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Abstract
Background: The rapid growth of the amount of publicly available reports on biomedical
experimental results has recently caused a boost of text mining approaches for protein interaction
extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data
extracted from text. However, only few attempts have been made to evaluate the contribution of
the different feature types. In this work, we contribute to this evaluation by studying the relative
importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-
of-speech information) and lexical features. For this purpose, we use a recently proposed approach
that uses support vector machines with structured kernels.

Results: Our results reveal that the contribution of the different feature types varies for the
different data sets on which the experiments were conducted. The smaller the training corpus
compared to the test data, the more important the role of grammatical relations becomes.
Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous
texts where no or only limited common vocabulary is shared.

Conclusion: Our findings suggest that grammatical relations play an important role in the
interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic
features is small related to the number of added features. This implies that efficient classifiers can
be built by using only a small fraction of the features that are typically being used in recent
approaches.

Background
Nowadays, an overwhelming amount of experimental
studies on gene and protein interactions are being con-
ducted. The results of these experiments are most often
described as scientific reports or articles and published in
public knowledge repositories, such as Medline http://
www.ncbi.nlm.nih.gov/. This literature database grows at

a rate of 2000 publications per week, which makes it
impossible for a human to track every new experiment
performed in the field.

Therefore, the need for automated information extraction
methods in biomedicine becomes critical, and a lot of
efforts are invested in creating such methods. Recently
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proposed approaches for interaction extraction are based
not only on explicit textual information that is contained
in publications, but also on a comprehensive language
analysis that includes part-of-speech (POS tags) and deep
syntactic structure detection. To achieve state-of-the-art
performance, researchers employ lexical information
(words) along with shallow syntactic information (POS)
and/or deep syntactic features (grammatical structures)
(see for example [1-10]).

As a consequence, extraction methods tend to become
more complex, use more features and require more and
more memory and computational efforts. However, little
attention has been devoted to studying the individual
impact of different feature types. We believe that this
question is of great importance, because (1) when two
types of features have a substitute rather than a comple-
mentary effect, one of them can be dropped to obtain a
computationally more efficient method, and (2) drop-
ping one type of features might make the mining algo-
rithm more robust. The latter reason is especially relevant
for lexical features since lexicons tend to be subdomain-
specific. This problem can be alleviated by combining dif-
ferent biological phenomena in one corpus; however in
practice corpora are often built for a particular organism
or a particular set of proteins. Despite this fact, it is com-
mon practice in the field to train and evaluate systems on
the same data set with an n-fold cross-validation tech-
nique, thus partially avoiding this lexicon-dissimilarity
problem which is inherent to real-life problems.

In this work, we study the impact of different feature types
on the performance of a relation extraction system that
uses a support vector machine (SVM) classifier with ker-
nels as its core, since at present this is the most popular
choice in the relation extraction field. In particular, we use
the approach suggested by Kim et al. [6], which relies on
lexical, shallow and deep syntactic features represented as
parts of a dependency tree, and consequently apply
Occam's razor principle by cutting off the former two to
get rid of all lexical and shallow syntactic information. In
other words, we would like to exploit different aspects of
the dependency tree and compare the net advantage that
is obtained by these feature types.

To the best of our knowledge, besides us, only [7-9] have
looked into the impact of syntactic in addition to lexical
features for the protein interaction extraction task (all in
the context of SVMs). Shallow syntactic features such as
POS added to a lexical feature set are reported not to
increase the performance of the classifier in [9], while the
deep+shallow syntactic- and lexical-feature based classi-
fier in [7] showed a poor performance when the set of lex-
ical features is limited. Neither of these has however
studied how much performance can be obtained by using

only deep syntactic features. The closest to our work is [8]
which compares the performance of an interaction extrac-
tion system using only lexical features versus using syntac-
tic (both shallow and deep) features. We highlight the
difference with our work at the end of Section 'Related
Work'.

The contribution of this article is twofold. First, we per-
form an extensive evaluation of a recently published SVM-
based approach [6], which was evaluated only on the LLL
data set before, on 5 data sets (AIMed [11], BioInfer [12],
HPRD50 [3], LLL [13] and IEPA [14]) using cross-valida-
tion as well as 10 cross-data set experiments. Secondly, we
compare this approach with stripped down versions
which take into account different feature subsets, and we
demonstrate that omitting lexical and part of the syntactic
features does not significantly change the performance of
the relation extraction task.

In the remainder of this paper, we first formalize the pro-
tein interaction extraction problem as a classification task
(Section 'Problem Statement') in which sentences con-
taining protein pairs are represented by dependency trees
(Section 'Interaction Representation'). In Section 'Build-
ing a classifier', we present the various classifiers that we
use in this paper, all of them modifications of [6], and in
Section 'Related Work' we clarify the relationship with
related methodologies. We continue with a description of
our experimental setup and present the results on the dif-
ferent data sets in Section 'Results and Discussion'. Our
final conclusions are presented in Section 'Conclusion'.

Methods
Problem statement
Whereas the general interaction extraction task is con-
cerned with finding all interactions among proteins in a
given text, several assumptions are usually made to sim-
plify it. The first assumption is that the extraction task is
restricted to binary interactions, i.e., exactly two proteins
are involved in the interaction. Secondly, the interaction
is assumed to be fully expressed in one sentence, i.e.,
interactions which are described across several sentences
are not considered. Finally, the interaction extraction task
is evaluated separately from the protein name recognition
task. Named entity recognition (NER) is another area of
text mining, which is usually performed and evaluated
separately, thus it is generally assumed that interaction
extraction is performed on a text with annotated protein
names ([2,3,5,15]).

Let us consider the following sentence containing 4 pro-
tein names.
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Example 1: "In the shaA1 mutant, sigma(H)2-dependent
expression of spo0A3 and spoVG4 at an early stage of
sporulation was sensitive to external NaCl."

