' and the remaining 'training'. The
model w was generated based on the 'training' set and was
used to make predictions for the 'blind' set. The cross-val-
idated distance uses a sum of squared errors as the norm.
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To generate a robust model, the process of splitting the
binding data, optimizing A, and generating w is repeated
10 times, yielding 10 models. The final model returned by
the prediction method is an average of these 10 models.

Evaluation of the prediction methods

Five-fold cross validation was used to measure prediction
performances of methods. Here, a binding dataset is
divided into 5 equal subsets, where one subset is labelled
a testing set and the remaining 4/5 subsets a training set.
A model was generated based on the training set only and
used to make predictions for the testing set. This step was
repeated 4 more times by rotating around the testing set
label, resulting in blind predictions for the full dataset in
the end. Performance was measured by calculating an
Area-Under-Curve (AUC) of Receiver-Operating-Charac-
teristic (ROC) curve of the blind predictions with respect
to corresponding measured binding affinities. An AUC
value has a range from 0.5 to 1.0, where it can be inter-
preted as the probability of distinguishing binders from
non-binders if they were picked randomly. Thus, a value
of 1.0 indicates a perfect prediction where as that of 0.5
indicates random.
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