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Abstract

Background: Previous methods of detecting the taxonomic origins of arbitrary sequence
collections, with a significant impact to genome analysis and in particular metagenomics, have
primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic
distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative
approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we
present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups
of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes
or proteins across the reference database.

Results: The rank-BLAST approach is validated by computing the phylogenetic profiles of all
sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a
reference database of 243 fully sequenced genomes. The approach - a combination of sequence
searches, statistical estimation and clustering - analyses the degree of sequence divergence between
sets of protein sequences and allows the classification of protein sequences according to the
species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins
studied. In most cases, a main cluster is detected, representing the corresponding species.
Secondary, functionally distinct and species-specific clusters exhibit different patterns of
phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are
provided as examples.

Conclusion: Our results indicate that the rank-BLAST approach can capture the taxonomic
origins of sequence collections in an accurate and efficient manner. The approach can be useful both
for the analysis of genome evolution and the detection of species groups in metagenomics samples.
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Background

The notion of genes as components of a genome has been
recently challenged with the advent of metagenomics,
where the phylogenetic origin of entire gene pools is not
necessarily known [1]. Particular environments and bio-
logical symbioses establish crucial constraints on the
nature of genes that can be associated with the species
communities under investigation [2]. Such constraints
can be used to infer the number and types of species that
contribute to these gene pools. In computational terms,
the goal is to detect unambiguous and unique intra-
genomic signals that can be used as signatures for the
association of gene collections assigned to species groups.

Several approaches have been proposed to detect genomic
signatures on the basis of nucleotide composition [3-5].
These approaches enable, to a varying degree of accuracy,
the species classification of genes according to their com-
positional signatures, and their association with phyloge-
netic or environmental factors [6-8]. More recently, these
methods have been applied to environmental sequencing
samples, in order to detect the origins of these sequence
fragments [9,10].

Whereas the aforementioned methods focus on the detec-
tion of structural constraints of genes, another family of
methods appears to be ideally suitable for this endeavor,
using the detection of gene distribution patterns across
taxa [11]. These evolutionary signatures can be captured
by phylogenetic profiles, the binary representation of the
taxonomic distribution of genes (presence or absence)
across genome [12]. Phylogenetic profiles thus represent
the evolutionary history of genes and genomes, con-
strained by functional properties in particular environ-
ments, and can be used to understand both the structural
and evolutionary properties of a genome at the gene level.
In the case of metagenomics, desirable properties of such
an approach include the detection of genes with common
co-inheritance patterns, histories, and thus origins. Given
that the major factors shaping gene content are gene loss,
gene genesis and horizontal gene transfer, [13] it would
also be desirable to trace unique intra-genomic signals
with respect to those factors.

Here, we describe the rank-BLAST classification approach
for tracing an intra-genomic signal. The rank-BLAST clas-
sification is an elaborate interpretation and data manipu-
lation procedure to capture sequence similarity
relationships from BLAST searches [14]. BLAST searchs
report the degree of sequence divergence between query
and reference proteins. In cases where the taxonomic ori-
gin of a query protein is not known, the extent of its diver-
gence from the reference proteins (for which taxonomic
origins are known) can serve to delineate the genomic
classification of the input proteins. The general concept
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behind the approach (illustrated in Figure 1) is to use the
ranking order of species in which BLAST detects homo-
logues, in order to construct a profile common and
unique to taxonomically-related genes. Several factors
make the rank-BLAST approach appropriate for delineat-
ing intra-genomic signal while reducing the noise caused
by the differences in the histories of genes within a
genome. First, rather than using the actual level of similar-
ity, comparing the relative order of species in a vector
reduces the effect of the differences in substitution rates
between proteins, where some proteins are known to
evolve at a faster rate than others (as demonstrated by pro-
teins 1 and 2 in Figure 1). Second, limiting the compari-
son to the set of species common to the two vectors
compared eliminates discrepancies derived from a spe-
cies-specific gene loss in a given sample (as demonstrated
by proteins 3 and 4 in Figure 1). Whereas gene loss and
differences in the rate of evolution are not expected to
eliminate the intra-genomic signal, recent events of gene
genesis and lateral gene transfer are expected to degrade
the similarity signal of the corresponding genes. Such
genes will carry an anomalous inheritance signal and are
of special interest since they may represent recent adapta-
tions in the genome of a species [15].

In this work, we present the rank-BLAST classification pro-
cedure, estimate the strength and accuracy of the classifi-
cation using a synthetic dataset, and discuss its biological
relevance. First, we describe the choice of the optimal
parameters for detecting an intra-genomic signal while
allowing inter-genomic separation. Second, we describe
the clusters formed and classify them with respect to taxo-
nomically-expected inheritance signal or an anomalous
inheritance signal. Third, we identify and characterize a
group of proteins carrying an anomalous inheritance sig-
nal, in order to better understand the biological signifi-
cance of the ranked phylogenetic profiles.