This sentence contains 6 protein pairs, namely shaA-
sigma(H), shaA-spo0A, shaA-spoVG, sigma(H)-spo0A,
sigma(H)-spoVG, and spo0A-spoVG. A protein pair is a pos-
itive instance if the original sentence expresses an interac-
tion between members of this pair, and a negative
instance if they just co-occur in the sentence. In the exam-
ple above, there are two positive instances, namely
sigma(H)-spo0A and sigma(H)-spoVG while the other 4
instances are negative. As such, the task of protein interac-
tion extraction can be treated as a classification problem,
to be solved by learning a suitable decision function that
can separate the positive from the negative instances.

In particular, we need to choose a formal protein pair rep-
resentation and a machine learning algorithm. The pro-
tein pair representation should include information from
the sentence that can be used to distinguish between pos-
itive and negative instances. Different approaches use dif-
ferent types of information (features), depending on the
machine learning methods used, the available tools and
the researcher's strategy. Although feature selection for
interaction extraction has received little attention [16],
several researchers [8,17] report that applying feature
selection techniques significantly speeds up the process-
ing and in some cases increases the performance of the
classifier. The difference between the feature selection
problem and the current approach is explained in detail in
Section 'Related Work'.

Interaction representation
A dependency tree represents the syntactic structure of a
sentence. The nodes of the tree are the words of the sen-
tence, and the edges represent the dependencies between
words. In a typed dependency tree, edges are labeled with
syntactic roles. The dependency tree for the following sen-
tence is depicted in Figure 1.

Example 2: "Sigma F1 activity regulates the processing of
sigma E2 within the mother cell compartment."

The most relevant part of the dependency tree to collect
information about the relation between the two proteins
is the subtree corresponding to the shortest path between
these proteins, which is shown in Figure 2a. Both protein
names are replaced with dummy strings NE1 and NE2 in
order to generalize the interaction pattern. Moreover, we
introduce a POS dependency tree, where nodes represent
part-of-speech information instead of the corresponding
words. The shortest path between the two proteins in the
POS dependency tree for Example 2 is represented in 2b.
Note that a dependency tree contains lexical as well as

deep syntactic information, while a POS dependency tree
contains shallow and deep syntactic information. We can
obtain a syntactic shortest path by only retaining the syn-
tactic roles in either the shortest path or the POS shortest
path, as shown in Figure 2c. Figure 3 depicts similar infor-
mation for the sentence from Example 1.

In the remainder we keep referring to these paths as
(shortest path) dependency trees. Such a dependency tree
can be either a lexical dependency tree (like Figure 2a or
3a), a POS dependency tree (like Figure 2b or 3b) or a syn-
tactic dependency tree (like Figure 2c or 3c). We will use t
= (N, E, L) to denote a dependency tree t consisting of a set
of nodes N, a set of edges E, and a function L that maps
nodes and edges to their labels. If there is an edge from
node n1 to node n2, we denote this edge by e(n1, n2).

Dependency tree for the sentence from Example 1Figure 1
Dependency tree for the sentence from Example 1. 
Figure 1 represents the dependency tree for the following 
sentence: "Sigma F1 activity regulates the processing of 
sigma E2 within the mother cell compartment."

Shortest path dependency trees for the protein pair in the sentence from Example 2Figure 2
Shortest path dependency trees for the protein pair 
in the sentence from Example 2. Figure 2a represents 
the shortest path between the two proteins in the depend-
ency tree for the sentence: "Sigma F1 activity regulates the 
processing of sigma E2 within the mother cell compart-
ment." Figures 2b and 2c represent respectively the corre-
sponding POS shortest path and the syntactic path. Note that 
2a contains lexical and deep syntactic information, while 2b 
contains shallow and deep syntactic information, and 2c con-
tains only deep syntactic information.
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Building a classifier
Our feature impact study makes use of a support vector
machine (SVM) approach. SVM's are a classification
method that views input data as vectors in a high-dimen-
sional space and attempts to induce a maximum margin
hyperplane between training data points that belong to
different classes. The crucial point is that the hyperplane
can be represented as a linear combination of a subset of
training instances (support vectors) [18]. Moreover, the
selection of the appropriate support vectors can be done
by using only the inner product between training exam-
ples. Hence, if the inner product can be computed effi-
ciently, SVM's can induce a classifier even in a very rich
feature space. In order to deal with various kinds of input
data, different strategies to compute inner products
(referred to as kernels) have been proposed (see e.g. [19]).

In order to build a syntactic kernel, the dependency tree
space has to be kernelized. Each data point of our data set
is a dependency tree corresponding to a part of the sen-
tence in which the protein pair occurs. Such a tree can be
represented as a vector in the m-dimensional space made
up by all subtrees in the data set [20]. More in particular,
assuming that all unique subtrees in the data set are enu-
merated from 1 to m, the function hs(t), s ∈ {1,...,m}, is
defined as the number of occurrences of subtree s in tree t.
Then, each tree t can be represented by a vector ϕ (t) =
{h1(t), h2(t),...,hm(t)}. A kernel function measuring the
similarity between trees t1 and t2 based on whether they
contain the same subtrees, is defined as the inner product

The underlying vector representation is very rich since the
number of subtrees of a tree grows exponentially with the
tree size, which makes the computation of the inner prod-
uct intractable. However, the right hand side of (1) can be
interpreted as the number of common subtrees of t1 and

t2, and can be computed efficiently following a procedure
proposed in [20].

