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Abstract
Background: Predicting the binding sites between two interacting proteins provides important
clues to the function of a protein. Recent research on protein binding site prediction has been
mainly based on widely known machine learning techniques, such as artificial neural networks,
support vector machines, conditional random field, etc. However, the prediction performance is
still too low to be used in practice. It is necessary to explore new algorithms, theories and features
to further improve the performance.

Results: In this study, we introduce a novel machine learning model hidden Markov support vector
machine for protein binding site prediction. The model treats the protein binding site prediction as
a sequential labelling task based on the maximum margin criterion. Common features derived from
protein sequences and structures, including protein sequence profile and residue accessible surface
area, are used to train hidden Markov support vector machine. When tested on six data sets, the
method based on hidden Markov support vector machine shows better performance than some
state-of-the-art methods, including artificial neural networks, support vector machines and
conditional random field. Furthermore, its running time is several orders of magnitude shorter than
that of the compared methods.

Conclusion: The improved prediction performance and computational efficiency of the method
based on hidden Markov support vector machine can be attributed to the following three factors.
Firstly, the relation between labels of neighbouring residues is useful for protein binding site
prediction. Secondly, the kernel trick is very advantageous to this field. Thirdly, the complexity of
the training step for hidden Markov support vector machine is linear with the number of training
samples by using the cutting-plane algorithm.

Background
Identification of protein binding site has significant
impact on understanding protein function. Development

of fast and accurate computational methods for protein
binding site prediction is helpful in identifying function-
ally important amino acid residues and facilitating exper-
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imental efforts to catalogue protein interactions. It also
plays a key role in enhancing computational docking
studies, drug design and functional annotation for the
structurally determined proteins with unknown function
[1].

Protein binding site prediction has been studied for dec-
ades [2-4]. Several machine learning methods have been
applied in this field. These methods can be split into two
groups: classification methods and sequential labelling
methods. The essential difference between classification
methods and sequential labelling methods is that the clas-
sification methods treat each residue as independent and
ignore the extra information from neighbouring residues
or constraints of a single sequence, i.e. treating the protein
binding site prediction as a classification problem. In con-
trast, the sequential labelling methods are able to consider
the correlations between labels, to include long-distance
interaction and to model the protein sequence as a whole.
An example of comparison of classification methods with
sequential labelling methods for protein binding site pre-
diction is shown in Figure 1.

Classification methods, such as support vector machines
(SVM) [4-11] and artificial neural networks (ANN) [1,12-
16], treat the protein binding site prediction as a classifi-
cation task. These methods are based on the sequence or
structure characteristics of known protein binding sites,
such as sequence conservation [12], interface propensities
[11,17], secondary structure [18], accessible surface area
[1,5], 3D-motifs [19,20] and residue evolutionary infor-

mation [7,9]. Because none of the individual property car-
ries sufficient information that can be used to make an
unambiguous identification of interface regions or
patches, a combination of some of them (via either a lin-
ear combination [18] or machine learning [7,21]) is
found to be effective in improving the accuracy of binding
site prediction [22,23]. Kim et al. presented a hybrid
approach by using both sequential and structural features
[24]. Burgoyne and Jackson analyzed the ability of differ-
ent key physicochemical attributes and binding surface
properties, such as surface conservation, to predict the
binding interface [25]. To improve prediction robustness
and accuracy, meta-PPISP [26], a meta web server, com-
bined results from different predictors including cons-
PPISP [15], Promate [18] and PINUP [27]. Although the
classification methods yield exciting results, these meth-
ods separately study the target residues and do not take
the relation between two labels (interface or noninterface)
of neighbouring residues into consideration. Some
researchers noticed the importance of the inter-relation
information between neighbouring residues for predict-
ing protein binding sites and proposed several methods to
use this information. Yan et al. [28] pointed out that inter-
face residues tend to form clusters in the primary amino
acid sequence and proposed a two-stage classifier. Chung
et al. [10] used the clustering as a post-processing strategy
to remove the isolated interface residues predicted by
SVM. Although performance improvement is observed for
these methods, they only use the local relation between
neighbouring residues. In our previous study, we pro-
posed a conditional random field (CRF)-based method

An example of comparison of classification method with sequential labelling method for protein binding site predictionFigure 1
An example of comparison of classification method with sequential labelling method for protein binding site 
prediction. For the predicted labels, I and N represent interface residue and non-interface residue respectively.
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[29], which treats the prediction of protein binding site as
a sequential labelling task. In contrast to the traditional
classification methods, such method uses the relation
between neighbouring residues in a global fashion and
shows better performance than traditional classification
methods. Surveys of the methods for protein binding site
prediction have been performed by two studies [30,31].

