
BioMed Central

ss

BMC Bioinformatics
Open AcceResearch article
Elucidation of functional consequences of signalling pathway 
interactions
Adaoha EC Ihekwaba*†1, Phuong T Nguyen*†1 and Corrado Priami1,2

Address: 1The Microsoft Research-University of Trento, Centre for Computational Systems Biology, Piazza Manci 17 Povo (Trento), Italy and 
2Dept. of Information Engineering and Computer Science, University of Trento, Trento, Italy

Email: Adaoha EC Ihekwaba* - ihekwaba@cosbi.eu; Phuong T Nguyen* - nguyen@cosbi.eu; Corrado Priami - priami@cosbi.eu

* Corresponding authors    †Equal contributors

Abstract
Background: A great deal of data has accumulated on signalling pathways. These large datasets
are thought to contain much implicit information on their molecular structure, interaction and
activity information, which provides a picture of intricate molecular networks believed to underlie
biological functions. While tremendous advances have been made in trying to understand these
systems, how information is transmitted within them is still poorly understood. This ever growing
amount of data demands we adopt powerful computational techniques that will play a pivotal role
in the conversion of mined data to knowledge, and in elucidating the topological and functional
properties of protein - protein interactions.

Results: A computational framework is presented which allows for the description of embedded
networks, and identification of common shared components thought to assist in the transmission
of information within the systems studied. By employing the graph theories of network biology -
such as degree distribution, clustering coefficient, vertex betweenness and shortest path measures
- topological features of protein-protein interactions for published datasets of the p53, nuclear
factor kappa B (NF-κB) and G1/S phase of the cell cycle systems were ascertained. Highly ranked
nodes which in some cases were identified as connecting proteins most likely responsible for
propagation of transduction signals across the networks were determined. The functional
consequences of these nodes in the context of their network environment were also determined.
These findings highlight the usefulness of the framework in identifying possible combination or links
as targets for therapeutic responses; and put forward the idea of using retrieved knowledge on the
shared components in constructing better organised and structured models of signalling networks.

Conclusion: It is hoped that through the data mined reconstructed signal transduction networks,
well developed models of the published data can be built which in the end would guide the
prediction of new targets based on the pathway's environment for further analysis. Source code is
available upon request.
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Background
"Any classification in a division of objects into groups is based
on a set of rules - it is neither true nor false (unlike, for exam-
ple, a theory) and should be judged largely on the usefulness of
the results" [1].

For many years, model organisms have been studied
extensively by scientists as they tried to better understand
the functional implication of processes initiated during
cellular signalling, and how organisms can use this to
respond to perturbations outside of the cell [2]. With the
advent of high throughput experimentation, the identifi-
cation and characterization of molecular components
involved in transduction events became possible in a sys-
tematic way. In addition to this, the discovered interac-
tions between each of these components promoted the
reconstruction of reactions leading to signaling pathways.
Thus, elucidating the functional consequences of these
interactions will be crucial in understanding the ways in
which cells respond to extra cellular cues and how they
communicate with one another.

Activities of biological cells are regulated by proteins car-
rying signals that modify the expression of different genes
at any given time, and these extra-cellular signals drive cell
proliferation and programmed cell death via complex sig-
nal transduction circuits comprising of receptors, kinases,
phosphatases, transcription factors and many others. It is
unsurprising that many components of these signal trans-
duction circuits are oncogenes or tumour suppressors,
emphasizing the importance of understanding signalling
in normal tissues and targeting aberrant signalling in dis-
eases [3]. Signalling networks which are chiefly based on
interactions between proteins are the means by which a
cell converts an external signal (e.g. stimulus) into an
appropriate cellular response (e.g. cellular rhythms - peri-
odic biological process observed in cell cycles or day-night
cycles (circadian rhythms) of animals and plants) [4-6]. It
is from the resulting basic cellular responses that complex
behaviour in multi-cellular organisms emerges.

Signal transduction pathways have typically been drawn
as separate linear entities, however it has become increas-
ingly clear that signalling pathways are extensively inter-
connected and are embedded in networks with common
protein components and cross talk with other networks
[7-11]. In addition to this, signal transduction networks
do not depend merely on the shifting of relevant protein
concentrations from one steady state level to another,
rather, the signals often have a significant temporal varia-
tion that carries much more information that is propa-
gated in a complex manner through the networks [12-15].

Traditionally, study of the complex behaviour of networks
require dynamic models that contain both the biochemi-

cal reactions as well as their rate constant counterparts
[16-19]. This information is usually not accessible directly
through experiments for systems less well studied. Fortu-
nately for many biological systems partial prior knowl-
edge about the connectivity patterns of the networks is
becoming available and readily stored in databases [20-
23], even though the detailed mechanisms still remain
undiscovered. An important goal of this research therefore
is to attain a reconstruction of the network of interactions
that gives rise to signalling pathways in a biologically
meaningful way, which in turn allows the mathematical
analysis of the emerging properties of the network
[24,25].

So far, a great deal of data has accumulated on signalling
systems and these large datasets are thought to contain
much information on the structure of their underlying
networks. However, this information is hidden and
requires advanced algorithms and methods, such as data
mining and graph theories of network biology to make
sense of it all [26-28]. Data mining deals with the discov-
ery of hidden knowledge, unexpected patterns and new
rules [29]; nevertheless, there are some limitations with
this technique. A fundamental issue is that biological data
repositories are normally presented in heterogeneous and
unstructured forms [30-33]. Therefore, there is a great
need to develop effective data mining methodologies to
extract, process, integrate and discover useful knowledge
from multiple data sources [34]. The retrieved knowledge
can then be better organized and structured to develop
models, which in the end, would guide the prediction of
new targets based on the pathway's environment [24,26-
28,35,36].

In this report, we present a systems analysis framework to
examine how protein-protein interactions within these
systems relate to multi-cellular functions, and how high
throughput technologies allow the study of the different
aspects of signalling networks for modelling. We assume
that since mammalian cells are constantly remodelling
their transcriptional activity profiles in response to a com-
bination of inputs, the understanding of their coordinated
responses have been lacking, and in essence requires a
framework which examines the system or systems by
extracting information on their topological and func-
tional properties. An example of a system activated in
response to a variety of signals is the NF-κB pathway
[19,37-40] (a family of proteins which functions as DNA-
binding proteins and transcription factors); the disrup-
tion of which in recent years have been shown to contrib-
ute towards the many human diseases presently known.
We also know from literature [41-43] that the NF-κB net-
work does not exist in isolation, since many of its mecha-
nisms have been shown to integrate their activity with
other cell signalling networks. Such as the p53 system
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[17,44-49] (another transcriptional activator that plays an
important role in the regulation of apoptosis) and the
E2F-1 [50-53] - a cell cycle transcriptional target that con-
trols the expression of a number of genes needed for DNA
synthesis and progression into S phase [46,49,54-59]. It is
thought that the cooperation between p53, NF-κB and
E2F-1 is most likely to reflect on their ability to function
together to induce expression of target genes regulated by
promoters containing p53, NF-κB and E2F-1 binding sites
[53,60,61], since target genes translated to proteins in one
way or another affect the individual system in a positive or
negative way.

To capture the possible events involved in the pathways,
only proteins involved in the oscillatory feedback loops of the
systems were considered - which are ubiquitous feature of
the biological examples given which can be adapted to
yield distinct system level properties [16,17,40,62]. To
generate the networks, the molecular components and
their interactions were extracted from publicly available
datasets [20-23]. In addition, associations of these net-
works with some cell cycle proteins, in particular, the G1/
S phase cell cycle proteins [63,64] were also examined.
Cell cycle proteins were considered since previously pub-
lished literature showed some of its proteins to be acti-
vated by one pathway and to be relevant for the regulation
of another [44,65-70]; and thus may be useful in showing
a level of complexity not visible by looking at the NF-κB
and p53 systems alone. We next identified key nodes of
significant influence in the isolated systems investigated
using some graph theories of network biology, namely,
degree, vertex betweenness, and clustering coefficient
measures. We used shortest paths calculation to find con-
necting nodes, most likely responsible for the propaga-
tion of transduction signals across the networks. And cross
referencing them with reference databases, the interpreta-
tion of the functional properties of these key nodes, as

well as, the highly ranked connecting nodes within the
systems were realised. The idea is that through the data
mined reconstructed signal transduction pathways which
are comparable to the previously modelled networks of
the real system, a phenomenological model of all the pub-
lished data can be derived from which the key compo-
nents of the system can be highlighted for further analysis.
In fact, as we will show in this report, it is possible to
reconstruct signalling networks in this way without addi-
tional constraint.

Methods
The development of high-throughput molecular assay
technologies, as well as breakthroughs in information
processing and storage technologies provide integrated
views of biological and medical information. Databases
enabling systematic data mining on bio-molecular inter-
actions, pathways and molecular disease associations are
becoming increasingly available, which it is hoped will
facilitate the understanding of the dynamics of biological
function in complex diseases. Summarised below are
descriptions of the analytical methods used in this study -
see Figure 1 for a schematic representation of the frame-
work.