Results

Clustering proteins into genomic-groups according to their
rank-BLAST profile

The first stage in tracing the intra-genomic signal is to
assess how similar are the rank-BLAST profiles of proteins
with varying degrees of taxonomical relatedness. Two
main considerations guided the choice of the species
tested. First, species have to represent several phylogenetic
proximities. Second, comparing a large number of pro-
tein-pair combinations is an exhaustive computational
process and it is thus effective towards the study of species
with a small number of proteins. The low sequence and
function redundancy which is characteristically observed
in small-size proteomes [16-20] is an additional advan-
tage of these species in terms of improving the efficiency
of the practice. The use of larger genomes, comprising
many duplicated proteins, is expected to yield redundant
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The rank-BLAST classification procedure. The colored circles and squares represent proteins; different shapes and
colors represent different taxonomic origins. Protein sequences lacking taxonomic-annotations (retrieved for example form
metagenomic samples which include partial or complete genome sequences of assortments of species) are subject to a BLAST
search. For each protein, the results of the BLAST search are converted into a vector describing the ranking order of species
where it recognizes homologues. Each species is ranked once, according to its first appearance. All possible protein-pairs com-
binations are compared in order to determine whether the positions of species on the vectors are correlated. Two vectors
are considered to be correlated (green squares) when their Kendall tau correlation coefficient is higher than a threshold (see
Methods). The correlation matrix is transformed into a probability matrix, estimating the significance of the similarity
between the correlation profiles of each protein pair. Green boxes represent protein pairs where the P value is lower than a
threshold (see Methods). In the final stage, proteins are clustered according to the similarity of their probability vectors.

profiles, unnecessarily increasing the complexity of the  -i.e., a vector containing the order of species in which the
computational process. protein recognizes homologues. For all possible protein-

pair combinations, we estimated the similarity of their
In accordance with the above considerations, we have  rank-BLAST profile by calculating the Kendall tau rank
chosen to perform this analysis for the proteome of Myco-  correlation coefficient - a measure for the degree of corre-
plasma genitalium - the smallest cellular species that has  spondence between two rankings (see Methods). The dis-
been sequenced [21] - and four additional species with  tributions of the correlations found in intra- and inter-

small genomes at varying degrees of phylogenetic related-  genomic pair combinations are compared in Figure 2A. As
ness to M. genitalium: an organism from the same family;  expected, intra-genomic combinations result in a higher
one from the same phylum; another one from the same  mean similarity score than the inter-genomic correlation.
super-kingdom; and one from a different super-kingdom. =~ However, the intra- and inter-genomic distributions have

From each category (phylogenetic distance) we selected  a significant overlap in their distribution ranges, where
the fully sequenced species with the smallest number of  the highest relative enrichment of intra-genomic combi-
proteins. The full list of species is given in Table 1. nations (i.e., the highest ratio between the fraction of

intra-genomic pairs) and the fraction of inter-genomic
For each protein coming from the set of selected species,  pairs is less than one order of magnitude (observed for tau
we have constructed its rank-BLAST profile (see Methods) > 0.7, Figure 2). Therefore, the correlation between the
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Table I: Taxonomic classification and number of proteins of the fully sequenced species analyzed.

Species Taxonomyt

Taxonomic relatedness
to M. genitalium

Evaluation of the
divergence distance from
M. genitaliumi

Number of proteins

Mycoplasma genitalium Bacteria; Firmicutes;
Mollicutes; Mycoplasmatales;
Mycoplasmataceae;
Mycoplasma
Bacteria; Firmicutes;
Mollicutes; Mycoplasmatales;
Mycoplasmataceae;
Ureaplasma
Bacteria; Firmicutes; Bacilli;
Lactobacillales;
Streptococcaceae; Streptococcus
Bacteria; Proteobacteria;
Gammaproteobacteria;
Enterobacteriales;
Enterobacteriaceae; Buchnera
Archaea; Nanoarchaeota;
Nanoarchaeum

Ureaplasma parvum

Streptococcus pyogenes

Buchnera aphidicola

Nanoarchaeum equitans

0 480

Within family 17 611

Within phylum 25 1696

Within superkingdom 31 574

From distinct super 59 536
kingdoms

T The taxonomic classification is according to http://www.ncbi.nlm.nih.gov/Taxonomy/. The common path between each and M. genitalium is shown

in bold.

I The evaluated divergence distance aims to provide a quantitative assessment of the taxonomic distance. The values are derived from the scores of
the pair-wise alignments between the 16S RNA from each species and the 16S RNA from M. genitalium (see Methods). The same divergence order
was obtained when distance matrix was retrieved from greengenes - a 16s RNA gene database [38] (divergence distance scores ordered as in the

table: 0, 0.14, 0.25, 0.31, 0.63, see Methods).

rank-BLAST profiles of two proteins is by itself insufficient
in order to predict whether those proteins are encoded by
the same genome.

One way of maximizing the information obtained from
the rank-BLAST profile is, instead of using the direct cor-
relation measured between two proteins, to compare the
pairwise similarities in the correlation profiles of proteins.
The rationale behind this approach is that in cases where
a small number of common observations (e.g., proteins 3
and 7 in Figure 1) results in a high correlation which does
not necessarily reflect the full set of observations of each
protein in the pair, the differences in their correlation pro-
file will mask out the inter-genomic signal. In cases where
we miss an intra-genomic signal due to lack, or a small
number, of common observations (e.g., proteins 3 and 4
in Figure 1), the similarity in their correlation profile will
reveal the intra-genomic signal. To evaluate whether two
correlation profiles exhibit a significant similarity, we cal-
culated the hypergeometric probability [22] (see Meth-
ods). The correlation matrix is thus transformed into a
probability matrix (Figure 1).