In this study, we introduce a novel machine learning
scheme which overcomes several disadvantages associ-
ated with existing methods. The model is based on hidden
Markov support vector machine (HM-SVM) [32], which
treats the protein binding site prediction as a sequential
labelling task based on the maximum margin criterion.
Hidden Markov support vector machine (HM-SVM) is
introduced initially for solving the problem of labelling
sequence data that arises in the scientific fields such as
bioinformatics and natural language processing. In addi-
tion to HM-SVM, some other methods also suit to label
sequence, such as hidden Markov model (HMM) [33] and
conditional random field (CRF) [34]. HMM is one of the
most common methods for performing sequence label-
ling. HMM is able to model sequential dependencies by
treating the label as a Markov chain, which avoids direct
dependencies between subsequent observations and leads
to an efficient dynamic programming formulation for
inference and learning. It is a generative model that max-
imizes the joint probability distribution p(x, y), where x
and y are random variables whose values take on all obser-
vation sequences and corresponding labelling sequences,
respectively. Despite its success, HMM has at least three
major limitations. 1) HMM is trained in a non-discrimi-
native manner. 2) The conditional independence assump-
tions are too restrictive. 3) HMM is based on explicit
feature representations and lacks the power of kernel-
based methods. CRF is another successful method for
sequence labelling, which is a discriminative probabilistic
model. CRF uses a single exponential model for the con-
ditional probability of all training labels, given the obser-
vation sequence. Therefore, the weight of an arbitrary
feature can be learned from its global interactions with all
the other features. This means that the weights of all the
features within CRF can be traded off against each other.
However, like HMM, CRF is based on explicit feature rep-
resentations and lacks the power of kernel-based meth-
ods. HM-SVM follows the discriminative approach like
CRF to model and comprises two additional crucial prop-
erties inherited from SVM: the maximum margin princi-
ple and a kernel-centric approach to learn non-linear
discriminant functions. HM-SVM has been applied to
some common problems in natural language processing,
such as named entity recognition and part-of-speech tag-
ging [32]. The experimental results are significantly better
than those from other sequential labelling methods such
as HMM and CRF. In this paper, three state-of-the-art

methods including ANN, SVM and CRF are compared
with our method for protein binding site prediction.
These methods are trained by using common features
derived from protein sequences and structures including
protein sequence profile and residue accessible surface
area. When tested on different types of data sets, the
results show that our method performs well and its run-
ning time is several orders of magnitude shorter than that
of the compared methods.

Results
Comparison with related methods
Through the experiments reported here, the performance
of the three following methods is compared with our
method: artificial neural network (ANN), support vector
machine (SVM) and conditional random field (CRF).
These three methods are state-of-the-art methods within
the field of protein binding site prediction
[4,5,7,11,13,15,29,35]. ANN and SVM are classification
methods, while CRF is a sequential labelling method. For
detailed setup procedures of these methods please refer to
the method section. Table 1 summarizes the performance
of the various methods on the six data sets and the ROC
cures are depicted in Figure 2. It is obvious that HM-SVM
outperforms the other methods in terms of AUC for pre-
dicting protein binding sits. For each method, the per-
formance on the homo-complex data sets is better than
the performance on the hetero-complex data sets, which is
consistent with previous study [15]. Generally speaking,
the sequential labelling methods are consistently better
than the classification methods. On the six data sets, HM-
SVM yields the best performance according to MCC, F1
and AUC, which indicates that HM-SVM can obtain better
trade-off between specificity+ and sensitivity+ automati-
cally. Another sequential labelling method CRF gets the
second best performance. The classification methods SVM
and ANN are worst according to our experiment and SVM
is better than ANN.