Kim et al. [6] follow this procedure in developing an SVM
classifier based on a kernel KFULL that is a combination of
a kernel KLEX comparing lexical dependency trees, with a
kernel KPOS comparing POS dependency trees. Note that,
because of their construction, KLEX relies on lexical and
deep syntactic information, while KPOS is based on shal-
low and deep syntactic features. We propose a way in
which the kernel KFULL can be stripped down to a kernel
KS, that uses only deep syntactic features. We compare the
performance of all these kernels in Section 'Results and
Discussion'. For ease of explanation, in this section we fol-
low a bottom-up approach by first defining KS, and then
extending it to the full system from [6].

The trees from Figures 2a and 3a have no subtrees in com-
mon, while when we switch to a shallow or pure syntactic
representation in Figures 2b,c and 3b,c, we have one com-
mon fragment, namely the subtree consisting only of the
edge prep_of and its adjacent nodes. In general, we use a
recursive formula to compute the number of common
subtrees between dependency trees t1 and t2. This formula
relies on the notion of common child pairs of node n1 in t1
and node n2 in t2, i.e. the set of pairs of nodes that have
parents n1 and n2 respectively, and that are connected to
these parents by the same type of edge. When traversing
down the trees in search of common subtrees, these are
the nodes at which we want to continue our exploration.

Definition 1. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be
dependency trees. For n1 ∈ N1 and n2 ∈ N2, the set of com-
mon child pairs is defined as Com(n1, n2) = {(x, y)| (x, y)
∈ N1 × N2, e(n1, x) ∈ E1, e(n2, y) ∈ E2, L1(e(n1, x)) = L2(e(n2,
y))}.

Definition 2. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be
dependency trees. For n1 ∈ N1 and n2 ∈ N2, the number of
common subtrees rooted at n1 and n2 is defined as

The recursive formula reflects the fact that a new common
subtree rooted at n1 and n2 can be found either by picking
1 of the Cm(x, y) subtrees or by adding the x/y nodes, or
just by staying as is (therefore +2). 1 is subtracted from the
whole result to exclude the combination with the tree
consisting of the n1/n2 node only.

Example 3. Let t1 and t2 be the dependency trees from Fig-
ure 2a and 3a respectively. Com(n1, n2) is the empty set for

K t t t t h t h ts s
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Shortest path dependency trees for one of the protein pairs in the sentence from Example 1Figure 3
Shortest path dependency trees for one of the pro-
tein pairs in the sentence from Example 1. Figure 3 
depicts the shortest path dependency trees for the protein 
pair sigma(H)-spo0A built from the dependency tree of the 
sentence: "In the shaA1 mutant, sigma(H)2-dependent 
expression of spo0A3 and spoVG4 at an early stage of 
sporulation was sensitive to external NaCl."
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all node pairs with exception of Com(processing, expression)
= {(NE2, NE2)}. Hence Cm(processing, expression) =
(Cm(NE2, NE2) + 2) -1 = 1 while Cm(n1, n2) = 0 for all
other node pairs. This means that there is only one com-
mon subtree between t1 and t2, rooted at the processing,
expression nodes and ending at NE2.

Note that the calculation above of the number of com-
mon subtrees disregards node labels, i.e., it treats depend-
ency trees as they are shown in Figure 2c and Figure 3c.
Using Definition 2 we are now able to define a kernel KS
that looks only at deep syntactic information. It computes
the similarity between syntactic dependency trees as the
number of grammatical structures that they have in com-
mon.

Definition 3. The kernel function KS is defined as

for syntactic dependency trees t1 and t2.

Example 4. Let t1 and t2 be the syntactic dependency trees
from Figure 2c and Figure 3c respectively. Since |N1| = 5
and |N2| = 3, the summation in the right hand side of (2)
consists of 15 terms. In Example 3 we already established
that all of these terms are 0 with the exception of one term
that equals 1. Hence KS(t1, t2) = 1.

To arrive at kernels that take into account additional lexi-
cal and/or shallow syntactic information, we need an
extended version of Definition 1 that also looks at the
labels of nodes.

Definition 4. Let t1 = (N1, E1, L1) and t2 = (N2, E2, L2) be
dependency trees. For n1 ∈ N1 and n2 ∈ N2, the set of com-
mon child pairs, taking into account the labels of the
nodes, is defined as Comlab(n1, n2) = {(x, y)|(x, y) ∈
Com(n1, n2), L1(n1) = L2(n2), L1(x) = L2(y)}.

The superscript "lab" refers to the fact that the labels of the
nodes are taken into account. The appearance of Com(n1,
n2) in the definition of Comlab(n1, n2) illustrates that the
latter builds on the former. Furthermore, it holds that

indicating that using syntactic trees leads to a more gen-
eral approach (more nodes are explored when traversing
down the trees in search for common subtrees).

The number Cmlab(n1, n2) of common subtrees rooted at
n1 and n2, can now be defined in a recursive manner
entirely analogous to Definition 2, however relying on

Comlab(n1, n2) instead of on Com(n1, n2). Since they have
different labels at the nodes, the value of Cmlab(n1, n2)
might be different depending on whether a lexical
dependency tree or a POS dependency tree is used. In
both cases, it holds however that

Example 5. Let t1 and t2 be the lexical dependency trees
from Figure 2a and Figure 3a respectively. For all node
pairs it holds that Comlab(n1, n2) = ∅, and Cmlab(n1, n2) = 0.

Example 6. Let t1 and t2 be the POS dependency trees from
Figure 2b and Figure 3b respectively. It holds that Com-

lab(NN, NN) = {(NE2, NE2)} and Cmlab(NN, NN) = 1,
while for all other node pairs Comlab(n1, n2) = ∅ and
Cmlab(n1, n2) = 0.

The potentially different behavior of Cmlab(n1, n2) on lex-
ical dependency trees and POS dependency trees gives rise
to the definitions of the kernel functions KLEX and KPOS
respectively. Both of them still consider the tree structure
when computing the similarity between trees, i.e. they
both rely on deep syntactic information. In addition, KLEX
takes the actual words of the sentence into account (lexical
information) while KPOS considers POS (shallow syntactic
information).