Definition of Reference Databases
Over the last few years many of the experimental data
from gene expression studies have been made freely avail-
able for academic research in the form of reference data-
bases [20-23] of which several exist. These different
databases have their strengths and weaknesses and there is
no universal method best for storing these data sets. A
number of different approaches have been used to extract
signalling data and integrate them for biologically valid
conclusions to be drawn from the vast and comprehensive
data sets available [71,72]. Table 1 lists a description of
the individual databases used in this study, each of which

A Schematic representation of the modelling framework introducedFigure 1
A Schematic representation of the modelling framework introduced.
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was used to retrieve information related to the proteins
considered. These databases contain information on pro-
teins, protein interactions and biological processes.

Data extraction and data-mining
The concerted efforts of genetics, molecular biology, bio-
chemistry and physiology have led to the accumulation of
an enormous amount of data on molecular components
of signalling networks reported in the literature or stored
in databases [73]. The availability of these vast amounts of
data provides an opportunity for investigating further the
design principles underlying structure and dynamics of
signalling networks [71,72,74]. However, these data are
diverse and dispersed in different databases. For this rea-
son, data mining is employed and takes the responsibility

of mining this amount of data in the hope that it will
return useful hypotheses supporting life sciences. Due to
its capability of processing different kinds of data, data
mining has the ability to integrate these spread-out data in
a unified framework thus solving more efficiently the
problems that may arise due to their differences
[29,30,32].

We started by looking into four databases: Universal Pro-
tein Resource (Uniprot), Interologous Interaction Data-
base (i2d), Reactome and Pathway Interaction Database
(PID), which we have listed in Table 1. Since different
databases have different names for each entry, the Uniprot
name for identifying proteins was used as the standard
and thus all protein names were converted accordingly to

Table 1: Reference databases used for data retrieval during the investigation

Database Description URL Statistics Data extracted

Uniprot
[20]

comprehensive, high-quality and 
freely accessible resource of protein 
sequence and functional information.

http://www.uniprot.org 220,325 entries function,, post-translation 
modification, location, 
developmental stage, etc.

I2d
[21]

on-line database of known and 
predicted mammalian and eukaryotic 
protein-protein interactions

http://ophid.utoronto.ca/ 424,066 entries 
(92,561 for human)

protein interaction

Reactome
[22]

curated resource of core pathways 
and reactions in human biology.

http://
www.reactome.org

928 pathways for human Pathway

PID
[23]

curated pathway and interactions http://pid.nci.nih.gov/ 133 pathways Pathway

Table 2: Proteins and pathways considered in the study

Network Uniprot accession Uniprot entry name Alternative name

p53 pathway P04637 P53_HUMAN p53
Q00987 MDM2_HUMAN mdm2
P38936 CDN1A_HUMAN p21
Q8N726 CD2A2_HUMAN p14ARF

NF-κB pathway O00221 IKBE_HUMAN NF-κB inhibitor epsilon
O14920 IKKB_HUMAN IKK2
O15111 IKKA_HUMAN IKK1
P19838 NFKB1_HUMAN Nuclear factor NF-κB p105 subunit
P25963 IKBA_HUMAN IκB-alpha
Q00653 NFKB2_HUMAN Nuclear factor NF-κB p100 subunit
Q01201 RELB_HUMAN Transcription factor RelB
Q04206 TF65_HUMAN Transcription factor p65 (RelA)
Q04864 REL_HUMAN C-Rel protein
Q14164 IKKE_HUMAN Inhibitor of nuclear factor κB kinase subunit epsilon
Q15653 IKBB_HUMAN NF-kappa-B inhibitor beta
Q96HD1 CREL1_HUMAN Crel1
Q6UXH1 CREL2_HUMAN Crel2
Q9Y6K9 NEMO_HUMAN IKKγ

G1/S phase cell P24385 CCND1_HUMAN Cyclin D1
cycle proteins Q01094 E2F1_HUMAN E2F-1

P06400 RB_HUMAN Rb
P46527 CDN1B_HUMAN P27

The proteins have been listed according to their Uniprot accession names.
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their Uniprot counterparts. In addition, in the Uniprot
database, protein information is published for a wide-
range of organisms and curated from different sources. A
search for p53 in Uniprot returns 1,624 results, such as
[Uniprot:P04637] (P53_HUMAN) for human, [Uni-
prot:P02340] (P53_MOUSE) for mouse, [Uni-
prot:P13481] (P53_CERAE) for green monkey. To assure
the proteins extracted from Uniprot are the exact proteins
from the organism of interest, a form of verification was
implemented, where the identity of the mined data is con-
firmed through a form of literature search. This step
avoids the confusion and ambiguity that often occurs
when mining and integrating multiple data. Table 2 lists
the search proteins considered in the study (highlighted
proteins are proteins reported to be activated in one sys-
tem and involved in the regulation of another).

Using the i2d database, information on protein-protein
interactions was extracted. Such information is potentially
useful in identifying proteins and their families, the inter-
play with their interacting partners, the influence of cer-
tain proteins in a network and key regulatory
relationships which are most influenced by extracellular
signals. More comprehensive knowledge concerning the
proteins of interest and their connector proteins, for
example, biological process, cellular component, coding
sequence diversity, developmental stage, disease, domain,
ligand, molecular function and post-translation modifica-
tion were also extracted. For elucidating the functional
consequences of the interactions, the Reactome database -
which gives pathway information by combining with
graph information of the PID database - was the database
of choice. Table 3 presents a list of pathways and/or proc-
esses the explored proteins were revealed to be involved
in. The data mining implementation was done in Perl pro-
gramming language http://www.perl.org/ and derived

from BioPython library http://biopython.org/wiki/
Main_Page.

Network Biology
The actions of specific proteins in a network have been
investigated in this report. A network can be described as
a series of nodes/vertices that are connected to each other
by links. Formally it was referred to as a graph and the
links as edges [26,75-77]. The nodes in biological net-
works are the gene products/proteins and the links the
interactions between two components [13,78]. A number
of metrics have been used to characterise the networks of
the systems studied:

• The first, the degree (or connectivity) of a node/ver-
tex k, indicates how many links/edges the node has to
the other nodes. Of particular importance is the degree

Diagram of the shortest path calculationFigure 2
Diagram of the shortest path calculation. An Illustra-
tion showing how the shortest path discussed in the report is 
calculated. It is assumed that; from P1 to P5: p1 = (P1-P6-P7-
P5) and l1 = 3. From P1 to P8: p2 = (P1-P6-P7-P8) and l2 = 3. 
From P1 to P10: p3 = (P1-P9- P10) and l3 = 2. From P1 to 
P11: p4 = (P1-P11) and l4 = 1.

Table 3: Pathways and biological processes information retrieved from Reactome database

Uniprot accession Uniprot entry name Pathway

P25963 IKBB_HUMAN [2 processes]: Signalling in Immune system; Signalling by NGF
Q15653 REL_HUMAN Signalling in Immune system
O15111 IKKB_HUMAN [2 processes]: Signalling in Immune system; Signalling by NGF
O14920 IKKE_HUMAN [2 processes]: Signalling in Immune system; Signalling by NGF
P19838 IKBA_HUMAN [2 processes]: Signalling in Immune system; Signalling by NGF
Q00653 IKBE_HUMAN Signalling in Immune system
Q04206 IKBZ_HUMAN [2 processes]: Signalling in Immune system; Signalling by NGF
P04637 P53_HUMAN Cell Cycle Checkpoints
P38936 CDN1A_HUMAN [3 processes]: Cell Cycle Checkpoints; Cell Cycle, Mitotic; DNA Replication
Q00987 MDM2_HUMAN [2 processes]: Cell Cycle Checkpoints; Signalling by NGF
P46527 CDN1B_HUMAN Signalling by NGF

Reactome can either be directly browsed or queried by text search using, for instance using UniProt accession numbers, to identify events or 
pathways considered search proteins are involved in.
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distribution P(k), which measures the probability that
a selected node has exactly k links. The degree distribu-
tion is used to distinguish between the different classes
of network (which has not been reported in this
account).

• The second, vertex betweenness (Bi) is a measure of
the centrality and influence of nodes in the networks
[79-82].

• The third, average clustering coefficient C(k), charac-
terises the overall tendency of nodes to form clusters
or groups; and C(k) the average clustering coefficient
of all nodes with k links is an important measure of
the network structure [15].

• And finally, the shortest path, which is found
between two vertices (or nodes) such that the sum of
the weights of its constituent edges is minimized
[82,83].

A graph G(E, V) consists of a set of vertices (V) and a set
of edges (E) between them. An edge eij connects vertex vi
with vertex vj. Here, undirected graph is investigated since
our studied protein interaction networks are undirected.
An undirected graph has the property that eij and eji are
considered identical. Therefore, the neighbourhood N for
a vertex vi is defined as it's immediately connected neigh-
bours in Eq. (1):

where the degree ki of a vertex is defined as the number of
vertices |Ni|, in its neighbourhood Ni.

The betweenness centrality of a vertex vi is defined as the
number of shortest paths between pairs of other vertices
that run through vi as Eq. (2):

where i ≠ j ≠ k, gjk is the number of equally shortest paths
between nodes vj and vk, and gjk(i) the number of the
shortest paths where node vi is located [84].