One important aspect of any protein binding site predic-
tion method is its computational efficiency. We compare
the running time of each method and the results are
shown in Table 1. All the experiments are performed on a
personal computer with CPU of Intel Pentium 2.2 GHz
and memory of 3G. Concerning the computational time
of different methods, only ANN is comparable with HM-
SVM, but the prediction performance of ANN is consider-
ably lower than that of HM-SVM. HM-SVM is two orders
of magnitude faster than CRF and three orders of magni-
tude faster than SVM. Table 2 provides a qualitative esti-
mation of computational costs of different methods.
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Influence of the number of training samples on the 
prediction performance and running time
In order to investigate the influence of the number of
training samples on the prediction performance and run-
ning time for each method, we generate a series of training
sets with different number of training samples. We ran-
domly select about one fifth of the chains from mix I data
set as the test set (with 223 chains and 46345 residues),
and the remaining chains are used as the training set (with
901 chains and 103084 residues). Different percentage of
the whole training set is used as the training set. Figure 3
shows the performance of different methods trained with
different number of training sample. For different training
size, HM-SVM consistently outperforms the other meth-
ods in terms of F1, MCC and AUC. The curves of HM-SVM
are smoother than those of the other methods, indicating
that even trained with small number of training samples,
HM-SVM can achieve stable performance. Figure 4 shows
the relation between the running time and the number of
training samples. The running time of the three methods
ANN, CRF and HM-SVM approximately scales linearly

with the number of training samples, while the running
time of SVM increases significantly with the number of
training samples from small to large, especially for large
training set. Overall our method can be quickly trained on
a large data set and get good results. Additionally, even
trained on small data sets, our method can achieve stable
performance.

The inter-relation information between neighbouring 
residues is relevant for discrimination
To examine whether the inter-relation information
between neighbouring residues learned by HM-SVM is rel-
evant for discrimination, we run a control experiment. In
the experiment, each residue is taken as an observation
sequence in order to remove the relationship between res-
idues of a protein sequence in the original training set.
HM-SVM is trained on this modified training set and then
tested on the original test set. The results on the six data
sets are shown in Table 3. Compared with the results
obtained on the original data sets, the results of HM-SVM
on the modified data sets are lower in terms of F1-meas-

ROC cures on the six data setsFigure 2
ROC cures on the six data sets. The ROC cures of ANN, SVM, CRF, HM-SVM on the six data sets: (a) Hetero-complex I, 
(b) Homo-complex I, (c) Mix I, (d) Hetero-complex II, (e) Homo-complex II, (f) Mix II.
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ure, MCC and AUC. Therefore, we conclude that the inter-
relation information between neighbouring residues

learned by HM-SVM is relevant for discrimination.

The window size has not significant influence on the 
performance
For each labelled residue, its profile feature and ASA fea-
ture are taken from a window containing n (odd number)
nearest spatially neighbour residues (including the
labelled residue). The window size is selected using
embedded 5-fold cross-validation independently for each
test set of the 5-fold cross-validation procedure. The influ-
ences of the window size on the performance of HM-SVM

Table 1: Performance of HM-SVM versus other methods on all data sets

Data set Method Specificity+ (random)a Sensitivity+ (random)b F1 Accuracy MCC AUC Time (s)c

Hetero-complex Id ANN 37.6% (28.1%) 59.4% (16.7%) 46.0% 60.9% 18.9% 64.5% 326
SVM 38.4% (28.1%) 59.8% (16.8%) 46.8% 61.8% 20.2% 65.4% 179461
CRF 42.6% (28.1%) 55.2% (15.5%) 48.0% 66.5% 24.4% 65.3% 12151
HM-SVM 44.9% (28.1%) 56.0% (15.7%) 49.8% 68.3% 27.4% 69.5% 356

Homo-complex I ANN 39.0% (27.0%) 58.4% (15.8%) 46.6% 63.9% 22.1% 67.0% 586
SVM 39.6% (27.0%) 61.9% (16.7%) 48.3% 64.2% 24.2% 68.6% 224979
CRF 45.1% (27.0%) 59.2% (16.0%) 51.2% 69.5% 30.2% 67.6% 16961
HM-SVM 45.4% (27.0%) 60.0% (16.2%) 51.7% 69.7% 30.9% 72.2% 588