Definition 5. [20] The kernel function KLEX is defined as

for lexical dependency trees t1 and t2. In our case function
L maps words in the tree nodes to corresponding lemmas
eliminating the differences arising from different word
forms.

Definition 6. [6] The kernel function KPOS is defined as

for POS dependency trees t1 and t2.

Finally, Kim et al. [6] combine KLEX and KPOS into a kernel
KFULL that takes into account lexical, shallow and deep
syntactic information.

Definition 7. [6] The kernel KFULL is defined as
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for dependency trees t1 and t2 and their corresponding

POS dependency trees  and .

Notice that KLEX is a refinement of KS in the sense that all
the information used by KS is also used in the same way by
KLEX. As a consequence, KFULL is also a refinement of KS,
enriching the deep syntactic information of KS by lexical
information (through KLEX) as well as shallow syntactic
information (through KPOS).

Example 7. Let t1 and t2 be the lexical dependency trees

from Figure 2a and Figure 3a respectively, and  and

 their corresponding POS dependency trees from Fig-

ure 2b and Figure 3b respectively. One can verify that

and

hence KFULL(t1, t2) = 1. Notice that although the trees do
not show any resemblance on the lexical level, their simi-
larity at the more general syntactic level is picked up by
KPOS. In Example 4 we found that their syntactic similarity
is also already reflected by KS.

A short summary of the kernels described above is pro-
vided in Table 1.

Related work
In Table 2, an overview of recent approaches to interac-
tion extraction is presented along with the characteristics
that are relevant in the context of our work. Below we
describe these approaches in more detail.

Many approaches exploit the idea of using explicit feature
vectors to represent a possible interaction. In particular,

approaches based on various combinations of lexical fea-
tures are very popular in the relation extraction commu-
nity.

Bunescu et al. [2] propose to use the sentence context,
obtained by splitting a sentence into three parts, i.e.
before the first protein, between the two proteins, and
after the second protein, and they combine them in pre-
defined ways to obtain 3 types of patterns. Using this
information, the authors propose a kernel that naturally
emerges from the subsequence kernel described in [21]
and obtain good results on the AIMed corpus. Giuliano et
al. [4] start from the same pattern types, but treat them as
bags-of-words, and define a global context kernel. Moreo-
ver, they define a local context kernel by taking a window
of predefined size around the candidate proteins and add-
ing more shallow linguistic information, such as the
lemma of the word and some orthographic features. The
resulting kernel function in this case is a linear combina-
tion of the global context kernel and the local context ker-
nel. Their method obtains state-of-the-art results on the
AIMed and LLL data sets.

Some researchers focus on sentence structure, i.e., on the
parse and dependency tree, to construct a feature vector.
Xiao et al. [9] study the impact of features, starting with
simple words up to parse and dependency trees on the
IEPA corpus, and they obtain a remarkable 90.9% F-score
using a maximum entropy model with lexical and shallow
syntactic features. Yakushiji et al. [10] suggest that full
parsing information could be very useful in the biology
domain because the distance between entities in a sen-
tence can be much longer than in general-purpose
domains. Therefore, they propose a method that builds
complex predicate-argument structures (PAS), and apply
an SVM with an RBF kernel to these patterns to obtain a
classifier model. They evaluate this model on the AIMed
data set and obtain a 57.3% F-score. In [5], the authors
also focus on sentence structure and use dependency trees
to extract the local contexts of the protein names, the root
verbs of the sentence, and the parent of the protein nodes

t POS
1 t POS

2

t POS
1

t POS
2

K t tLEX( , )1 2 0=

K t tPOS
POS POS( , )1 2 1=

Table 1: Kernels

Notation Formula Used information

KS(t1, t2) Deep syntactic

KLEX(t1, t2) Lexical + deep syntactic

KPOS(t1, t2) Shallow + deep syntactic

KFULL(t1, t2) KLEX + KFULL Lexical + Shallow + deep syntactic

Cm n n
n N n N

( , )
, 1 2

1 1 2 2∈ ∈∑

Cm n nlab
n N n N

( , )
, 1 2
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1 1 2 2∈ ∈∑
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in the dependency tree. Classification is further done by
BayesNet and ensemble classifiers. Another approach is
proposed in [3], where a manually constructed set of rules
uses information from the dependency trees and a prede-
fined vocabulary to classify possible interaction instances.
This approach is evaluated on the HPRD50 and LLL data
sets, as well as on a large-scale data set consisting of 1 mil-
lion MEDLINE abstracts. The extracted set of interactions
contained 40% of the HPRD interaction database.

In our own previous work [15], we proposed to abstract
from lexical features and use only syntactic information to
obtain a more general classifier that would be suitable for
different data sets without retraining. We used features
extracted from dependency and parse trees to build deci-
sion trees and BayesNet classifiers, and obtained promis-
ing results using AIMed as test data and LLL as training
data. Another group of approaches does not rely on an
explicit feature vector but rather makes use of structured
data as input information for the classifier. This means
that structured features, such as dependency trees, can be
used as an input to the classifier without any additional
transformations, thus reducing the risk of losing useful
information. One particular way to use structured features
that we adhere to in the current paper, is to exploit struc-
tured kernels.

The approaches [1,6,7] are closest to our work as they also
use structured kernels. Structured or convolution kernels
were introduced in [22] by Haussler who proposed how
to compute a kernel for structured objects. This work gave
rise to many tree kernel methods in the text mining
domain. Although this idea is quite popular in general
text mining, it has not been widely explored in the inter-
action extraction literature.