The clustering coefficient Ci for a vertex vi is given by the
proportion of links between the vertices within its neigh-
bourhood divided by the number of links that could pos-
sibly exist between them [15]. Therefore, if a vertex vi has
ki neighbours, ki(ki-1)/2 edges could exist among the verti-
ces within the neighbourhood where the clustering coeffi-
cient for undirected graphs can be defined as Eq.(3):

For the shortest path, given a real-value weight function f:
E → R, and a start node vi of V, we find a path p of P (the
set of paths) from vi to each vj of V if present (Eq. (4), so
that

If the protein-protein interaction networks here constitute
an unweighted graph, the weight function f can be consid-
ered as a path length l (the number of edges in path p). In
this case, the shortest path problem is to find a path p hav-
ing the minimal path length. A Breadth-First Search algo-
rithm [82,83] has been employed to find the shortest
paths between two nodes (the starting node vi and desti-
nation node vj) (see Figure 2). The shortest paths may
have different path lengths (l = 1, l = 2, l = 3, l = 4, etc.). In
the example shown in Figure 2, there are different shortest
paths from start node P1 to destination nodes (P5, P8,
P10, P11) via different connector nodes (P6, P7, P9). If the
path length is 1, this signifies a direct connection, where
two nodes are directly connected (e.g., P1 and P11). For
the shortest paths with l = 2, there are three nodes: a start
node (P1), a connector node (P9), and a destination node
(P10). Using this form of analysis the path lengths were
used to obtain knowledge on the functional interactions
between the proteins. For the purpose of this report we
will only discuss findings for the shortest paths between
two nodes of interest with path length l = 1 or l = 2; their
connector nodes and their frequency ranking (fi) [see
Additional file 1: Suppl. 1-5 for the full list of shortest

N v e Ei j ij= ∈{ }: (1)

B
g jk ij k

g jk
i = >∑ ( )

(2)

C
e jk

ki ki
v v N e Ei j k i jk=

{ }
−( ) ∈ ∈

2

1
: , , (3)

f p
p P

i j( ) .
∈
∑  is minimal among all paths connecting  and n n

(4)

Table 4: Statistical information on the nodes and interactions retrieved for the networks

Network Number of nodes Number of interactions Number of articulation points

p53 436 506 7
NF-κB 788 1352 15
Cell cycle - Cyclin D1, Rb, E2F-1, p27 527 299 4
NF-κB and p53 1105 1834 18
NF-κB, p53 and Rb, E2F-1 1208 2032 20
NF-κB, p53 and Cyclin D1, Rb, E2F-1, p27 1239 2127 22
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paths with other path lengths]. A node is said to have a
high frequency if there is an increase in the number of
paths passing through it; thus a high frequency node may
be the centre of the networks' cross talk. For a given set of
2-length shortest paths [26,85] {p1, p2, p3, ... pn} between
two sets of nodes Vi and Vj, with v1, v2, v3 as connectors of
those paths, if frequency f1 of v1 = 2 (if v1 is the connectors
of two paths); f2 = 10 (if v2 is the connector of ten paths);
f3 = 5 (if v3 is the connector of five paths); then the results
of the ranking is v2 - v3 - v1. The highly ranked nodes
obtained, is then suggested to be the most important
nodes within the network.

Network biology computation was implemented in CoS-
BiLab-Graph http://www.cosbi.eu/index.php/research/

prototypes/overview. CoSBiLab-Graph is a tool suitable
for a variety of tasks on graphs like construction, visuali-
sation, and modification. CoSBiLab-Graph can be used to
calculate measures, run algorithms and layout graphs. The
network visualisation is performed by the software NAVi-
GaTOR ((Network Analysis, Visualization, & Graphing
TORonto)) http://ophid.utoronto.ca/navigator/. NAVi-
GaTOR is the add-in software package of i2d database,
and thus supports the simulation of the protein interac-
tion networks extracted from i2d in this report. Other net-
work analysis tools used are Social Network Analysis
Software http://www.analytictech.com/, and Centralities
in Biological Networks http://centibin.ipk-gatersle
ben.de/.

Table 6: Degree and clustering coefficient values calculated for the cell cycle network

Uniprot accession Uniprot entry name Degree Clustering coefficient

P06400 RB_HUMAN 156 0.00232
P46527 CDN1B_HUMAN 50 0.00245
P24385 CCND1_HUMAN 48 0.01330
Q01094 E2F1_HUMAN 48 0.01418
Q13309 SKP2_HUMAN 3 0.33333
P78396 CCNA1_HUMAN 3 0.33333
P08047 SP1_HUMAN 3 0.66667
P24941 CDK2_HUMAN 3 0.66667
P38398 BRCA1_HUMAN 3 0.66667
P11802 CDK4_HUMAN 3 0.66667
P20248 CCNA2_HUMAN 2 0.00000

Q9NQX5 NPDC1_HUMAN 2 0.00000
P00519 ABL1_HUMAN 2 0.00000
P33993 MCM7_HUMAN 2 0.00000
P30281 CCND3_HUMAN 2 0.00000

Table 5: Degree and clustering coefficient values calculated for the p53 and NF-κB networks

Network p53 Network NF-κB

Uniprot 
accession

Uniprot entry 
name

Degree Clustering 
coefficient

Uniprot 
accession

Uniprot entry 
name

Degree Clustering 
coefficient

P04637 P53_HUMAN 300 9.10E-04 Q14164 IKKE_HUMAN 324 1.90E-04
Q00987 MDM2_HUMAN 72 0.0133 Q04206 TF65_HUMAN 186 0.01796
P38936 CDN1A_HUMAN 72 0.00509 Q9Y6K9 NEMO_HUMAN 157 0.01764
Q8N726 CD2A2_HUMAN 43 0.00664 Q00653 NFKB2_HUMAN 145 0.03218
P53999 TCP4_HUMAN 12 0 P19838 NFKB1_HUMAN 118 0.04578
Q9Y3B4 PM14_HUMAN 10 0 P25963 IKBA_HUMAN 85 0.05546
P49459 UBE2A_HUMAN 3 0.66667 O14920 IKKB_HUMAN 75 0.07279
Q16665 HIF1A_HUMAN 3 0.66667 Q15653 IKBB_HUMAN 73 0.06963
P06748 NPM_HUMAN 3 0.66667 O15111 IKKA_HUMAN 71 0.08089
P25490 TYY1_HUMAN 3 0.66667 Q01201 RELB_HUMAN 64 0.06399
P62988 UBIQ_HUMAN 3 0.66667 O00221 IKBE_HUMAN 48 0.11702
P51959 CCNG1_HUMAN 3 0.66667 Q04864 REL_HUMAN 38 0.14794
Q92793 CBP_HUMAN 3 0.66667 Q96HD1 CREL1_HUMAN 12 0.68182
P62081 RS7_HUMAN 3 0.66667 P07437 TBB5_HUMAN 12 0.68182
Q99816 TS101_HUMAN 3 0.66667 P62158 CALM_HUMAN 12 0.68182

The table is arranged in descending order. Only the first fifteen proteins within the network with high degree values are listed.
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Network representation of isolated p53, NF-κB and cell cycle systemsFigure 3
Network representation of isolated p53, NF-κB and cell cycle systems. A graphical representation of the (A) p53, (B) 
NF-κB, and (C) the G1/S transition phase of the cell cycle {RB_HUMAN, E2F1_HUMAN, CDN1B_HUMAN and 
CCND1_HUMAN} networks. The proteins are represented in the form of nodes, and their interactions in the form of edges. 
For the cell cycle network (C), the shared components linking RB_HUMAN, E2F1_HUMAN, CDN1B_HUMAN and 
CCND1_HUMAN to one another are highlighted (in green), and are six in number (i.e. three pairs). RB_HUMAN, 
CCND1_HUMAN and CDN1B_HUMAN connect with each other by CDK4_HUMAN and CDK2_HUMAN. RB_HUMAN, 
E2F1_HUMAN and CDN1B_HUMAN are linked together by CCNA1_HUMAN and SKP2_HUMAN. And finally RB_HUMAN, 
CDN1B_HUMAN, E2F1_HUMAN and CCND1_HUMAN link up with BRCA1_HUMAN and SP1_HUMAN as their connect-
ing components.
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Results and Discussion
Recognising that individual signalling pathways do not
act in isolation, an integrated approach to investigate the
dynamic relationships between components, their organ-
isation and regulation in signalling systems was under-
taken. We started by searching the i2d database
(containing 92,561 human protein interactions) for the
proteins of interest. This search retrieved a total of 1,881
protein-protein interactions for components of p53 and
NF-κB networks (see Table 2). To increase the confidence
in the extracted interactions information, we excluded 47
interactions shown to have been derived from other
organisms (other than human) by homologous methods,
so that the number of protein interactions obtained
involving both the NF-κB and p53 networks consists of
1,834 interactions. Information on protein-protein inter-
actions within the NF-κB and p53 pathways were also
retrieved and analysed. Finally, the interlinking connec-
tions between the NF-κB and p53, and proteins involved
in the G1/S phase of the cell cycle (in particular,
RB_HUMAN, CCND1_HUMAN, CDN1B_HUMAN,
CD2A2_HUMAN, E2F1_HUMAN and
CDN1A_HUMAN) were also investigated (see Table 4 for
statistical information retrieved for the networks).