MixeI ANN 40.3% (27.5%) 51.4% (14.1%) 44.7% 65.4% 20.8% 65.8% 1242
SVM 39.5% (27.5%) 61.5% (16.9%) 48.1% 63.6% 23.3% 67.6% 831579
CRF 44.3% (27.5%) 57.5% (15.8%) 49.9% 68.4% 28.0% 66.8% 28364
HM-SVM 45.5% (27.5%) 58.0% (15.9%) 51.0% 69.4% 29.7% 71.2% 891

Hetero-complex IIf ANN 45.9% (34.9%) 60.5% (21.1%) 52.1% 61.3% 21.3% 65.8% 604
SVM 47.9% (34.9%) 61.6% (21.5%) 53.9% 63.2% 24.6% 67.7% 160625
CRF 51.6% (34.9%) 57.6% (20.1%) 54.3% 66.3% 28.0% 67.3% 13441
HM-SVM 54.0% (34.9%) 56.7% (19.8%) 55.3% 68.0% 30.5% 70.7% 464

Homo-complex II ANN 43.9% (32.3%) 66.7% (21.5%) 52.8% 61.5% 24.1% 68.1 856
SVM 47.1% (32.3%) 63.1% (20.4%) 54.0% 65.2% 27.7% 70.2% 554054
CRF 52.5% (32.3%) 59.7% (19.3%) 55.9% 69.5% 32.9% 68.7% 18124
HM-SVM 53.3% (32.3%) 60.1% (19.4%) 56.5% 70.1% 34.0% 73.4% 851

Mix II ANN 46.5% (33.3%) 53.4% (17.9%) 49.4% 63.7% 21.7% 65.8% 1260
SVM 47.5% (33.3%) 62.3% (20.8%) 53.9% 64.5% 26.5% 69.2% 1316103
CRF 52.2% (33.3%) 58.6% (19.5%) 55.2% 68.3% 30.9% 68.1% 856765
HM-SVM 53.6% (33.3%) 58.6% (19.6%) 56.0% 69.3% 32.6% 72.4% 1320

Specificity+ = TP/(TP+FP); Sensitivity+ = TP/(TP+FN); F1 = 2 × Specificity+ × Sensitivity+/(Specificity++Sensitivity+); Accuracy = (TP+TN)/

(TP+TN+FP+FN); MCC = (TP × TN-FP × FN)/ ; AUC: Area Under ROC Curve [61]. Where 

TP is the number of true positives (residues predicted to be interface residues that actually are interface residues); FP the number of false positives 
(residues predicted to be interface residues that are in fact not interface residues); TN the number of true negatives; FN the number of false 
negatives.
aValues in parentheses are randomly predicted values. The specificity+ of random prediction is calculated as: the total number of interaction sites 
residues/the total number of residues.
bValues in parentheses are randomly predicted values. The sensitivity+ of random prediction is calculated as: the total number of predicted residues 
as interaction sites by each method/the total number of residues.
cThe total running time (second) for 5-fold cross-validation, including training and testing.
dType I data set with minor interface as negative samples.
eThe mixed data set of hetero-complexes and homo-complexes.
fType II data set with minor interface as positive samples.

( )( )( )( )TP FN TP FP TN FP TN FN+ + + +

Table 2: Summary of computational costs of different methods

ANN SVM CRF HM-SVM

Train L H H L
Test L H L L

L and H represent low computational cost and high computational 
cost, respectively.
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on mix I data set are illustrated in Figure 5. The results
show that the window size has not significant influence
on the performance of HM-SVM. When the window size
is larger than 9, HM-SVM can achieve stable performance.
The window size of 13 is used in this study, since it is the
optimal window size for the SVM-based methods sug-
gested by two related studies [10,11].