The distributions of the hypergeometric probability val-
ues found in intra- and inter-genomic pair combinations
are compared in Figure 2B. For P values smaller than 1 x
1075, the ratio between the fraction of intra-genomic pairs
and inter-genomic pairs ranges between 9 (in Ureaplasma
parvum) to 200 (in Streptococcus pyogenes) - much higher

than the ratio observed between the intra- and inter-val-
ues of the pure correlation (Figure 2B).

The distribution of the hypergeometric probability values
therefore better stratifies the intra-genomic and inter-
genomic calls and allows rediscovering the intra-genomic
relations. A network was formed by linking all protein-
pairs which scored a P value lower than 1 x 10-75(Figure
1), nodes in the network represent proteins and edges rep-
resent all links lower than the set threshold. This network
is composed of 2748 protein-components which consti-
tute 71% of proteins from the selected 5 species in the syn-
thetic dataset (Table 2). Using the MCL algorithm, the
protein members of the network were clustered into 63
groups of varying size, ranging from 2 to 1313 compo-
nents (see Methods). Since almost all clusters (95%) are
highly dominated by a single species (the dominant spe-
cies corresponds to at least 80% of the cluster compo-
nents), these are referred to as 'Genomic Groups'.
Attempts to reduce the number of groups, either by reduc-
ing the granularity or by using alternative clustering
approaches, resulted in non species-specific clusters [see
Additional file 1]. The 20 largest clusters, with more than
10 protein-components, are illustrated in Figure 3. In all
these genomic groups, one dominant species corresponds
to at least 80% of the cluster components, and more than
a half of the clusters are entirely species-specific.

The efficiency of the clustering procedure in re-construct-
ing genomic groups varies between the different species
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Distributions of intra- and inter-genomic similarity scores and their ratios. Intra-genomic combinations are all com-
binations between proteins common to a single genome (green bars); inter-genomic combinations are all the combination
between proteins from one species to proteins from the four other species (red bars). The y-axis on the right of each plot
shows the fraction of combinations which fall within a given range, where all green bars sum to | and red bars sum to |. The
blue and gold lines show the ratio between the cumulative fractions of inter- to inter-genomic combination. The y-axis on the
left of each plot corresponds to the blue line; the gold line corresponds to a unified scale in all graphs (0 to 500). (A) The dis-
tributions of the tau rank correlation coefficients calculated between the rank-BLAST profiles of pair combinations. (B) The
distributions of the P values for the hypergeometric probability calculated for the correlation-profiles of pair combinations.

(Table 2). The highest fraction of proteins classified into a
large cluster is observed in Mycoplasma genitalium, where
92% of its protein members are classified into two
genomic groups. The lowest fraction is observed in
Nanoarchaeum equitans, where only 15% of the proteins
are classified into 3 genomic clusters. It is evident that the
underlying dataset of both target and database proteins
plays a significant role in providing the necessary contrast
for the detection of species-specific genomic groups.
Using different parameters for ranking, cut-offs for the P
value of the hypergeometric distribution, and inflation
values for the clustering procedure has resulted in a simi-
lar pattern of clusters, as discussed above (not shown).

Overall, using the rank-BLAST procedure (as illustrated in
Figure 1) we have succeeded in correctly clustering 64% of

the proteins in the analysis into consistent, species-spe-
cific genomic groups (Table 2). In comparison, only 2180
out of the 3891 proteins (56%) had recognized a BLAST
best-hit partner within the same genus indicating that the
rank-BLAST procedure is more sensitive than a simple
BLAST search (Methods). The protein NEQ108 (a tRNA
methyltransferase) from the archaeal species Nanoar-
chaeum equitans provides an example for a protein with a
distant best-hit partner (a tRNA methyltransferase from
the bacterial species Aquifex aeolicus) which is classified by
the rank-BLAST procedure into a corresponding genomic
group (cluster 12 - a cluster clearly dominated by Nanoar-
chaeum equitans' proteins Figure 3): although its best-hit
partner is a bacterial protein, the following hits of
NEQ108 are proteins from the archaeal superkingdom
and hence the rank-BLAST approach, taking into account
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The size and species-specificity of the 20 largest genomic groups. Each genomic group is represented by a circle. The
color of each circle corresponds to the genomic origin of most cluster members and the size of each circle corresponds to the
number of cluster members, as listed at the adjacent table (right). The taxonomic-specificities of the genomic groups are indi-

cated at the table, providing the number and fraction of proteins in a cluster which belong to the corresponding Dominant Spe-
cies (DS). The clusters were constructed using the MCL algorithm (Methods). Layout and network construction were

performed using the Biolayout software [42].