Saetre et al. [7] apply a structured kernel to the protein-
protein interaction domain. In this approach, a mix of at
and structured features is used to calculate the similarity
of two protein pairs. The flat part of the feature vector con-
tains lexical features, while the structured part is a shortest
path dependency tree, referred to as a partial tree. This def-
inition was introduced by Moschitti [23] who studied dif-
ferent tree partitioning strategies and their impact on tree
kernels for dependency and parse trees. Using these
fatures, Saetre et al. obtain promising results on the
AIMed data set, especially in combination with a rich lex-
ical feature set.

In another very recent approach, described in [1], the
authors propose to use the whole dependency tree to
build a classifier. They use a graph kernel that takes into
account all paths in dependency trees, and exploit it with
an RLS (regularized least squares) machine learning
method. The experimental evaluation is performed on 5
data sets: AIMed, BioInfer, HPRD50, IEPA and LLL, and
for all of them, the method shows remarkably good
results.

Collins and Duffy [20] developed a tree kernel that counts
the number of common subtrees, but used it for parsing
and not for interaction extraction. Kim et al. [6] apply this
kernel to a dependency tree and to a modified depend-
ency tree with POS instead of words, and propose a com-
bined kernel, which is a sum of these two. This approach

Table 2: General approaches for protein interaction extraction

Method Information Algorithm Data sets

[2] lexical SVM AIMed

[4] lexical SVM AIMed
shallow LLL

[9] lexical Maximum entropy IEPA
shallow
deep

[10] lexical SVM AIMed
shallow
deep

[5] lexical BayesNet AIMed
deep NaiveBayes

K-nearest neighbour
Ensembles

[3] lexical Hand-built rules HPRD50
shallow LLL
deep

[15] shallow C4.5 AIMed
deep BayesNet LLL

[7] lexical SVM AIMed
deep

[1] lexical Sparse RLS AIMed
shallow BioInfer
deep HPRD50

IEPA
LLL

[6] lexical SVM LLL
shallow
deep

[8] lexical SVM AIMed
shallow HPRD50
deep IEPA

LLL
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obtains state-of-the-art performance on the LLL data set.
In the same paper they describe a flat feature vector-based
approach that also utilizes dependency trees to extract
graph walks as features. In [8], the authors study the rela-
tive feature importance for the latter approach by using
the gain ratio feature selection technique. Moreover, they
study the impact of different feature types as well by com-
paring the performance of methods that use syntactic fea-
tures versus methods that use lexical features. Our
approach is also based on Kim's work, however it is differ-
ent from [8] in several aspects. First of all, our approach is
different from the feature selection task, because we focus
on the type of the information (lexical, POS, grammatical
relations) rather than on separate features. In other words,
we do not use feature selection techniques to discriminate
useful individual features, but fit an existing relation
extraction method to consider only a subset of features of
a certain type, and study the impact of this feature class.
Secondly, when we study the impact of different feature
types we do not rely on a flat vector, but on a structured
representation. Moreover, we use an additional data set
and define more extensive experimental setups in order to
perform a complete study of different use cases.

Results
Data sets
To the best of our knowledge the only publicly available
data sets that contain protein interaction annotations are:
AIMed [11], BioInfer [12], HPRD50 [3], LLL [13] and
IEPA [14]. These data sets have been frequently used in
recent work of for example [1,8,24]; therefore we use
them in our current work. Table 3 gives an overview of the
number of positive and negative instances in the different
data sets.

The AImed data set consists of 225 abstracts extracted
from the Database of Interaction Proteins (DIP), 200 of
which contain annotated human gene and protein inter-
actions. Another 25 abstracts contain protein names but
do not describe any interactions. We have used only the
former set of abstracts for our evaluation purposes.

The BioInfer data set is the largest data set among these 5;
it contains 1100 sentences describing protein-protein
interactions. Beside the interaction annotations, BioInfer

contains additional information about biological interac-
tion type, protein roles in interaction, syntactic dependen-
cies between words, etc. Moreover, there is a knowledge
base behind the corpus, which allows to analyse it in more
detail (see [12]). HPRD50 contains sentences that were
extracted from a subset of 50 abstracts, referenced by the
Human Protein Reference Database (HPRD) and anno-
tated with protein names and interactions between them.
The LLL data set consists of 76 sentences describing inter-
actions concerning Bacillus subtilis transcription. Protein
roles for interactions are annotated along with the interac-
tions themselves. Additionally, the data set contains
annotations for lemmas and syntactic dependencies
between the words in the sentences. Finally, The IEPA data
set was built by querying Medline with 10 diverse queries,
reflecting 10 different biological topics. 303 abstracts were
retrieved, and a data set was constructed with sentences
extracted from these abstracts. The data set annotation
includes an interacting verb along with the protein names
and interactions.

The BioInfer and LLL data sets provide syntactic depend-
encies for every sentence in their own formats, while the
other data sets do not provide this information. We dis-
carded this information to unify the setup and to make
the experiment more realistic. Besides being non-stand-
ard, some of the syntactic information in BioInfer and LLL
was obtained manually which violates the requirements
of automatic processing. To obtain POS and dependency
trees for all data sets we used the Stanford parser [25]
trained on general purpose corpora. We choose this parser
because of its peculiar annotation scheme that stresses the
semantic connections between words rather than operat-
ing on the purely syntactic level. For example, preposi-
tions are collapsed as can be seen in Figure 2a, where the
noun processing is being connected directly to a protein
name. As we use a dependency tree representation to
obtain all three types of features, we do not use an external
POS tagger to obtain POS tags separately; instead they are
assigned as part of the dependency tree building process
inside the Stanford parser. As the Stanford parser does not
provide lemmatized versions of words, we used the Porter
Stemmer algorithm [26] to compute KLEX and KFULL. All
data sets use different annotation schemes that emphasize
different interaction properties. For example, in AIMed
homodimeric proteins are being annotated, i.e. proteins
that interact with themselves, while the current mining
approach is not able to detect such cases. Moreover, in
BioInfer some proteins have gaps in annotations, i.e. there
is a gap between two parts of one protein name. We han-
dle these cases separately, but they can potentially
decrease the performance of the classifier as well. The
quality of the annotation itself (measured as e.g. inter-
annotator agreement) may affect the quality of classifier.
If an annotator misses an interaction between two pro-