Evaluation of the performance in the context of three-
dimensional structures
To further evaluate the performance of our method, we
examine predictions in the context of the three-dimen-
sional structures. Two proteins are selected from hetero-
complex I data set and homo-complex I data set and the
results are shown in Figure 6 and Figure 7, respectively. As
can be seen from Figure 6, most of the false positives pre-
dicted by the classification methods ANN and SVM locate
on far away from the actual interface, while the false pos-
itives predicted by sequential labelling methods CRF and
HM-SVM are roughly around the actual interface, espe-
cially HM-SVM can successfully distinguish interface and
non-interface residues for this protein. This result is not
surprising. Traditional classification methods separately
study each residue without using the relation between two

labels (interface or non-interface) of neighbouring resi-
dues. In contrast, sequential labelling methods take inter-
relation information between neighbouring residues into
consideration. Similar results are also observed for homo-
complex. As shown in Figure 7, the prediction results of
sequential labelling methods are better than those of clas-
sification methods. Among the four methods HM-SVM
achieves the best prediction performance.

Discussion
Methods which predict interface residues using amino
acid sequence along with the structure of the target pro-
tein (but not the structure of the complex it forms with
other proteins) are of interest, because relatively few
experimentally determined structures of protein-protein
complexes are currently available [28]. In this paper, a
novel approach based on HM-SVM is used to label surface
residues as interface residues or non-interface residues.
This method is especially useful in the case where the
structure of the target protein is known but the structure
of the complex formed by it with one or more proteins is
unknown. Our method does not only make full use of the
relation between two labels (interface or non-interface) of
neighbouring residues like CRF-based method, but also

Performance changing curves of different methods trained with different number of training samples on mix I data setFigure 3
Performance changing curves of different methods trained with different number of training samples on mix I 
data set.
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shares the advantages of the SVM-based method. Upon
validation with six types of data sets, the method yields
better results and its running time is several orders of mag-
nitude shorter than that of the compared methods. Three
factors contribute to the results. Firstly, the relation
between labels of neighbouring residues is useful for pro-
tein binding site prediction. Secondly, the kernel trick is
very advantageous to this field. Thirdly, the complexity of
the training step for hidden Markov support vector
machine is linear with the number of training samples by
using the cutting-plane algorithm.

Two points should be emphasized in evaluating the sig-
nificance of the protein binding site prediction results.
Firstly, as shown in Table 1, for each method the perform-
ance on the data sets with minor interface as positive sam-
ples (Type II) is better than the performance on the data
sets with minor interface as negative samples (Type I). The
reason is that some of the false positives predicted on Type
I data sets are in fact binding sites on Type II data sets.
Although we consider all the known partners in the PDB
file of a target protein on Type II data sets, some residues
identified as false positives in performance measure of our
method and the compared methods could in fact be resi-
dues that actually participate in contacts with proteins

Running time changing curves of different methods trained with different number of training samples on mix I data setFigure 4
Running time changing curves of different methods trained with different number of training samples on mix I 
data set. The results are obtained on a personal computer with CPU of Intel Pentium 2.2 GHz and memory of 3G.

Table 3: Performance of HM-SVM trained on modified training sets

Data set Specificity+ Sensitivity+ F1 Accuracy MCC AUC

Hetero-complex I 43.8% 58.3% 49.5% 66.7% 26.5% 69.1%
Homo-complex I 44.9% 58.4% 49.9% 68.4% 29.0% 71.9%
Mix I 42.8% 62.0% 49.6% 65.7% 27.2% 70.5%
Hetero-complex II 53.7% 56.1% 54.2% 67.4% 29.4% 70.3%
Homo-complex II 53.7% 55.4% 53.0% 69.0% 31.3% 72.4%
Mix II 54.5% 54.9% 54.5% 69.6% 31.8% 72.0%
Page 7 of 14
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other than their known partners in the PDB file. Secondly,
it should be noted that the data sets have highly unequal
numbers of positive samples and negative samples. As
noted by Yan et al. [28], in such a scenario, Matthews cor-
relation coefficient (MCC) is a much better indicator of
the performance of a method than accuracy, since accu-
racy favours the majority class. For example, if 80% of the
residues are non-interaction residues, a predictor which
always predicts a residue to be a non-interaction residue
will achieve an accuracy of 80%. However, such a predic-
tor is useless for protein binding site prediction. In addi-
tion, F1 is another good indicator, since it is a trade-off
between specificity+ and sensitivity+.