all hits rather than only the best-hit partner, classifies this
protein together with other Nanoarchaeum equitans' pro-
teins. A few examples exist for proteins with a best-hit
partner from a closely-related species which are classified
into a non-corresponding genomic group. The Myco-
plasma genitalium protein MG014 (Putative ABC trans-
porter ATP-binding protein) for example recognizes a
best-hit partner from Mycoplasma pneumoniae - another
member of the Mycoplasma genus - yet it is classified into
a genomic group dominated by Streptococcus pyogenes pro-
teins (cluster 1). Notably, although its best-hit partner is
another Mycoplasma protein, its following hits are to pro-
teins from Clostridia species (including Caldicellulosiruptor
saccharolyticus, Anaerocellum thermophilum, Clostridium
tetani). However, overall, the genomic groups are highly

specific with 97% of the proteins classified into corre-
sponding genomic groups (Methods). The correspond-
ence between the order of species in the rank-BLAST
profile and their taxonomic proximity to the relevant spe-
cies is further discussed in the following paragraphs.

The main genomic groups carry a signal which reflects the
vertical evolution of the corresponding species

The primary goal of the rank-BLAST classification proce-
dure is to capture a signal reflecting the inheritance pat-
tern of the target genes. Therefore, genomic clusters were
characterized in order to examine whether such a signal is
carried by the clusters as a whole. Since we retrieved more
than a single genomic cluster for each species, we first
aimed to characterize the main genomic group of each

Table 2: The efficiency of the rank-BLAST clustering procedure for the re-construction of genomic groups.

Species No. proteins No. proteins classified into % of the proteins in a species (out of No. of genomic groups
classified into a a corresponding genomic  the complete proteome) classified dominated by the
clusterf groupt into a genomic group speciest

Total 2748 (71%) 2505 (91%) 64% 20

M. genitalium 454 (95%) 445 (98%) 92% 2
U. parvum 367 (60%) 280 (76%) 46% 7
S. pyogenes 1522 (90%) 1452 (95%) 86% 4
B. aphidicola 302 (53%) 247 (82%) 43% 4
N. equitans 102 (19%) 81 (79%) 15% 3

I In brackets: the percentage out the total number of proteins in the species (or in the 5 species in the first row), as shown in Table I.
T Genomic groups are clusters with at least 10 members. Their size and content is described in Figure 3. In brackets: the percentage out the
number of proteins classified into a cluster.
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species, i.e., a cluster where the co-inheritance pattern of
its member proteins matches the known phylogeny of the
organism.

As a first step, we investigated the cluster distribution of
the highly conserved rpoB protein (RNA polymerase sub-
unit). Several features of rpoB including its universal pres-
ence in prokaryotes, its housekeeping function and its
linear-inheritance constitute rpoB an ideal marker [23].
The rpoB protein is found in all four bacterial species ana-
lyzed here, and with the exception of Buchnera aphidicola
rpoB protein, it is classified into the largest genomic group
of all species (clusters 1, 2 and 6, Figure 3). For each of the
clusters containing the rpoB protein, we have verified that
its rank-BLAST vector corresponds to his taxonomic affili-
ation. For each of the three clusters, we constructed its
rank-BLAST profile by calculating the mean position in
the cluster of each of the 243 database species. In Figure 4,
the rank-BLAST vectors are represented as barcodes,
colored according to taxonomic relatedness. The rank-
BLAST profiles of the clusters are compared to the profiles
of conserved ribosomal proteins from each cluster (Figure
4). The comparison indicates that the clusters as a whole
exhibit almost the same linear pattern of evolution as the
conserved proteins. The barcodes confirm that the profiles
of these clusters carry a phylogenetic signal, where species
on the vector are ordered according to their phylogenetic
proximity. Therefore these clusters are termed here 'main’
clusters being both the largest genomic group in the cor-
responding species, and the carriers of a signal for a linear
pattern of evolution.

This phylogenetic signal together with the classification of
the conserved proteins into different genomic groups
indicate that rank-BLAST profiles are indeed suitable for
taxonomic stratification of genes, unlike other sequence-
similarity based classification approaches such as phylo-
genetic profiles that are optimally designed to capture a
functional signal [12,24,25]. A functional analysis of the
main clusters further supports the strength of the
approach in delineating a taxonomic, rather than func-
tional, signal. The classification of proteins from the main
clusters into functional categories is shown in Additional
File 2, where many of the proteins are classified into
highly-conserved categories such as transcription and
ribosomal structure. The remarkable similarity observed
between the patterns of functional distribution of pro-
teins from Mycoplasma genitalium (cluster 2) and proteins
from Ureaplasma parvum (cluster 6) - both members of the
Mycoplasmataceae family - indicate that the rank-BLAST
approach succeeds in correctly grouping proteins accord-
ing to taxonomic origin and not according to functional
similarity, even for orthologous proteins from closely
related related species.

http://www.biomedcentral.com/1471-2105/10/355

Secondary genomic groups carry a signal for non-vertical
evolution

For each species, we obtained more than a single genomic
group (i.e. clusters dominated by proteins of the species).
Whereas the inheritance pattern of the proteins in the
main clusters corresponds to the species phylogeny, in
secondary clusters we expect to detect different patterns,
possibly patterns that correspond to events of non-vertical
evolution of genes. For the purpose of identifying such
patterns, we searched for clusters where we can define a
ranking order which is common to the protein members
of the cluster and is different from the ranking-order in the
main cluster.