Network of Interactions
Following data extraction, descriptive analysis of the data
was performed. The degree, betweenness and cluster coef-
ficient values for the network's components were calcu-
lated in order to ascertain the level of connectivity of the
three systems. Figure 3 illustrates the molecular interac-
tions obtained for the NF-κB, p53 and the G1/S phase cell

cycle, respectively. Figure 3A and Table 4 show for the pro-
teins in the p53 network, 506 interactions and 436 nodes.
Seven of which are articulation points (four original
search nodes (in red) and three other associated nodes
obtained from the extraction process (in cyan)). Articula-
tion nodes (or cut vertex) [86,87] are nodes that play an
important role in a network, where the removal of the
node may drastically alter the network topology leading
to it's fragmentation. Conversely, for the NF-κB network
(see Table 4 & Figure 3B) 788 nodes and 1,352 interac-
tions were observed. The articulation points were fifteen
in number, fourteen of which were the search proteins
considered (in yellow) and an associated TIP60_HUMAN
(in cyan) obtained during the extraction process. A subset
of the highest connectivity or degree values are shown in
Table 5 and 6 [see Additional file 1: Suppl. 6-10 for con-
nectivity values obtained for nodes not included in the
Tables]. We found that for the three networks examined,
the calculated degree for the initial list of proteins, with
the exception of the CREL2 protein in the NF-κB network
(Table 2), were discovered to be much higher than the
associated proteins found during the mining process; and
therefore underscored the central role of the initial list
within their individual networks (search proteins high-
lighted on Table 5 and 6; please note other nodes -
TIP60_HUMAN in the NF-κB network (Figure 3B), and
TCP4_HUMAN, PINX1_HUMAN and PM14_HUMAN in
the p53 network (Figure 3A) - are associated articulation
points).

The highest-degree node (or connectivity) uncovered for
the NF-κB network was IKKE_HUMAN, a protein respon-

Table 7: Vertex betweenness values calculated for p53, NF-κB and cell cycle networks

Network p53 Network NF-κB Cell Cycle

Uniprot 
accession

Uniprot entry 
name

Bi Uniprot 
accession

Uniprot entry 
name

Bi Uniprot 
accession

Uniprot entry 
name

Bi

P04637 P53_HUMAN 81612.87 Q14164 IKKE_HUMAN 166771.25 P06400 RB_HUMAN 26218.55
P38936 CDN1A_

HUMAN
22279.58 Q04206 TF65_HUMAN 70319.46 P24385 CCND1_

HUMAN
9196.14

Q00987 MDM2_HUMAN 18352.39 Q9Y6K9 NEMO_HUMAN 60543.29 Q01094 E2F1_HUMAN 8081.61
Q8N726 CD2A2_HUMAN 9223 Q00653 NFKB2_HUMAN 48010.40 P46527 CDN1B_HUMAN 7318.69
P53999 TCP4_HUMAN 6801.47 P19838 NFKB1_HUMAN 40763.53 P24941 CDK2_HUMAN 1481.39
Q96BK5 PINX1_HUMAN 4250 P25963 IKBA_HUMAN 40680.12 P11802 CDK4_HUMAN 1481.39
Q9Y3B4 PM14_HUMAN 3870 Q15653 IKBB_HUMAN 21318.82 Q13309 SKP2_HUMAN 1195.79
P68400 CSK21_HUMAN 1706.11 Q01201 RELB_HUMAN 17557.99 P78396 CCNA1_HUMAN 1195.79
P20226 TBP_HUMAN 1607.64 O14920 IKKB_HUMAN 15356.68 P38398 BRCA1_HUMAN 872.01
Q09472 EP300_HUMAN 1607.64 O15111 IKKA_HUMAN 14387.00 P08047 SP1_HUMAN 872.01
P41235 HNF4A_HUMAN 1192.02 O00221 IKBE_HUMAN 12109.01 Q9Y3I1 FBX7_HUMAN 614.12
P12004 PCNA_HUMAN 514.08 Q92993 KAT5_HUMAN 8503 Q00526 CDK3_HUMAN 614.12
P21675 TAF1_HUMAN 415.62 Q96HD1 CREL1_HUMAN 7785 P20248 CCNA2_HUMAN 614.12
P06748 NPM_HUMAN 363.33 Q04864 REL_HUMAN 6563.01 P30281 CCND3_HUMAN 614.12
P08238 HS90B_HUMAN 363.33 P07437 TBB5_HUMAN 3982.81 P30279 CCND2_HUMAN 614.12

Results obtained by vertex betweenness produced similar results to the degree of connectivity index reported in Tables 5 and 6.
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A system of p53 and NF-κBFigure 4
A system of p53 and NF-κB. A unified network of the (A) p53 (red circles) and NF-κB (yellow diamonds) networks, with 
their shared components clearly defined (in blue). (B) Condensed view of the two networks; and in (C) only the NF-κB net-
work, which allows for a better visualisation of the connections.
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sible for inhibiting the NF-κB inhibitory subunits with
324 interactions (see Table 5) [88]. A discovery that sug-
gests IKKE_HUMAN to be the most studied protein of the
NF-κB system; and maybe a possible molecular target for
therapy in the NF-κB system. In addition to this, four
other proteins were found to have interacting proteins
numbering over 100. These were: TF65_HUMAN (RelA),
NEMO_HUMAN (IKKγ), NFKB2_HUMAN (p52), and
NFKB1_HUMAN (p50) [Note - this finding could also be
a reflection of the fact that these proteins may be the most
studied members of the NF-κB network]. For the cell cycle

network, the highly connected nodes were four in number
(see Figure 3C and Table 4). Compared to the NF-κB net-
work (Figure 3B), the p53 (Figure 3A) and the cell cycle
(Figure 3C) networks appeared to be sparse, with each
node connected to a relatively small number of edges
within the network, many of whom "know" each other.
The sparse nature could be explained by the fact that only
proteins involved in the oscillatory feedback loops of the
systems of interest, and not the entire published members
were considered in this study. The highest-degree node for
the p53 network was the P53_HUMAN protein, and

Table 8: Frequency and Biological process information on NF-κB and p53 networks connectors

Connector protein Frequency Biological process involved Protein in p53 Protein in NF-κB.

Heat shock protein HSP 90-beta 
(HS90B_HUMAN)

15 CD2A2_HUMAN TF65_HUMAN

P53_HUMAN IKBB_HUMAN

Ubiquitin (UBIQ_HUMAN) 15 13 processes]: APC-Cdc20 mediated degradation of 
Nek2A; APC/C:Cdh1-mediated degradation of Skp2; 
Apoptosis; Cdc20:Phospho-APC/C mediated 
degradation of Cyclin A; Cell Cycle Checkpoints; Cell 
Cycle, Mitotic; DNA Replication; HIV Infection; 
Regulation of activated PAK-2p34 by proteasome 
mediated degradation; Signalling by EGFR; Signalling by 
Wnt; Signalling in Immune system; Signalling by NGF

MDM2_HUMAN RELB_HUMAN

CDN1A_HUMAN NFKB2_HUMAN

Poly [ADP-ribose] polymerase 1 
(PARP1_HUMAN)

10 CDN1A_HUMAN NFKB1_HUMAN

P53_HUMAN IKKB_HUMAN

Stress-70 protein, mitochondrial 
(GRP75_HUMAN)

9 P53_HUMAN REL_HUMAN

P53_HUMAN NFKB1_HUMAN

Heat shock cognate 71 kDa protein 
(HSP7C_HUMAN)

9 Membrane Trafficking P53_HUMAN IKBE_HUMAN

P53_HUMAN IKKE_HUMAN

CREB-binding protein 
(CBP_HUMAN)

8 Gene Expression MDM2_HUMAN IKKA_HUMAN

MDM2_HUMAN IKKB_HUMAN

Immunoglobulin heavy chain-binding 
protein (GRP78_HUMAN)

8 Hemostasis P53_HUMAN NFKB1_HUMAN

P53_HUMAN NFKB2_HUMAN

Heat shock 70 kDa protein 1L 
(HS71L_HUMAN)

8 P53_HUMAN REL_HUMAN

P53_HUMAN RELB_HUMAN

Heat shock protein HSP 90-alpha 
(HS90A_HUMAN)

7 P53_HUMAN IKBB_HUMAN

P53_HUMAN IKBE_HUMAN

Nuclear receptor subfamily 3 group 
C member 1 (GCR_HUMAN)

7 Gene Expression MDM2_HUMAN NFKB1_HUMAN

MDM2_HUMAN NFKB2_HUMAN
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RB_HUMAN for the selected cell cycle proteins (both with
degree connectivity value's, 300 and 156 respectively -
Table 5 and 6); a result signifying their importance in their
various networks. Similarly, the vertex betweenness meas-
ure [80] also confirms IKKE_HUMAN, P53_HUMAN and
RB_HUMAN as prominent nodes in their networks (Table
7) [see Additional file 1: Suppl. 11-13 for results obtained
from other centrality measures]. In addition, various
highly interconnected subgroups were also uncovered,
namely: P53_HUMAN with MDM2_HUMAN;
RELB_HUMAN with NFKB2_HUMAN; and
E2F1_HUMAN with RB_HUMAN [see Additional file 1:
Suppl. 1-3]. These subgroups could also be described as
network motifs [89-91], frequently recurring groups of
interactions, usually highly conserved, which are thought
to perform specific information processing roles in the
networks; in some cases supporting their roles as oscilla-
tors [5,18,63,92].