Table 3: Corpora statistics

Data set # of interaction instances
positive negative

AIMed 1057 4790
BioInfer 1381 8964
HPRD50 163 270
LLL 164 166
IEPA 411 482
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teins, the data point related to this protein pair would be
treated as a negative instance, although containing an
interaction pattern, which is harmful to the overall per-
formance. To unify an experimental setup, we need to cast
all corpora to a common ground format. Pyysalo et al.
[27] designed custom software that converts all 5 data sets
to a single XML format that contains only minimal pro-
tein and interaction annotations, which is sufficient for
our evaluation purposes. However, not all annotation dif-
ferences can be eliminated in this way. Table 3 shows that
different data sets have very different positive/negative
ratios. This can be partially explained by different annota-
tion strategies, e.g. for LLL only proteins that are involved
in interactions are annotated, while for other data sets all
protein names are annotated. Since we consider every pos-
sible protein pair within a sentence to be an instance, this
leads to an exponential growth of the total number of
instances, while in fact the number of positive instances
remains the same. Taking into account this information,
we should choose our evaluation metrics carefully in
order to provide a fair comparison of the performance on
all data sets.

Performance metrics
In this work, we use two evaluation metrics, namely recall-
precision and ROC (reciever operating characteristic)
curves, to provide a more comprehensive analysis of the
achieved results. Let us first recall their definitions. Let TP
denote the number of true positives, i.e., the number of
positive instances that are classified as such, let FP denote
the number of false positives, i.e., the number of negative
instances that are incorrectly classified as positive, and
analogously, let TN and FN stand for the number of true
negatives and false negatives respectively. The following
metrics can then be defined:

Recall stands for the fraction of correctly classified
instances (TP) among all positive instances (TP+FN) in a
data set, while precision denotes the fraction of correctly
classified instances (TP) among all instances that are clas-
sified as positive (TP+FP). Recall is sometimes called true
positive rate, while false positive rate counts how many of
the negative instances were wrongly classified as positive.
A combined measure, that takes into account both recall
and precision is called F-score and defined as:

Often, a classifier's output can be ordered, i.e. the classifier
also provides a degree of confidence for each prediction it
makes. In this case, we can trade precision for a higher
recall by lowering the confidence threshold to capture
more positive instances. In this way we can build a recall-
precision curve that shows the relationship between the
quality of extracted relations (precision) and the amount
of extracted relations (recall). The closer to the top-right
corner a curve is, the less precision is lost with recall
growth and the better the performance of the classifier is.

Precision, recall and F-score are de-facto standards for the
interaction extraction evaluation. However, these metrics
are very sensitive to data set skewedness, i.e., the large dif-
ference between the number of positive and negative
instances. As was shown in Table 3, this difference varies
greatly for different corpora. On the other hand, ROC
curves are being used in the machine learning community
to evaluate classifier performance and they do not depend
on data set skewedness.

The false positive rate together with the true positive rate
correspond to a point in ROC space. By varying the trade-
off between these two metrics we obtain a curve in ROC
space. The AUC-score is the area under this ROC-curve. It
can be interpreted as the probability that the classifier will
rank a randomly chosen positive instance higher than a
randomly chosen negative instance.

However, this metric should be used carefully for the
same reason, i.e. it is suitable to evaluate the relative qual-
ity of a classifier (percentage of extracted positive
instances), but it gives no information about precision,
and thus makes the evaluation of a classifier difficult.

For example, if we increase the number of negatives 10
times, then the number of FP on average increases 10
times as well. This will lead to a significant drop in preci-
sion and consequently in F-score, but it does not influence
the false positive rate.

Based on this observation, we can outline an application
area for both evaluation metrics. The ROC curve and the
corresponding AUC value should be used to compare the
performance of a classifier on different corpora, since they
show the relative number of extracted positive instances.
Recall-precision and F-score can be used to compare the
quality of several classifiers on the same data set, since
they indicate how 'clean' the classification is without
regarding the proportion of negative instances.

recall
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true positive rate re

= +
= +
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TP TP FN

TP TP FP
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Experimental setup
For the experiments, we used the LIBSVM library [28] to
build the 4 SVM classifiers that use the KFULL kernel, KPOS
kernel, KS kernel and KLEX kernel. Furthermore, we organ-
ized 3 experimental setups. The first setup uses 10-fold
cross-validation (CV), where each data set is split into 10
parts, of which 9 are used for training and one for testing.
Despite the fact that this is the most common way of eval-
uation, it should be used carefully. Since we work on
instance level, it can be the case that two nearly identical
instances from the same sentence fall into a train and a
test fold at the same time. This 'leak' can cause a perform-
ance boost as it was shown in [7,8].

In the second setup (4-1) we join 4 data sets to form a
training set, and use the remaining one as a test set. Com-
pared to CV, this alternative experimental setup is closer
to a real world situation where information for processing
is obtained from different sources and the lexicon is not as
uniform as in one precompiled data set.

In the last setup (1-4) we use 1 data set as training set and
the remaining 4 as test sets, thus making another step to
the real world. Typically, biologists have a very limited
amount of annotated data compared to the size of availa-
ble unlabeled information. We try to model this situation
here by making the training set much smaller than the test
set.

For each experimental setup we run all classifiers with all
data set combinations. An analysis of the results obtained
is provided in the following section.