To identify secondary clusters with a coherent rank-BLAST
profile, the mean ranking order of a species in a cluster
was plotted against its number of appearances in the clus-
ter (i.e., the number of protein members which recognize
a homologue in the species and include it in their rank-
BLAST profile). In Additional File 3, the two-dimensional
representation of the cluster's rank-BLAST profile is
shown for the four genomic-groups from Streptococcus pyo-
genes. Unlike the correlation observed between mean and
number of appearances in the main cluster, inconsistent
patterns are observed for the secondary clusters. In these
clusters, many of the individual proteins differ in their
rank-BLAST profiles from the rank-BLAST profile of the
main cluster, though in most cases the differences are pro-
tein-specific rather than characteristic of a cluster. In order
to estimate the coherence of the profile of each cluster, we
compared the mean intra- and inter-cluster correlation in
order to assess our ability to define a cluster-specific pro-
file (Table 3). As described earlier for the main cluster, for
each cluster the cluster-profile was initially constructed by
calculating the mean position of each of the 243 database
species in the cluster. Since many of the highly-ranked
species in the secondary clusters appear only in a limited
number of species [see Additional File 3] a reduced profile
was also constructed which includes only widely-agreea-
ble data points (see Table 3).

From these results, it is observed that for secondary cluster
19 one can clearly define a cluster-profile which is com-
mon to the members of the cluster and is different from
the profile of the main cluster (cluster 1). More specifi-
cally, the profiles of proteins from cluster 19 are signifi-
cantly better correlated with the cluster-profile of cluster
19 than with the cluster-profile of cluster 1, and vice versa.
We therefore focused on cluster 19 as a case study for com-
paring the profile of a secondary cluster to the profile of
the main cluster while aiming to delineate the biological
significance of this difference. The comparison of the clus-
ter-profiles of cluster 1 and cluster 19 delineates a shift in
the ranking order of Bacillales species and Lactobacillales
species (Figure 5A). Whereas a higher rank of Lactobacil-
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Streptococcus pyogenes

ribosomal protein (from cluster 1)

Cluster 1

Ureaplasma parvum

ribosomal protein (from cluster 2)

Cluster 2

Mycoplasma genitalium

ribosomal protein (from cluster 6)

[l Within genus

W Within phylum

W Within family/class

Figure 4

[ Bacterial species from different phylum

Cluster 6

Archaea

B Eukaryota

Barcode representations of the rank-BLAST vector of three conserved ribosomal proteins and their corre-
sponding clusters. The rank-BLAST profile of each cluster was constructed by calculating the mean position in the cluster of
each of the 243 database species (i.e., for each database species we calculated its mean position in the individual vectors of all
protein-members of the cluster). Each line in the barcode represents a species. The color code represents the phylogenetic
proximity between the species in the vector (database species) and the species dominating the cluster (listed on top), i.e., the
species coding the majority of the proteins in the cluster (specificity of the clusters is described at Figure 3). The 50S ribosomal
protein L27 (rpl27) is the conserved protein from cluster |. The 50S ribosomal protein L2 (rpl2) is the conserved protein from
cluster 2. The 50S ribosomal protein L21 (rpl21) is the conserved protein from cluster 6.

lales species is expected from the taxonomic affiliation of
Streptococcus pyogenes, and as observed for proteins from
cluster 1, proteins from cluster 19 exhibit a higher similar-
ity to Bacillales species. The ranking order of more distant
species is consistent with the pattern observed in the main
cluster (cluster 1), which is expected according to the phy-
logenetic classification of the species (not shown).

Individual examples for proteins from cluster 19 include
a group of neighbouring protein-encoding genes that are
involved in the uptake and utilization of maltosaccharide,

a crucial process for the successful infection of S. pyogenes
[26,27]. Members of this group exhibit not only increased
sequence similarity within Bacillales species, but also sim-
ilar genomic organization. The proteins are listed in Fig-
ure 5B according to the genomic order of their encoding
genes. Whereas in other Streptococcus species malX, malC
and malD are adjacent proteins and members of the
malXCD operon [28], in S. pyogenes amyA and amyB are
located between malC and malX. Interestingly, similar
organization of orthologous proteins is also observed in
Bacillales species such as Geobacillus kaustophilus (rather
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Table 3: Intra- and inter-cluster correlation in the four clusters dominated by S. pyogenes proteins.

Mean correlation between all
protein-pair combinationst}

Mean correlation with the
cluster-profilett

Mean correlation with the reduced
cluster-profilett

cll cl4 cl 14 cl 19 Cll cl4 cl 14 cl 19 cll cl4 cl 14 c 19
Cluster | 0.54 0.30% 0.40% 0.14% 0.56 0.57 0411 0341 0.56 0.52 0.40% 0341
Cluster 4 0.30% 0.51 0.17% 0.56 0.43% 0.53 0.27% 0.16% 0.00 0.04 0.00 0.00
Cluster 14 0.40 0.17% 0.39 0.18% 0.44 0.17% 0.48 0.27% 0.47 0.18% 0.49 0.28%
Cluster 19 0.14% 0.56 0.18% 0.32 0.22% 0.43 0.29% 0.47 0.25% 0.43 0.31% 0.47

Intra-cluster combinations are shown in bold.