Following the characterisation of the three networks with
respect to their degree of connectivity, further calculations
were made on their clustering coefficients. It was discov-
ered that MDM2_HUMAN (mdm2) in the p53 network,
REL_HUMAN (C-Rel) in the NF-κB network and
E2F1_HUMAN (E2F-1) of the cell cycle were proteins
found to have the highest clustering coefficient values; a
finding reflecting on the nodes connectivity within their
neighbourhood. That is to say, even though
P53_HUMAN, RB_HUMAN and IKKE_HUMAN were
found to be proteins with the most interaction within
their individual networks; MDM2_HUMAN,

REL_HUMAN (C-Rel) and E2F1_HUMAN were revealed
to be proteins best at forming cliques in their networks.

Having discovered for each system, the highly connected
nodes, as well as the nodes with the most number of
neighbours, it was of interest to study how all the individ-
ual system studied relates to each other. In order to do
this, we set out to calculate the shortest paths and the fre-
quency of proteins linking the systems to one another;
thereby identifying key connector proteins thought to
assist in the transmission of information (or cross talk)
across the three networks. It was hoped that through this
form of analysis, characteristics of the connector proteins
linking the systems will be uncovered.

Network of interactions between p53 and NF-κB pathways
Since it has been suggested that the topology of a network
affects the spread of information carried by a signal and
thus diseases [34], the network of interactions between
the p53 and NF-κB systems were investigated. Figure 4
illustrates the complex network formed between the p53
and the NF-κB systems, and the connector proteins link-
ing them (proteins in the p53 network are denoted in red,
and those of the NF-κB are in yellow - Figure 4A). We
found 365 paths connect proteins in the p53 network to
proteins in the NF-κB network; among which, only two
are direct connections and 295 require a connector pro-
tein. The two direct interactions were revealed to be
between: P53_HUMAN and IKKA_HUMAN, and
P53_HUMAN and IKBA_HUMAN proteins; illustrating
potential connection route to consider when creating a

Table 9: Shortest paths

p53 network and cell cycle proteins

Rb E2F-1 P27 Cyclin D1

Direct link (l = 1) 2 2 0 1
Path with l = 2 44 17 31 25
Total shortest paths of all length l (l = 1, l = 2, l = 3, l = 4, ...) 46 19 31 26

NF-κB network and cell cycle proteins

Rb E2F-1 P27 Cyclin D1

Direct link (l = 1) 0 1 0 0
Path with l = 2 72 35 33 46
Total shortest paths of all length l (l = 1, l = 2, l = 3, l = 4, ...) 74 36 83 91

Path lengths with l = 1 is said to be a direct link. Total shortest path length is where l = 1, l = 2, l = 3 and l = 4
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p53 and NF-κB with RB_HUMAN and E2F1_HUMANFigure 5
p53 and NF-κB with RB_HUMAN and E2F1_HUMAN. (A) Members of p53 (red circles) and NF-κB (yellow diamonds) 
networks, their connections with RB_HUMAN (green square) and E2F1_HUMAN (blue square}) cell cycle proteins, and the 
common components shared between them. Components connecting RB_HUMAN with p53 and NF-κB networks are 
denoted in green, whilst the components connecting E2F1_HUMAN with the two networks are denoted in blue. (B) A con-
densed view of only the p53 and NF-κB networks, and their interactions with RB_HUMAN and E2F1_HUMAN proteins. Tri-
angular connector nodes represent common components between RB_HUMAN and the two networks (in green), 
E2F1_HUMAN and the two networks (in blue), and RB_HUMAN and E2F1_HUMAN connections with the NF-κB and p53 
networks (in yellow). Circular nodes in green denote RB_HUMAN connectors to p53 or NF-κB networks; and in blue for 
E2F1_HUMAN to p53 or NF-κB networks. The yellow and magenta circular nodes represent proteins connecting both 
E2F1_HUMAN and RB_HUMAN to members of the NF-κB (in yellow) and p53 (in magenta). Refer also to Tables 9, 10, 11, 12 
and 13 for further information.
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Network representation of p53, NF-κB and cell cycle interactionsFigure 6
Network representation of p53, NF-κB and cell cycle interactions. (A) Network topology of the combined networks 
of the p53 (red), NF-κB (yellow) and the cell cycle {CDN1B_HUMAN (orange), CCND1_HUMAN (magenta), RB_HUMAN 
(green), E2F1_HUMAN (blue)}. Connector nodes linking cell cycle proteins to either NF-κB or p53; or to both have been 
denoted according to the colour of the cell cycle protein counterpart. For example, since E2F1_HUMAN is denoted in blue, 
connector proteins linking it to the p53 or NF-κB, or to both will be highlighted in blue (B) Condensed view of the p53 and 
NF-κB networks, and their connections with cell cycle proteins. The connectors have been labelled according to (A).
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unified model of the NF-κB and p53 system. Indirect links
for the rest of the nodes were found to require protein
mediators to act as connector proteins. The proteins acting
as connectors between the two networks are shown in
blue in Figure 4A, B and 4C. It is evident that the
P53_HUMAN protein can itself act as a connecting pro-
tein between members of the NF-κB pathway and mem-
bers of the p53 system (for example, CDN1A_HUMAN -
P53_HUMAN - IKKA_HUMAN; and, MDM2_HUMAN -
P53_HUMAN - IKKA_HUMAN).

After having determined the shortest paths linking the
p53 and NF-κB systems, the identified connector proteins
linking the two systems were grouped according to their
frequency values, and cross referenced with reference
databases, for the interpretation of their functional prop-

erties. Table 8 provides a list of the top ten connecting
nodes with the most number of paths passing through it
[see Additional file 1: Suppl. 14-18 for further informa-
tion extracted for these proteins]. It shows the frequency
values for the connector protein with shortest paths l = 2,
and the biological processes associated with the connector
protein. Members of the NF-κB and p53 network sharing
the same connector protein are also listed in Table 8
(Note, only two examples for each connection with the
same frequency values have been presented). Interest-
ingly, Heat shock protein HSP 90-beta (HS90B_HUMAN)
and Ubiquitin (UBIQ_HUMAN) were revealed to be
important proteins with the highest frequency, f = 15,
linking proteins in the p53 system to proteins in the NF-
κB system. Two examples of each connection are:
CD2A2_HUMAN - HS90B_HUMAN - TF65_HUMAN;

Table 11: Frequent components linking RB_HUMANto NF-κB pathway

Connector protein Frequency Protein in NF-κB Additional information of connector proteins

HSP7C_HUMAN 10 IKKB_HUMAN Heat shock cognate 71 kDa protein
(Involved in Membrane Trafficking process)

HDAC2_HUMAN 4 NFKB1_HUMAN Histone deacetylase 2
(Involved in 2 processes: Gene Expression; Signalling by NGF)

ESR1_HUMAN 3 IKKB_HUMAN Estrogen receptor
HDAC1_HUMAN 3 IKKA_HUMAN Histone deacetylase 1

(Involved in 2 processes: Gene Expression; Signalling by NGF)
SMCA4_HUMAN 3 RELB_HUMAN Probable global transcription activator SNF2L4
TBP_HUMAN 3 NFKB2_HUMAN TATA-box-binding protein

(Involved in 3 processes: Gene Expression; HIV Infection; Transcription)
BRCA1_HUMAN 2 TF65_HUMAN Breast cancer type 1 susceptibility protein

(Involved in DNA Repair process)
ANDR_HUMAN 2 TF65_HUMAN Androgen receptor
CEBPB_HUMAN 2 NFKB1_HUMAN CCAAT/enhancer-binding protein beta
CDK9_HUMAN 2 TF65_HUMAN Cell division protein kinase 9

(Involved in 9 processes: Elongation arrest and recovery; Gene Expression; HIV 
Infection; HIV-1 elongation arrest and recovery; Pausing and recovery of HIV-1 
elongation; Pausing and recovery of Tat-mediated HIV-1 elongation; Pausing and 
recovery of elongation; Tat-mediated HIV-1 elongation arrest and recovery; 
Transcription)

Table 10: Frequent components linking E2F1_HUMAN to NF-κB pathway

Connector protein Frequency Protein in NF-κB Additional information of connector proteins

NFKB1_HUMAN 9 IKBA_HUMAN Nuclear factor NF-kappa-B p105 subunit
PARP1_HUMAN 4 NFKB2_HUMAN Poly [ADP-ribose] polymerase 1
NCOA3_HUMAN 3 IKKA_HUMAN Nuclear receptor coactivator 3
CUL1_HUMAN 3 IKBB_HUMAN Cullin-1
CBP_HUMAN 3 TF65_HUMAN CREB-binding protein

(Involved in Gene Expression process)
SP1_HUMAN 2 TF65_HUMAN

REL_HUMAN
Transcription factor Sp1

P53_HUMAN 2 IKKA_HUMAN Cellular tumor antigen p53
TIP60_HUMAN 1 CREL1_HUMAN Histone acetyltransferase HTATIP
PHB_HUMAN 1 TF65_HUMAN Prohibitin
PA2G4_HUMAN 1 IKKE_HUMAN Proliferation-associated protein 2G4
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and P53_HUMAN - HS90B_HUMAN - IKBB_HUMAN for
HSP 90-beta; and MDM2_HUMAN - UBIQ_HUMAN -
RELB_HUMAN; and CDN1A_HUMAN - UBIQ_HUMAN
- NFKB2_HUMAN for Ubiquitin. The frequency results
were useful in establishing the importance of shared pro-
teins between systems.