Discussion
Table 4 and Figures 4, 5, 6, 7 give an overview of the eval-
uation results for all experimental setups. In line with our
evaluation metric review, we use recall-precision and ROC
curves to analyze the obtained experimental results. On
the basis of these results, we can make the interesting
observation that the different kernels are roughly compa-
rable, while the amount of information they use is very
different. In the analysis below we will omit the +syntactic
postfix when talking about the lexical+syntactic (KLEX),
shallow+syntactic (KPOS) and lexical+shallow+syntactic
(KFULL) kernels.

Precision plays a particularly important role in the inter-
action extraction task, because if the extracted informa-
tion is processed by a biologist, she would not like the
system if it produces too much rubbish. Therefore, we are
particularly interested in the left side of the recall-preci-
sion chart, where precision is typically high, although
recall may be quite low.

Table 4 shows the F-measure results calculated for classi-
fier confidence threshold 0.5, as well as the AUC values
which are not dependent on any threshold. Let us note
that the F-measure values could be tuned up, because on
most recall-precision charts precision does not drop sig-
nificantly after a certain point, while recall keeps growing.
However, this is not the aim of the current research, thus
we leave the task of looking for the optimal operation
point aside. Table 5 sums up our empirical observations
over recall-precision curves provided in Figures 4, 5, 6,
particularly on the area before 0.2-0.3 recall values. For

Table 4: Results

Data set Exp. Synt. kernel Shallow+Synt. kernel Lex.+Synt. kernel Shallow+Lex.+Synt. kernel
F-score AUC F-score AUC F-score AUC F-score AUC

AIMed CV 0.33 0.69 0.37 0.66 0.37 0.67 0.39 0.7
4-1 0.33 0.67 0.35 0.66 0.35 0.68 0.4 0.72
1-4 0.23 0.64 0.24 0.63 0.22 0.61 0.24 0.67

BioInfer CV 0.3 0.69 0.29 0.68 0.29 0.75 0.34 0.75
4-1 0.3 0.69 0.32 0.68 0.25 0.65 0.31 0.7
1-4 0.31 0.68 0.34 0.67 0.26 0.64 0.35 0.7

HPRD50 CV 0.58 0.69 0.59 0.73 0.44 0.72 0.56 0.73
4-1 0.48 0.73 0.48 0.72 0.47 0.75 0.56 0.75
1-4 0.33 0.67 0.31 0.64 0.26 0.63 0.3 0.65

LLL CV 0.74 0.81 0.74 0.76 0.67 0.67 0.76 0.73
4-1 0.43 0.68 0.44 0.71 0.31 0.6 0.39 0.74
1-4 0.37 0.67 0.34 0.63 0.3 0.55 0.33 0.62

IEPA CV 0.76 0.81 0.71 0.8 0.66 0.7 0.72 0.8
4-1 0.35 0.69 0.32 0.64 0.19 0.56 0.29 0.68
1-4 0.36 0.66 0.33 0.63 0.3 0.55 0.33 0.62
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Recall-precision curves for all experimental setups for LLL and BioInferFigure 4
Recall-precision curves for all experimental setups for LLL and BioInfer. The left charts represent LLL-related 
curves; the right charts BioInfer-related curves.
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Recall-precision curves for all experimental setups for IEPA and HPRD50Figure 5
Recall-precision curves for all experimental setups for IEPA and HPRD50. The left charts represent IEPA-related 
curves; the right charts HPRD50-related curves.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)IEPA 10-fold CV

0 4

0.5

0.6

0.7

0.8

0.9

1

(c)Test on IEPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b)HPRD50 10-fold CV

0 4

0.5

0.6

0.7

0.8

0.9

1

(d)Test on HPRD50

ec
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e)Train on IEPA

0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f)Train on HPRD50

0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

Syntactic

Lexical+Syntactic

Shallow+Syntactic

Lexical+Shallow+Syntactic



BMC Bioinformatics 2009, 10:374 http://www.biomedcentral.com/1471-2105/10/374
example, Figure 4d clearly shows that lexical kernel per-
forms best for the recall up to approximately 0.18 in this
experimental setting. Using these empirical observations
we fill Table 5. The table gives some insight on how differ-
ent types of information affect the performance of the
relation extraction system. Note that these observations
are different from Table 4, because typically a 0.5 thresh-
old covers more than 30% of recall. Below we provide a
more detailed analysis of the results shown in Table 4 and
in Figures 4, 5, 6.

The cross-validation setup reveals no clear leader for all
data sets. For the LLL data set, the syntactic kernel shows
the best performance (Figure 4a). That can be explained
by the fact that the LLL data set is very small and contains
relatively short hand-picked sentences with a simple syn-

tactic structure. However, experiments with other data sets
show that the lexical kernel gives the best results for the
HPRD50 and BioInfer data sets (Figures 5b and 4b). In the
case of BioInfer, this can be explained by the fact that the
training set size is large enough to discriminate useful lex-
ical features. For IEPA, the full kernel, i.e. lexical+shallow,
performs best, while the lexical kernel shows the worst
result (Figure 5a), and for the AIMed data set the syntactic
kernel shows better results for small recall values (Figure
6a). The predictive power of deep syntactic features by
themselves is very interesting, given that the lexical and
lexical+shallow methods in theory can take additional
advantage of the lexicon similarity within the same data
set that is caused by the nature of the cross-validation set
up.