Recently, Šiki( et al. [23] developed a classification
method based on random forests for protein binding site
prediction. Tested on a hetero-complex data set, the best
results of their method are obtained when using a combi-
nation of sequence and 3D structure information. The
method can achieve a specificity+ (precision) of 76.45%, a
sensitivity+ (recall) of 38.06, an F1 of 50.82% and an accu-
racy of 80.05%. Although performance comparison
between our method and their method is rather difficult

owing to the different definition of interface residue and
different data set, our method seems to show better per-
formance on our hetero-complex II data set in terms of F1
(55.3%). Although their method shows higher accuracy, it
should be noted that this performance measure is not a
good indicator as discussed above. Therefore, we have rea-
son to believe that the overall performance of our method
is better than or at least comparable with theirs.

Our goal is to evaluate different machine learning meth-
ods and to show our method can effectively improve pro-
tein binding site prediction. Although our discussion
focuses on a single protein binding site prediction system
using two basic features (i.e. protein sequence profile and
residue accessible surface area), other features can be
added to our system to improve the performance. There-
fore, researchers who are interested in finding novel char-
acteristic features of protein binding sites could use our
system to validate the effectiveness of their features and
our system would also benefit from these features.

Performance changing curves of HM-SVM using different window size on mix I data setFigure 5
Performance changing curves of HM-SVM using different window size on mix I data set.
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Conclusion
Successful application of HM-SVM to protein binding site
prediction is of great significance. There are many prob-
lems in the biology domain that can be formulated as
sequential labelling tasks, such as protein disorder predic-
tion [36], protein secondary structure prediction [37],
kinase-specific phosphorylation site prediction [38], DNA
binding site prediction [39], RNA binding site prediction
[40], Prediction of cis/trans isomerization [41], protease
substrate site prediction [42], disulfide connectivity pre-
diction [43,44], functional residue prediction [45] and
catalytic residue prediction [46]. Most of them are consid-
ered as challenging problems. Thus, these important
sequential labelling tasks are potential areas for applica-
tions of HM-SVM.

Methods
Data sets
Complexes are selected from the Protein Data Bank (PDB)
[47] and filtered by a number of stringent steps. All pro-
teins with multi-chains, non-NMR structures and resolu-
tion better than 4 Å are selected. Two chains in a protein

are defined as interacting pairs if more than one non-
hydrogen atoms in each chain are separated by no more
than 5 Å [8,15]. For PDB structures with more than two
chains, each chain is selected for at most one time. The
protein chains of <40 residues are discarded. The PQS
web-server [48] is used to eliminate crystal packing com-
plexes rather than biologically functional multimers. In
order to get nonredundant protein chains, we perform
clustering analysis to remove redundant chains. The NCBI
BLASTClust program [49] is applied to the chains, with
identity threshold of 25% (-S 25), minimal length cover-
age of 90% (-L 0.9). If two chains fall into different clus-
ters, they should have pairwise sequence identity <25%.
Thus, one representative chain of each cluster is selected.
Finally, a total number of 1124 chains are obtained. By
using sequence comparisons, the complexes are classified
as homo-complexes or hetero-complexes. Two interacting
protein chains are considered as homo-complexes, if over
90% of them are aligned and the sequence identity over
the aligned region is more than 95% [15]; otherwise they
are classified as hetero-complexes. Finally, 504 hetero
chains and 620 homo chains are obtained. In a real appli-

Representative prediction results on hetero-complex I data setFigure 6
Representative prediction results on hetero-complex I data set. The target protein (PDB code 1ukv:Y) for which the 
predictions are made is shown in slate. Predicted interface residues are shown in magenta. The binding partner (PDB code 
1ukv:G) is shown in blue. (a) The actual interface residues. (b) ANN. (c) SVM. (d) CRF. (e) HM-SVM.
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cation scenario, the complex type of a protein is often
unknown. Therefore, different methods are also tested on
the mixed data set of hetero-complexes and homo-com-
plexes. Because of the low level of sequence identity, the
resulting data sets are more challenging than the ones
used in previous studies by our group [29] as well as by
other authors [28].