Network of interactions between p53, NF-κB and the G1/
S phase of the Cell cycle
Since it has been suggested, that some cell cycle proteins
are activated by one pathway and are relevant for the reg-
ulation of another [44,65-69], it was of interest to investi-
gate the relationship between the NF-κB, p53 and the cell
cycle systems. For this study, only events leading to the
G1/S transition phase of the cell cycle, the point where
NF-κB and p53 signal transduction events are active the
most [93] were considered. We start by exploring the
interactions between RB_HUMAN and E2F1_HUMAN
cell cycle proteins, with members of the p53 and NF-κB
networks. Figure 5 show the network obtained from this
analysis. Proteins that link the proteins in the p53 and NF-

κB networks to RB_HUMAN are denoted in green, whilst
the proteins connecting the two networks to
E2F1_HUMAN are in blue (Figure 5A). Common protein
shared between the p53 and NF-κB networks have been
represented in the form of green triangles (for links to
RB_HUMAN) and blue triangles (for links with
E2F1_HUMAN) (see Figure 5B). Closer evaluation of the
interactions linking the p53 network to the cell cycle pro-
teins (Table 9), identified 46 shortest paths for interac-
tions with RB_HUMAN (44 of which are indirect links
mediated by a single node and 2 direct links
{CDN1A_HUMAN - RB_HUMAN [66,94];
MDM2_HUMAN - RB_HUMAN }); and 19 shortest paths
for interactions with E2F1_HUMAN (17 of which are
indirect links mediated by a single node, and 2 direct links
{CD2A2_HUMAN - E2F1_HUMAN; P53_HUMAN -
E2F1_HUMAN }). These results therefore suggest an
active role of CDN1A_HUMAN (p21) and
MDM2_HUMAN (mdm2) on the activity of the
RB_HUMAN protein in the cell cycle. And thus implies
possible connection routes to consider when constructing

Table 13: Frequent components linking RB_HUMAN to the p53 network

Connector protein Frequency Protein in p53 Additional information of connector proteins

P53_HUMAN 2 CDN1A_HUMAN Cellular tumor antigen p53
CBP_HUMAN 2 MDM2_HUMAN CREB-binding protein
RB_HUMAN 2 CDN1A_HUMAN Retinoblastoma-associated protein
TIP60_HUMAN 1 MDM2_HUMAN Histone acetyltransferase HTATIP
SKP2_HUMAN 1 CDN1A_HUMAN S-phase kinase-associated protein 2
PARP1_HUMAN 1 CDN1A_HUMAN Poly [ADP-ribose] polymerase 1
ATM_HUMAN 1 MDM2_HUMAN Serine-protein kinase ATM

(Involved in 2 processes: Cell Cycle Checkpoints; DNA Repair)
MDM4_HUMAN 1 MDM2_HUMAN Protein Mdm4
CHK2_HUMAN 1 MDM2_HUMAN Serine/threonine-protein kinase Chk2

(Involved in 3 processes: Cdc20:Phospho-APC/C mediated degradation of Cyclin A; 
Cell Cycle)

CDK3_HUMAN 1 CDN1A_HUMAN Cell division protein kinase 3

Table 12: Frequent components linking E2F1_HUMAN to the p53 network

Connector protein Frequency Protein in p53 Additional information of connector proteins

P53_HUMAN 2 CDN1A_HUMAN Cellular tumor antigen p53
CBP_HUMAN 2 MDM2_HUMAN CREB-binding protein
RB_HUMAN 2 CDN1A_HUMAN Retinoblastoma-associated protein
TIP60_HUMAN 1 MDM2_HUMAN Histone acetyltransferase HTATIP
SKP2_HUMAN 1 CDN1A_HUMAN S-phase kinase-associated protein 2
PARP1_HUMAN 1 CDN1A_HUMAN Poly [ADP-ribose] polymerase 1
ATM_HUMAN 1 MDM2_HUMAN Serine-protein kinase ATM

(Involved in 2 processes: Cell Cycle Checkpoints; DNA Repair)
MDM4_HUMAN 1 MDM2_HUMAN Protein Mdm4
CHK2_HUMAN 1 MDM2_HUMAN Serine/threonine-protein kinase Chk2

(Involved in 3 processes: Cdc20:Phospho-APC/C mediated degradation of Cyclin A; 
Cell Cycle)

CDK3_HUMAN 1 CDN1A_HUMAN Cell division protein kinase 3
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a unified model of the p53 and the G1/S phase of the cell
cycle networks. Likewise, for the NF-κB network, 74 short-
est paths were identified linking NF-κB proteins to
RB_HUMAN (all of which were indirect links); and 36
shortest paths for interactions with E2F1_HUMAN (of
which only a single direct link was observed,
IKBA_HUMAN - E2F1_HUMAN).

We repeated this analysis to include interactions between
the rest of the G1/S cell cycle proteins (RB_HUMAN,
CCND1_HUMAN, CDN1B_HUMAN, and
E2F1_HUMAN) and the members of the p53 and NF-κB
networks (see Figure 6 - only the connecting nodes linking
CDN1B_HUMAN (p27, circle, yellow), CCND1_HUMAN
(Cyclin D1, circle, magenta), RB_HUMAN (Rb, circle, green)
and E2F1_HUMAN (E2F-1, circle, blue) to the p53 and NF-
κB networks have been colour coded - Figure 6A and 6B).
Shortest path lengths calculated for interactions between
proteins in the p53 network and CDN1B_HUMAN, num-
bered 31 (all indirect links with path length = 2); and 26
for interactions with CCND1_HUMAN (25 indirect con-
nection with path length = 2 and 1 direct connection
{CDN1A_HUMAN - CCND1_HUMAN}). Similarly, for
the NF-κB system, 83 shortest paths connecting
CDN1B_HUMAN (33 of which have path length = 2), and
91 shortest paths connecting CCND1_HUMAN(46 of
which are indirect links mediated by a single connector
path length = 2) to members of the NF-κB network were
determined (see Table 9 for shortest paths statistics). Fre-
quency values and functional properties ascertained for
nodes linking the p53 and cell cycle networks, as well for
those linking the NF-κB with the cell cycle network have
been reviewed in Table 10, 11, 12 and 13 [see Additional
file 1: Suppl. 19-24 for a full list].

Conclusion
A network is usually thought of as a coherent system that
comprises of units interacting in some kind of orches-
trated and regulated fashion - such that the emergent
behaviour of the whole (i.e. the network) is recognisable
and can be characterised. Once some of the behaviour is
recognised, the system can be described at a level of detail
appropriate to the system's behaviour whilst ignoring the
details of the constituent parts. Since molecular networks
are large and complex, with their components and their
interactions quite heterogeneous characterising the rela-
tionship between structure and dynamics of the system
makes it far from straightforward. Although research aim-
ing at coping with these challenges has become very pop-
ular, it is important to bear in mind that the current efforts
can only profit from a combined theoretical and experi-
mental approach. This is where the approach presented in
this paper becomes beneficial. The idea is that by combin-
ing both the data driven and knowledge driven strategies,
direct and or combinatorial interaction parameters of

many protein can be captured from the information
gained, and can thus be used to construct, guide and or
unify dynamical models of signal transduction pathways
from which a realistic model of the systems behaviour can
be determined. The resulting dynamical model can then
provide the conceptual and explanatory linkage between
the observed phenomena and the predicted.

This framework of computational modelling of molecular
networks at various levels or organisation has the poten-
tial to allow cost effective experimentation and hypothesis
exploration, computationally uncovering the behaviour
of molecular species and combinatorial interactions that
would be difficult and too expensive to carry out in a wet-
lab setting. While, network topology analysis is thus use-
ful for showing which proteins in the network depend on
which other protein, it does not give us any further infor-
mation on the regulatory effects of these dependencies.
Despite these methodological limitations, our results
offer a view, demonstrating the importance of elucidating
the functional roles key or shared components play in the
propagation of signals across transduction systems.

The main implication of the presented application is the
recognition that changes in one signalling system,
undoubtedly causes a ripple effect on the rest of the sur-
rounding system - as shown by the extensive interconnec-
tion of the systems studied and their common shared
components. It is hoped that the use of this form of anal-
ysis may also be beneficial in highlighting areas of
research where very little is known for further future study.

Authors' contributions
AECI conceived the project and design. AECI and TPN pre-
pared the data. TPN extracted processed data from public
databases, implemented the algorithms and analysed the
results. AECI and TPN wrote the paper. All authors read
and approved the document.