Recall-precision curves for all experimental setups for AIMedFigure 6
Recall-precision curves for all experimental setups for AIMed. The charts represent AIMed-related curves.
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ROC curves for different classifiersFigure 7
ROC curves for different classifiers. Figure 7 depicts ROC curves for different kernels. From left top to right bottom: lex-
ical kernel, Lexical+Shallow kernel, shallow kernel, syntactic kernel.
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When we train on 4 data sets and test on 1, the lexi-
cal+shallow kernel is among the best for all but the BioIn-
fer data set. Figure 4d shows that the lexical kernel
outperforms the others on BioInfer for small recall values.
A significantly better performance of the lexical kernel for
small recall values can be interpreted as a sign of overfit-
ting, i.e. a classifier with a lexical kernel produces too spe-
cific patterns, which causes a successful classification of
several instances, but is followed by a significant precision
drop due to the unability to generalize over less frequent
cases. On the other hand, other classifiers avoid overfit-
ting and a steep precision drop, but at the cost of missing
some very reliable patterns. Moreover, the lexical kernel
shows a performance similar to the lexical+shallow kernel
for HPRD50 and AIMed (Figures 5d and 6b), but fails on
IEPA (Figure 5c). On the other hand, the syntactic kernel
performs good on the IEPA and LLL data sets (Figures 5c
and 4c), but is not that good on others.

Although with the 1-4 experimental setup there is no best
kernel either, we can still observe some interesting pat-
terns. The lexical kernel shows a significantly better per-
formance on the AIMed and HPRD50 data set for small
recall values (Figures 6c and 5f), while the syntactic kernel
performs best for the LLL and IEPA data sets on the whole
curve (Figures 4c and 5e). As it is shown on Figure 4e,
training the classifier on LLL causes extreme curve shapes
caused by the significant difference in size between the
training set and the test data set. The first instances for the
lexical+shallow and the shallow kernels were classified
correctly, but further precision drops dramatically. After
0.25 recall value, the lexical kernel basically neglects all
positive instances, and the curve shows simply the per-
centage of positive instances in the data set. Other kernels
perform slightly better and the syntactic kernel is able to
consistently outperform others. This can be explained by
the fact that 80 sentences (the size of the LLL data set) is

definitely not enough to train a classifier. Moreover, it
shows that in the case of training information shortage
the syntactic kernel can offer a better solution than others.

The last two experiments illustrate the case when the
vocabulary of train and test data sets differ, which is often
the case in the real world. In the former case the training
set is large enough to successfully train the lexical+shallow
kernel, making the difference in the vocabularies not so
crucial. However, in the latter case, when the training set
is much smaller than the test set (train on LLL case on Fig-
ure 4e) we can clearly see the influence of this fact on the
performance difference between syntactic and lexical
methods.

From the experiments above we can observe the following
trends:

• lexical and combined methods are able to build bet-
ter generalizations (due to large amount of available
lexical data) and thus perform better with large (rela-
tive to test) training sets

• syntactic methods are able to achieve better results
than lexical ones when the training set is small in com-
parison with the test set

Moreover, there seems to be a correlation between better
performing kernels and data sets. For example, the syntac-
tic kernel always obtains good results on the LLL and IEPA
data sets, while the lexical+shallow kernel performs well
for the BioInfer data set. Moreover, the lexical kernel is
always on top for the HPRD50 data set. These observa-
tions show that the data set origin and properties (such as
annotation strategy, average sentence complexity) have a
strong influence on classifier performance.

Table 5: Information types

Data set CV 4-1 1-4 Most used information

BioInfer Lexical Lexical Lexical+Shallow Lexical

LLL Syntactic Lexical+Shallow Syntactic Syntactic

HPRD50 Lexical Lexical Lexical Lexical
Lexical+Shallow

IEPA Lexical+Shallow Syntactic Syntactic Biased to syntactic
Lexical+Shallow

AIMed Syntactic Lexical Lexical Lexical
Lexical+Shallow

Result Not clear Lexical+Shallow Not clear
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Compiling ROC curves for one method on one chart
allows us to analyze the robustness of this method on dif-
ferent data sets. In Figure 7 each chart displays ROC curves
for one method for all experimental setups. The less
spread the curves are in the ROC space, the more predict-
able the performance of the method is.

In most cases, the LLL cross-validation setup is out of the
trend, because of its small size and density. Otherwise, the
shallow (Figure 7c) and syntactic (Figure 7a) kernels
exhibit more or less coherent behavior for all setups for
the given data sets. The lexical+shallow kernel (Figure 7d)
shows some spread, but again mostly due to the LLL data
set's based setups, and the lexical kernel (Figure 7b)
proves to be the most unpredictable.

Conclusion
In this paper we examined different structured kernels
with SVM's to study the impact of different features on the
relation extraction process. We took four kernels that
reflect different degrees of using syntactic and lexical
information and performed three types of experiments to
study the behaviour of these methods under different con-
ditions. We performed our experiments on five bench-
mark data sets, being AIMed, BioInfer, IEPA, HPRD50 and
LLL.

The most important observation is that by using only
grammatical relations (syntactic kernel) we can obtain a
similar performance as with an extended feature set (lexi-
cal kernel). This indicates the relative importance of gram-
matical information for the interaction extraction task.
Another finding is the correlation between training/test
set sizes and the method choice. We observed that when
the training set is much smaller than the test set, then the
syntactic kernel performs better. This might be explained
by the fact that there are too few instances to induce useful
lexical features, whereas syntactic features require less
instances to produce better results.

When the training set grows, the performance of the full
kernel becomes better, and when the training data set is
larger than the test set (which rarely happens in real life),
the full kernel outperforms all other kernels. From the sta-
bility point of view (i.e., the expected performance on
unseen data), we can conclude that the syntactic kernel
provides the best results, whereas the lexical kernel pro-
vides the worst results. The question of how different fea-
tures within one feature type affect the quality of
classification still remains open and represents an inter-
esting direction for future work.

We believe that these findings can be helpful in building
faster and less complicated classifiers, as well as for choos-
ing a proper kernel according to the data set at hand.
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