T Each cell shows the mean correlation for all possible protein-pair combination between the protein-members of the row-cluster and the protein-
members of the column-cluster. Diagonal values show the intra-cluster correlation.

11 Each cell shows the mean correlation between cluster-profile of the row-cluster and all members of the column-cluster.

3 Reduced cluster profile is composed solely of data points defined as highly-agreeable. Agreeability was calculated for each data point (species) in a
cluster as the inverse coefficient of variation weighted by the fraction of appearances of a species in a cluster:

Agr = (mean*app)/(sd*mmb)

Where mean is the mean position of a species in a cluster; app is the number of appearances of a species in a cluster; sd is the standard deviation

calculated for the species; and mmb is number of proteins in a cluster.
Data points for which Agr > 0.5 are considered highly agreeable.

F The inter-cluster correlation is significantly lower than the intra-cluster correlation observed for the row-cluster. Significance is defined as P value
< 0.05 in the Wilcoxon rank sum test (equivalent to the Mann-Whitney test).

than in Lactobacillales). Another member of cluster 19
(Spy1297), a putative transcription regulator of proteins
involved in maltose/maltodextrin uptake [29], is located
upstream of these genes. Overall, the six proteins from
cluster 19 together with additional proteins from cluster 1
form a genomic sequence of 12 proteins involved in mal-
tose/maltodextrin uptake, metabolism and regulation.
The rank-BLAST profile of these proteins is shown in Fig-
ure 5B. The proteins from cluster 1 demonstrate the
expected phylogenetic order where they exhibit higher
similarity to other Lactobacillales proteins, and present
the same genomic organization reported in Streptococcus
species [28]. The proteins from cluster 19 exhibit higher
similarity to Bacillales, as well as a similar organization on
the genome and correlated expression [27]. This similarity
to Bacillales species (higher than the similarity to other
Streptococci) suggests a common event of horizontal gene
transfer (HGT) of the maltose related genes in cluster 19
[30], and a recent modification in the maltodextrin
metabolism in S. pyogenes. Considering the role of malto-
dextrin acquisition in infecting host tissues [26,27], this
modification is likely to have an adaptive advantage. The
classification of all proteins from cluster 19 as well as
other secondary clusters into functional categories is
shown at Additional File 4.

The rank-BLAST profile carries a genomic signature
beyond the best-hit

Cluster 19 provides a compelling example of the ability of
the rank-BLAST approach to group together genes with a
common, non-vertical inheritance pattern. Since alterna-
tive approaches for delineating events of non-vertical evo-
lution include the analysis of a typical sequence signature
and the taxonomic identity of the BLAST best-hit [30], we
have analyzed the distribution of best-hit partner and sig-

nature-based HGT events in the different genomic-groups,
predicted for S. pyogenes (Table 4). The distribution of pre-
dicted HGT events in the main genomic group, secondary
genomic groups and a group of proteins which were not
classified to any genomic group (Table 4) indicates that
no clear overlap can be specified between the signature-
based predictions of non-vertical inheritance and the
groups formed using the rank-BLAST procedure. This
observation is not surprising, considering the low overlap
between different methods for HGT predictions [31]. Sim-
ilarly, the distribution of the BLAST best-hit partner in the
different genomic groups reveals that despite different
tendencies of the groups, the identity of the best-hit part-
ner cannot justify the classification of proteins into clus-
ters by itself. The best-hit distribution of S. pyogenes
proteins is detailed at Figure 4. Overall, 27% of the pro-
teins classified into a genomic group have a best-hit part-
ner outside the Streptococcus genus. As shown at Table 4,
for some of the proteins in the main cluster, we detected a
best-hit partner in a species that is not a member of the
same genus, the same class, the same phylum, or even the
same super-kingdom. Vice versa, for many of the proteins
that were not classified to any genomic group, we detect a
Streptococcus best-hit partner. Examples for a protein in the
main cluster with a best-hit partner that belongs to a dif-
ferent phylum (non-firmicutes species), and for a protein
with a Streptococcus best-hit partner that was not classified
into any genomic group are shown in Figure 6. Although
the protein from the main cluster (Figure 6, top) identifies
homologues in a limited number of non-firmicutes and
non-Bacilli species, the ranking order of more distant spe-
cies captures the same pattern as observed for more con-
served proteins in the main cluster. In contrast, although
the unclassified protein (Figure 6, bottom) captures the
conservative ranking order of the highly-related species
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mean rank of species in
secondary cluster

@ Streptococcus
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mean rank of species in main cluster

Cluster

malM Putative 4-alpha-glucanotransferase

Putative maltose/maltodextrin-binding protein

1 L0
I

20

@ Lactobacillales

@ Staphylococcaceae
Listeriaceae
Bacillaceae

malR Putative maltose operon transcriptional repressor

malF Putative maltose/maltodextrin ABC transport system
malG Putative maltose/maltodextrin ABC transport system