Additional material

Acknowledgements
This project has been partially funded by FIRB Project RBPR0523C3. The 
authors wish to thank colleagues at CoSBi: Ferenc Jordán, Sean Sedwards, 

Additional file 1
Supplementary Material. The data provided correspond to supplementary 
calculation details, as well as additional information on the topological 
and functional properties of the p53, NF-κB and cell cycle networks. All 
proteins are listed according to their Uniprot accession number and pro-
tein ID name.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-370-S1.zip]
Page 17 of 19
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-370-S1.zip


BMC Bioinformatics 2009, 10:370 http://www.biomedcentral.com/1471-2105/10/370
Matteo Cavaliere and Ivan Mura for valuable discussions and editorial sug-
gestions.

References
1. Everitt BS: Cluster Analysis.  London: Edward Arnold; 1993. 
2. Alberts B, Bray D, Lewis J, Raff M, Roberts K: Molecular biology of

the cell.  4th edition. Garland publishing; 2002. 
3. Nicolau M, Tibshirani R, Borresen-Dale AL, Jeffrey SS: Disease-spe-

cific genomic analysis: identifying the signature of pathologic
biology.  Bioinformatics 2007, 23(8):957-965.

4. Goldbeter A: Computational approaches to cellular rhythms.
Nature 2002, 420(6912):238-245.

5. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman
BE, Nelson G, See V, Horton CA, Spiller DG, et al.: Oscillations in
NF-kappaB signaling control the dynamics of gene expres-
sion.  Science 2004, 306(5696):704-708.

6. Goldbeter A: A model for circadian oscillations in the Dro-
sophila period protein (PER).  Proc R Soc Lond B Biol Sci 1995,
261(1362):319-324.

7. Gagneur J, Casari G: From molecular networks to qualitative
cell behavior.  FEBS Lett 2005, 579(8):1867-1871.

8. Gagneur J, Krause R, Bouwmeester T, Casari G: Modular decom-
position of protein-protein interaction networks.  Genome Biol
2004, 5(8):R57.

9. Bhalla US: Understanding complex signaling networks
through models and metaphors.  Prog Biophys Mol Biol 2003,
81(1):45-65.

10. Kell DB: Metabolomics, machine learning and modelling:
towards an understanding of the language of cells.  Biochem Soc
Trans 2005, 33(Pt 3):520-524.

11. Yaffe MB: Signaling networks and mathematics.  Sci Signal 2008,
1(43):eg7.

12. Barabasi AL, Albert R: Emergence of scaling in random net-
works.  Science 1999, 286(5439):509-512.

13. Barabasi AL, Oltvai ZN: Network biology: understanding the
cell's functional organization.  Nat Rev Genet 2004, 5(2):101-113.

14. Strogatz SH: Exploring complex networks.  Nature 2001,
410(6825):268-276.

15. Watts DJ, Strogatz SH: Collective dynamics of 'small-world'
networks.  Nature 1998, 393(6684):440-442.

16. Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkappaB-
NF-kappaB signaling module: temporal control and selective
gene activation.  Science 2002, 298(5596):1241-1245.

17. Ma L, Wagner J, Rice JJ, Hu W, Levine AJ, Stolovitzky GA: A plausi-
ble model for the digital response of p53 to DNA damage.
Proc Natl Acad Sci USA 2005, 102(40):14266-14271.

18. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz
MB, Alon U: Dynamics of the p53-Mdm2 feedback loop in indi-
vidual cells.  Nat Genet 2004, 36(2):147-150.

19. Ihekwaba AE, Wilkinson SJ, Waithe D, Broomhead DS, Li P, Grimley
RL, Benson N: Bridging the gap between in silico and cell-
based analysis of the nuclear factor-kappaB signaling path-
way by in vitro studies of IKK2.  Febs J 2007, 274(7):1678-1690.

20. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S,
Gasteiger E, Huang H, Lopez R, Magrane M, et al.: The Universal
Protein Resource (UniProt).  Nucleic Acids Research 2005,
33:D154-D159.

21. Brown KR, Jurisica I: Unequal evolutionary conservation of
human protein interactions in interologous networks.
Genome Biology 2007, 8(5):R95.

22. Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de
Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, et al.: Reac-
tome: a knowledgebase of biological pathways.  Nucl Acids Res
2005, 33(suppl 1):428-432.

23. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T,
Buetow KH: PID: the Pathway Interaction Database.  Nucl Acids
Res 2009, 37(suppl_1):D674-679.

24. Priami C, Ballarini P, Qualia P: BlenX4Bio: BlenX for biologists.
In Proc 7th International Conference on Computational Methods in Systems
Biology: 2009 Bologna: Springer; 2009. 

25. Dematte L, Priami C, Romanel A: The Beta Workbench: a com-
putational tool to study the dynamics of biological systems.
Brief Bioinform 2008, 9(5):437-449.

26. Schlitt T, Brazma A: Current approaches to gene regulatory
network modelling.  BMC Bioinformatics 2007, 8(Suppl 6):S9.

27. Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, Brazma
A: From gene networks to gene function.  Genome Res 2003,
13(12):2568-2576.

28. Priami C: Algorithmic Systems Biology. An opportunity for
computer science.  Communications of the ACM 2009, 52(5):80-88.

29. Han J, Kamber M: Data Mining: Concepts and Techniques (The
Morgan Kaufmann Series in Data Management Systems).
San Francisco: Morgan Kaufmann; 2000. 

30. Wang JTL, Zaki MJ, Toivonen HTT, Shasha DE: Data Mining in Bio-
informatics.  London: Springer; 2005. 

31. Bhaskar H, Hoyle DC, Singh S: Machine learning in bioinformat-
ics: A brief survey and recommendations for practitioners.
Intelligent Technologies in Medicine and Bioinformatics 2006,
36(10):1104-1125.

32. Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano
JA, Armananzas R, Santafe G, Perez A, et al.: Machine learning in
bioinformatics.  Brief Bioinform 2006, 7(1):86-112.

33. Jang H, Lim J, Lim J-H, Park S-J, Lee K-C, Park S-H: Finding the evi-
dence for protein-protein interactions from PubMed
abstracts.  Bioinformatics 2006, 22(14):e220-226.

34. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL: The
implications of human metabolic network topology for dis-
ease comorbidity.  Proc Natl Acad Sci USA 2008,
105(29):9880-9885.

35. Brazhnik P, de la Fuente A, Mendes P: Gene networks: how to put
the function in genomics.  Trends Biotechnol 2002,
20(11):467-472.

36. Lecca P, Palmisano A, Ihekwaba A, Priami C: Calibration of
dynamic models of biological systems with KInfer.  Eur Biophys
J 2009.

37. Baud V, Karin M: Is NF-kappaB a good target for cancer ther-
apy? Hopes and pitfalls.  Nat Rev Drug Discov 2009, 8(1):33-40.

38. Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolu-
tionarily conserved mediators of immune responses.  Annu
Rev Immunol 1998, 16:225-260.

39. Ihekwaba AEC, Broomhead DS, Grimley R, Benson N, White MRH,
Kell DB: Synergistic control of oscillations in the NF-kappaB
signalling pathway.  IEE Systems Biology 2005, 152(3):153-160.

40. Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB: Sen-
sitivity analysis of parameters controlling oscillatory signal-
ling in the NF-κB pathway: the roles of IKK and IκBα.  Systems
Biology 2004, 1(1):93-103.

41. Araki K, Kawauchi K, Tanaka N: IKK/NF-kappaB signaling path-
way inhibits cell-cycle progression by a novel Rb-independ-
ent suppression system for E2F transcription factors.
Oncogene 2008, 27(43):5696-5705.

42. Kawauchi K, Araki K, Tobiume K, Tanaka N: Activated p53
induces NF-kappaB DNA binding but suppresses its tran-
scriptional activation.  Biochem Biophys Res Commun 2008,
372(1):137-141.

43. Kawauchi K, Araki K, Tobiume K, Tanaka N: p53 regulates glucose
metabolism through an IKK-NF-kappaB pathway and inhib-
its cell transformation.  Nat Cell Biol 2008, 10(5):611-618.

44. Webster GA, Perkins ND: Transcriptional cross talk between
NF-kappaB and p53.  Mol Cell Biol 1999, 19(5):3485-3495.

45. Pigolotti S, Krishna S, Jensen MH: Oscillation patterns in negative
feedback loops.  Proc Natl Acad Sci USA 2007, 104(16):6533-6537.

46. Schumm K, Rocha S, Caamano J, Perkins ND: Regulation of p53
tumour suppressor target gene expression by the p52 NF-
kappaB subunit.  Embo J 2006, 25(20):4820-4832.

47. Tergaonkar V, Bottero V, Ikawa M, Li Q, Verma IM: IkappaB kinase-
independent IkappaBalpha degradation pathway: functional
NF-kappaB activity and implications for cancer therapy.  Mol
Cell Biol 2003, 23(22):8070-8083.

48. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I: p53 stabilization
is decreased upon NFkappaB activation: a role for NFkap-
paB in acquisition of resistance to chemotherapy.  Cancer Cell
2002, 1(5):493-503.