A residue is considered to be a surface residue if its acces-
sible surface area (ASA) of at least one of its atom is >2 Å2

[50]. A surface residue is defined as interface residue if its
ASA is decreased by more than 1 Å2 upon complexation
[27]. The ASA is computed using the DSSP program [51].
Since a protein chain within a complex with more than
one chain may form more than one interface. Within
these interfaces, there is generally a main large interface
while residues in other minor interfaces can be treated as
interface residues or non-interface residues [5,12]. In this
study, we consider all the two cases and generate six data
sets. The six data sets are available at additional file 1, 2,
3, 4, 5 and 6, respectively. Their statistical information is
tabulated in Table 4.

Sequential continuous residue sequence segments are col-
lected. Each residue within the segment is labelled as
interface or non-interface residue. The segments are used
to train and test HM-SVM.

Hidden Markov support vector machine
Hidden Markov support vector machine (HM-SVM) is
proposed by Altum et al. [32] for labelling sequence data.
HM-SVM is a discriminative learning technique for label-
ling sequences based on a combination of the two most
successful machine learning algorithms: support vector
machine (SVM) and hidden Markov model (HMM). HM-
SVM addresses all of the shortcomings of HMM, while
retaining some of the key advantages of HMM, namely the
Markov chain dependency structure between labels and
an efficient dynamic programming formulation. Both
HM-SVM and CRF adopt a discriminative approach to
model and can account for overlapping features (labels
can depend directly on features of past or future observa-
tions). In addition, HM-SVM comprises two additional
crucial properties inherited from SVM: the maximum
margin principle and a kernel-centric approach to learn-
ing non-linear discriminant functions.

Given an observed input sequence x = (x1, x2,..., xt), HM-
SVM predicts a labelling sequence y = (y1, y2,..., yt) accord-
ing to the following linear discriminant function:
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Representative prediction results on homo-complex I data setFigure 7
Representative prediction results on homo-complex I data set. The target protein (PDB code 1vz8:B) for which the 
predictions are made is shown in slate. Predicted interface residues are shown in magenta. The binding partner (PDB code 
1vz8:A) is shown in blue. (a) The actual interface residues. (b) ANN. (c) SVM. (d) CRF. (e) HM-SVM.
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where, k is the order of hidden Moarkov model. ej(x, yi) is
a emission feature function of the label at position i and
the observation sequence. tj(x, yi-j,..., yi) is a transition fea-
ture function of the whole observation sequence and the
labels between position i and i-j in the label sequence. The
index j in ej and tj is feature serial number to represent dif-
ferent features. Emission weight vector wej and transition
weight vector wtj correspond with feature ej and tj, respec-
tively. wej is learned from each different kth-order labeling
sequence yi-k... yi and wtj is learned from the adjacent
labels.

Given a training set with m samples S = {(xn, yn) ∈ X × Y|n
= 1,..., m drawn from a fixed distribution DX × Y, HM-SVM
solves the following quadratic optimization problem dur-
ing training:

where C is a parameter that trades off margin size and
training error. εx is a slack variable. l(y', y) is Hamming loss
function, which computes per-label loss for each individ-
ual label in y', i.e.

where i is the ith element of the label vector, and L is the
length of the label vector.

Because the above quadratic optimization problem has
exponentially many constraints, the cutting-plane algo-
rithm is used to solve this problem up to a precision of ε
in polynomial time [52,53]. In particular, the one-slack
reformulation of the training problems is solved by using
cutting-plane algorithm [54], which makes the complex-

ity of the training step for HM-SVM linear in the number
of training samples. For more details about HM-SVM and
cutting-plane algorithm please refer to [32,54].

Protein binding site prediction using HM-SVM
HM-SVM is used to label protein segments on protein sur-
face. The segment is sequential continuous residue seg-
ment which are all surface residues. The label set is L = {I,
N}, where I indicates the interface residue and N indicates
the non-interface residue. Given an observation segment
x = (x1, x2,..., xt), the label sequence y = (y1, y2,..., yt) (yi ∈
L) with the highest score calculated by formula (1) is
obtained by using HM-SVM. In this study, SVMhmm toolkit
version 3.10 [55] is used as the implementation of HM-
SVM. We adopt the second-order Markov HM-SVM with
linear kernel. The parameters c and e are set to 1 and 0.1
respectively, since they can get the best performance.
Other parameters are set by default.