Putative transcription regulator (Lacl family regulators of proteins involved in maltodextrin uptake and metabolism)

19
1 | I malA Maltodextrose utilization protein malA
19 | I I-- malD Putative maltodextrin transport system permease
19 I | I|_ malC Maltodextrin transport system permease
19 II|III "ll IIII amyA Putative cyclomaltodextrin glucanotransferase
19 | | I-I-I||I amyB Putative cyclomaltodextrinase
19 | I”.- malX Maltose/maltodextrin-binding protein
Figure 5

Differences in the rank-BLAST profile between the main cluster (cluster |) and secondary cluster (cluster 19)
from Streptococcus pyogenes. (A) The ranking-order of the species in the main cluster versus the top species in the second-
ary cluster. The phylogenetic tree shows the taxonomic relationship between Bacilli groups. (B) Barcode representations of
Streptococcus pyogenes proteins from cluster | and cluster 19 which are involved in transfer, metabolism and regulation of Mal-
tose/maltodextrin. The order of the proteins corresponds with the genomic organization of their encoding genes. The color

code is the same as in A.

(genus, family members), the similarity of the profile is
lost in more distant species. These examples, together with
the distribution pattern in Table 4 indicate that the rank-
BLAST profile captures a signal which is more informative
than the best-hit partner. The ability of the approach to
represent a more distant taxonomic signal is of special
importance for the classification of sequences from
metagenomic samples, which are in many cases only dis-
tantly related to sequences in the curated databases.

Discussion
Here, we describe a novel approach for the assignment of
protein sequences into genomic groups, using a simula-

tion on a synthetic dataset composed of an assortment of
proteins lacking taxonomic classification, originally
retrieved from five species belonging to different taxo-
nomic classes, orders and domains. The necessity of devel-
oping strategies towards taxonomic classification is
relatively recent and arose as a result of the growing
number of metagenomic projects. The annotation of
sequences from metagenomic samples can be viewed as a
two-dimensional task, i.e., whereas the annotation of spe-
cies-specific genomes primarily concerns functional
assignments, the annotation of metagenomic samples
needs to provide taxonomic assignments as well.
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Figure 6
The individual rank-BLAST profiles of two proteins from Streptococcus pyogenes classified into the main clus-
ter (A) and not classified into any genomic group (B) versus the mean rank of species in the main cluster.
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Table 4: Distribution of BLAST best-hit and sequence-signature based methods for prediction of HGT events.

Phylogenetic distribution of BLAST best-hit

No. of Streptococcus Bacilli Firmicutes Bacteria Archaea Eukaryota
proteinst Species! species? Species? Species? Species Species
Main genomic  Cluster | 1313 1101 (173,70) 146 22 (7,6) 28 (7,5) I (0,1) 3(1,0)
group (225,95) (70,13)
Secondary Total 154 (35,18) 31(9,2) 22 (6,3) 9 (64) 10 (4,2) 2(0,1) 1 (0,0)
genomic groups
Cluster 4 125 (23,14) 19 (6,0) 14 (1,2) 543) 7(22) 2(0,1) 1 (0,0)
Cluster 14 18 (8,2) 921 43,0 2(210) 2(1,0) 0 0
Cluster 19 11 (4,2) 3 (LI 4(21) 2 (0,0 I (1,0) 0 0
Not in genomic 239 (67,23) 58 (16,3) 9 4,1) 21 (4,0) 3(1,2) 3(1,0)

groups

21,13)

In brackets: predictions for HGT events based on sequence-signature, retrieved from two public data sources: right - [43]; left - [44].
I'other than S. pyogenes; 2other than Streptococcus; 3 other than Bacilli; 4other than Bacteria;
T Since some proteins recognize homologues only in strains of S. pyogenes, the number of proteins in cluster might be higher than the sum of the four

columns on the right.

Early annotation approaches before the sequencing of
complete genomes used the best-hit of a sequence similar-
ity search to infer function. The accumulation of a grow-
ing number of fully sequenced genomes has led to a shift
of focus from gene-centric approaches to genomic-centric
approaches. One such prominent genomic-centric
approach is the phylogenetic profiles method, which
analyses the distribution pattern of genes across genomes
in order to retrieve a functional signal. Analogously,
whereas basic approaches for taxonomic prediction rely
on the identity of the best-hit [32], the rank-BLAST
approach described here aims to maximize the informa-
tion from a BLAST search in order to delineate a strong
and consistent, species-specific phylogenetic signal. Our
analysis indicates that the use of the rank-BLAST approach
indeed allows an accurate taxonomic classification in
cases where BLAST search by itself is not equally sensitive:
whereas the rank-BLAST procedure allows the taxonomic
classification at the species level of 64% of the proteins
analyzed in this study, only 56% of the proteins had rec-
ognized a BLAST best-hit partner within the same genus.
In S. pyogenes for example, 27% of the proteins classified
into a genomic group have a best-hit partner outside the
Streptococcus genus and even outside the class, the phy-
lum, and super-kingdom (Table 4), indicating that the
rank-BLAST procedure can outperform the basic BLAST
search in assigning species into genomic groups.