49. Tergaonkar V, Perkins ND: p53 and NF-kappaB crosstalk: IKKa-
lpha tips the balance.  Mol Cell 2007, 26(2):158-159.

50. Trimarchi JM, Lees JA: Sibling rivalry in the E2F family.  Nat Rev
Mol Cell Biol 2002, 3(1):11-20.

51. Frolov MV, Dyson NJ: Molecular mechanisms of E2F-depend-
ent activation and pRB-mediated repression.  J Cell Sci 2004,
117(Pt 11):2173-2181.
Page 18 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17277331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17277331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17277331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12432409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15763565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15763565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15916555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15916555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18957689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11258382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9623998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9623998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14730303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14730303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17313484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17313484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17313484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17535438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17535438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18463130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18463130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17903290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17903290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19669750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19669750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19116625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19116625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9597130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9597130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16986278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16986278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18542057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18542057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18391940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18391940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18391940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10207072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10207072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17412833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17412833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14585967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12124178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12124178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12124178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17466617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17466617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15126619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15126619


BMC Bioinformatics 2009, 10:370 http://www.biomedcentral.com/1471-2105/10/370
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

52. Frolov MV, Huen DS, Stevaux O, Dimova D, Balczarek-Strang K,
Elsdon M, Dyson NJ: Functional antagonism between E2F fam-
ily members.  Genes Dev 2001, 15(16):2146-2160.

53. Lim CA, Yao F, Wong JJ, George J, Xu H, Chiu KP, Sung WK, Lipovich
L, Vega VB, Chen J, et al.: Genome-wide mapping of RELA(p65)
binding identifies E2F1 as a transcriptional activator
recruited by NF-kappaB upon TLR4 activation.  Mol Cell 2007,
27(4):622-635.

54. Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH: E2F-1 poten-
tiates cell death by blocking antiapoptotic signaling path-
ways.  Mol Cell 1999, 4(5):771-781.

55. Hitchens MR, Robbins PD: The role of the transcription factor
DP in apoptosis.  Apoptosis 2003, 8(5):461-468.

56. Baguley BC, Marshall E: Do negative feedback oscillations drive
variations in the length of the tumor cell division cycle?  Oncol
Res 2005, 15(6):291-294.

57. Barre B, Perkins ND: A cell cycle regulatory network control-
ling NF-kappaB subunit activity and function.  Embo J 2007,
26(23):4841-4855.

58. Perkins ND: Integrating cell-signalling pathways with NF-kap-
paB and IKK function.  Nat Rev Mol Cell Biol 2007, 8(1):49-62.

59. Campbell KJ, Perkins ND: Regulation of NF-kappaB function.
Biochem Soc Symp 2006:165-180.

60. Vousden KH: Outcomes of p53 activation--spoilt for choice.  J
Cell Sci 2006, 119(Pt 24):5015-5020.

61. Phillips AC, Vousden KH: E2F-1 induced apoptosis.  Apoptosis
2001, 6(3):173-182.

62. Lahav G: The strength of indecisiveness: oscillatory behavior
for better cell fate determination.  Sci STKE 2004,
2004(264):pe55.

63. Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E: A compre-
hensive modular map of molecular interactions in RB/E2F
pathway.  Mol Syst Biol 2008, 4:173.

64. Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A: Irreversible cell-
cycle transitions are due to systems-level feedback.  Nat Cell
Biol 2007, 9(7):724-728.

65. Dotto GP: p21(WAF1/Cip1): more than a break to the cell
cycle?  Biochim Biophys Acta 2000, 1471(1):M43-56.

66. Sheahan S, Bellamy CO, Treanor L, Harrison DJ, Prost S: Additive
effect of p53, p21 and Rb deletion in triple knockout primary
hepatocytes.  Oncogene 2004, 23(8):1489-1497.

67. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ:
Functional and physical interactions of the ARF tumor sup-
pressor with p53 and Mdm2.  Proc Natl Acad Sci USA 1998,
95(14):8292-8297.

68. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L,
Chin L, Potes J, Chen K, Orlow I, Lee HW, et al.: The Ink4a tumor
suppressor gene product, p19Arf, interacts with MDM2 and
neutralizes MDM2's inhibition of p53.  Cell 1998, 92(6):713-723.

69. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S,
Palmero I, Ryan K, Hara E, Vousden KH, et al.: The alternative
product from the human CDKN2A locus, p14(ARF), partici-
pates in a regulatory feedback loop with p53 and MDM2.
Embo J 1998, 17(17):5001-5014.

70. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG: NF-kap-
paB and cell-cycle regulation: the cyclin connection.  Cytokine
Growth Factor Rev 2001, 12(1):73-90.

71. Steffen M, Petti A, Aach J, D'haeseleer P, Church G: Automated
modelling of signal transduction networks.  BMC Bioinformatics
2002, 3(34):.

72. Allen EE, Fetrow JS, Daniel LW, Thomas SJ, John DJ: Algebraic
dependency models of protein signal transduction networks
from time-series data.  Journal of Theoretical Biology 2006,
238(2):317-330.

73. Ng SK, Tan SH: Discovering protein-protein interactions.  Jour-
nal of Bioinformatics and Computational Biology 2003, 1(4):711-741.

74. Jennifer AM, Dahesh S, Haynes J, Andrews BJ, Davidson AR: Protein-
protein interaction affinity plays a crucial role in controlling
the Sho1p-mediated signal transduction pathway in Yeast.
Mol Cell 2004, 14:813-823.

75. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL: The large-
scale organization of metabolic networks.  Nature 2000,
407(6804):651-654.

76. Kim BJ, Yoon CN, Han SK, Jeong H: Path finding strategies in
scale-free networks.  Phys Rev E Stat Nonlin Soft Matter Phys 2002,
65(2 Pt 2):027103.

77. Spirin V, Mirny LA: Protein complexes and functional modules
in molecular networks.  Proc Natl Acad Sci USA 2003,
100(21):12123-12128.

78. Lin C, Cho Y, Hwang W, Pei P, Zhang A: Clustering Methods In
Protein-Protein Interaction Network.  In Knowledge Discovery in
Bioinformatics: Techniques, Methods and Application Edited by: Xiaohua
H, Yi P. Hoboken, NJ: Wiley InterScience; 2006:319-355. 

79. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M: The impor-
tance of bottlenecks in protein networks: correlation with
gene essentiality and expression dynamics.  PLoS Comput Biol
2007, 3(4):e59.

80. Zhang S, Jin G, Zhang XS, Chen L: Discovering functions and
revealing mechanisms at molecular level from biological
networks.  Proteomics 2007, 7(16):2856-2869.

81. Zotenko E, Mestre J, O'Leary DP, Przytycka TM: Why do hubs in
the yeast protein interaction network tend to be essential:
reexamining the connection between the network topology
and essentiality.  PLoS Comput Biol 2008, 4(8):e1000140.

82. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to
Algorithms.  Second edition. Cambridge, MA: The MIT Press; 2001. 

83. Knuth DE: Art of Computer Programming, Fundamental
Algorithms.  Volume 1. 3rd edition. Reading, MA: Addison-Wesley
Professional; 1997. 

84. Freeman LC: A set of measures of centrality based on
betweenness.  Sociometry 1977, 40(1):35-37.

85. Schlitt T, Brazma A: Modelling in molecular biology: describing
transcription regulatory networks at different scales.  Philos
Trans R Soc Lond B Biol Sci 2006, 361(1467):483-494.

86. Chartrand G: Introductory Graph Theory.  New York: Dover;
1985. 

87. Harary F: Graph Theory.  Reading MA: Addison-Wesley; 1994. 
88. Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U:

Association of the adaptor TANK with the I kappa B kinase
(IKK) regulator NEMO connects IKK complexes with IKK
epsilon and TBK1 kinases.  J Biol Chem 2002,
277(40):37029-37036.

89. Alon U: Network motifs: theory and experimental
approaches.  Nat Rev Genet 2007, 8(6):450-461.

90. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U:
Network motifs: simple building blocks of complex net-
works.  Science 2002, 298(5594):824-827.

91. Kashtan N, Itzkovitz S, Milo R, Alon U: Topological generaliza-
tions of network motifs.  Phys Rev E Stat Nonlin Soft Matter Phys
2004, 70(3 Pt 1):031909.

92. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E,
Yarnitzky T, Liron Y, Polak P, Lahav G, et al.: Oscillations and var-
iability in the p53 system.  Mol Syst Biol 2006, 2:2006 0033.

93. Kaltschmidt B, Kaltschmidt C, Hehner SP, Droge W, Schmitz ML:
Repression of NF-kappaB impairs HeLa cell proliferation by
functional interference with cell cycle checkpoint regulators.
Oncogene 1999, 18(21):3213-3225.

94. Garner E, Raj K: Protective mechanisms of p53-p21-pRb pro-
teins against DNA damage-induced cell death.  Cell Cycle 2008,
7(3):277-282.
Page 19 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11511545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11511545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10619024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10619024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10619024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16408693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16408693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17183360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17183360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16626297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11388666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18319725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18319725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18319725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10967424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10967424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9653180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9653180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9653180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12413400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11863694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11863694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17447836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17447836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17447836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17703505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17703505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17703505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18670624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18670624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18670624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16524837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16524837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8613499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17510665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17510665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15524551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16773083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16773083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18235223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18235223
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Definition of Reference Databases
	Data extraction and data-mining
	Network Biology

	Results and Discussion
	Network of Interactions
	Network of interactions between p53 and NF-kB pathways
	Network of interactions between p53, NF-kB and the G1/ S phase of the Cell cycle

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