HM-SVM contains two types of features, emission feature
and transition feature. Two kinds of features including
spatially neighbouring residues profile and accessible sur-
face area (ASA) which are common input features used by
many studies [5,10,14,29] are taken as the emission fea-
tures for HM-SVM. For each labelled residue, its profile
features and ASA features are taken from the 13 nearest
spatially neighbour residues (including the labelled resi-
due).

Spatially neighbouring residue profile feature is taken
from the Position-Specific Score Matrix (PSSM) outputted
by PSI-BLAST [56]. PSI-BLAST [56] searches against the
nrdb90 database from EBI [57] with parameters j = 10 and
e = 0.001. The profile value x is scaled to [0,1] by using the
following function [58]:

The spatially neighboring residue profile feature is
defined for each label-amino pair (y ∈ L and aa ∈ amino
acid alphabet) as:
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Table 4: Summary of six types of data sets

Data set Chains Res. Surface res. Interface res.a

Hetero-complex I 504 109829 92797 26085 (28.1%)
Homo-complex I 620 172917 141295 38170 (27.0%)
Mix I 1124 282746 234092 64255 (27.4%)
Hetero-complex II 504 109829 92797 32386 (34.9%)
Homo-complex II 620 172917 141295 45633 (32.3%)
Mix II 1124 282746 234092 78019 (33.3%)

aGiven in the bracket are the fraction of interface residues in the total number of surface residues.
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where PSSM(xk, aa) is the element of position-specific
scoring matrix for amino acid aa at position k in protein
sequence. xk is from the spatially neighbouring residues
list of xi.

Spatially neighbouring residue accessible surface area
(ASA) features are computed using the DSSP program [51]
and scaled by the nominal maximum area of each residue.

where xk is from the spatially neighbouring residues list of
residue xi.

Transition feature is defined for each label pair (y, y') (y
and y' ∈ L) as follows:

where, yi-1 and yi are labels of residues at positions i-1 and
i in the protein sequence x, respectively.

Setup of compared methods
Three methods including artificial neural network (ANN),
support vector machine (SVM) and conditional random
field (CRF) are compared with our method. The setup
procedures of these methods are briefly described as fol-
lows.

For ANN, Neural Network Toolbox in matlab is used as
the ANN implementation and a feed-forward back-propa-
gation neural network is used. The input features are line-
arly combined into an input layer with 21 × 13 nodes,
which performs a nonlinear transform. There is a hidden
layer with 20 nodes, whose output data are again fed to a
final output layer with two nodes. The weights of the lin-
ear combinations in forming input to nodes are opti-
mized on the training set to minimize the difference
between predicted output value (ranging from 0 to 1) and
the value coding the actual state (1 for I and 0 for N, where
I indicates the interface residue and N indicates the non-
interface residue).

SVM is probably the most widely applied protein binding
site prediction method [4]. The input features are nonlin-
early mapped to a feature space, in which a hyper-plane is
obtained that optimally separates the data points corre-
sponding to the I state from those corresponding to the N
state. LIBSVM [59] is used as the SVM implementation

with radial basis function as kernel. The values of γ and
regularization parameter C are set to be 0.1 and 10,
respectively.

FlexCRFs [60] is used as the CRF implementation. Because
FlexCRFs cannot deal with continuous real value features,
we modify it to solve this problem. The parameters of
FlexCRFs take the optimal values provided by the authors
(order = 1, init_lambda_val = 0.05) [29].

Cross-validation
5-fold cross-validation is used to measure the perform-
ance of each method. The whole data set is randomly
divided into five subgroups with approximately equal
number of chains. The chain IDs of each subset for 5-fold
cross-validation are available at additional file 7, 8 and 9,
respectively. Each method is trained and tested five times
with five different training and test sets. For each time,
four subsets are used as training data and the remaining
one is used as test data. The data sets have highly unequal
numbers of positive samples and negative samples. If all
surface residues are used in the training set, a method
would be biased to predict a residue as a surface residue
[11]. To obtain a balanced training set, we randomly
remove a number of surface residues to make the ratio of
positive and negative samples about 1:1.
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Additional file 1
Hetero-complex I data set is available here.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-381-S1.TXT]

Additional file 2
Homo-complex I data set is available here.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-381-S2.TXT]

Additional file 3
Mix I data set is available here.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-381-S3.TXT]
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