Due to the complexity of the data analyzed, the retrieval
of a taxonomic or functional signal from the results of a
sequence similarity search is not trivial. Since first sug-
gested in 1999 [12], the use of phylogenetic profiles had
been extensively modified and optimized [24,25,33].
Similarly, the retrieval of phylogenetic signal is not a
straightforward exercise and it requires the consideration
of a large number of parameters, where several
approaches can possibly be accounted for in each step of

the procedure [34]. As part of the development of the
rank-BLAST classification procedure, we have tested many
alternatives in order to optimize the procedure, and exam-
ined their implications on the efficiency of clustering the
data into genomic groups. Several approaches were tested
for the following key steps: the construction of the vector
describing the ranking-order of species; scoring the level
of similarity between vectors; clustering the data; and the
choice of query and database species. In order to empha-
size the variety of options that need to be explored in each
step, in the following paragraph we provide a brief
description of some of the possibilities tested along these
key steps. The construction of the vector best describing
the ranking order of species was performed both accord-
ing to bit-score [35] and E-value estimates for the BLAST
search. Several possibilities for binning the data in differ-
ent resolutions of the estimates were tested. Sequence sim-
ilarity detection was based exclusively on BLAST. For the
comparison of vectors we used several methods of corre-
lation comparison, including Kendall's tau correlation,
Spearman's correlation and Pearson correlation, and
examined the intra-/inter-genomic stratification under the
use of both the correlation estimates and P values. Other
than correlation-based methods, we have also estimated
the similarity of the ranking-order using decision-Trees
and Bi-clustering approaches (not shown). For clustering
of the data, we tested the results using k-means and a
range of Machine Learning algorithms. The analysis was
performed for five different species which represent vary-
ing taxonomic relationships between themselves, and
with respect to the database species. It is likely that the dif-
ferences observed in the clustering efficiency of the differ-
ent genomes are related to the differences in phylogenetic
resolution of the database. Although it is beyond the
scope of the current work, studying the effect of the data-
base (and reference genomes) is a future avenue of
research.
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As part of accuracy considerations, the sensitivity (allow-
ing the classification of as many proteins as possible) and
specificity (receiving as coherent genomic groups as possi-
ble; i.e., clearly relating to a single species) of the classifi-
cation procedure were tested under different parameters.
Since it is now widely accepted that a genome represents
a dynamic collection of genes, whose composition may
change across lineages, the clustering of all proteins of a
species into a single genomic group was not a main con-
sideration, assuming that different genes in the genome
have followed different evolutionary paths. From the vari-
ety of approaches taken, the optimal procedure in terms
of precision and recall yielded 20 genomic clusters, which
almost uniquely represent a single species, and encom-
passes the large majority of the proteins in the analysis
(Figure 3, as described in the text). The procedure enables
the full separation between species within the same family
(the two Mycoplasmataceae species Mycoplasma genitalium
and Ureaplasma parvum). The different genomes were
reconstructed with different efficiencies, where recon-
struction of the original genomes is up to 92% (Table 2).
As expected, for all species we have retrieved more than a
single group, where the variety of groups detected for each
genome enable us to carefully view the signal detected by
the rank-BLAST procedure. For most of the test genomes,
we have identified a main cluster whose phylogeny corre-
sponds to species phylogeny, therefore providing a reas-
surance that the rank-BLAST procedure enables us to
capture an intra-genomic signal retrieved from a group of
genes with a common, conserved inheritance pattern.
Genes classified to secondary groups do not necessarily
follow this pattern and have possibly taken a different
evolutionary path, which might be common to all mem-
bers of the group (see above for an example).

Conclusion

In conclusion, our results indicate that the rank-BLAST
classification procedure is indeed suitable for capturing an
intra-genomic signal, which to a large extent allows the
reconstruction of meaningful, species-specific genomic
groups. In some cases the procedure also allows the strat-
ification of the genes into groups reflecting their individ-
ual histories. The example of the mutual Bacillales origin
of the genes involved in the maltodextrin metabolism
demonstrates that common origins can be associated with
common functions. We therefore propose that this novel
approach provides the basis for revealing the association
between groups of genes, contributing an interesting,
fresh perspective of the complex genotype-phenotype
relationship. The rank-BLAST procedure can therefore not
only delineate a phylogenetic-signal, but can also detect
genes that exhibit specific patterns of evolutionary change
that diverge from the whole-genome profile.

In the study of metagenomic data, the rank-BLAST proce-
dure has a role in both obtaining taxonomic assignments

http://www.biomedcentral.com/1471-2105/10/355

and characterizing the conservation level of different func-
tional groups. Firstly, the procedure can be used for the
reconstruction of species-specific genomic groups. The
ability of the procedure to capture a taxonomic signal
which is beyond the BLAST best-hit is of special impor-
tance for the appropriate phylogenetic-localization of
genes which belong to distantly related species with
respect to the collection of species with fully sequenced-
genomes. Secondly, as different environments exhibit a
typical functional fingerprint [36], it will be interesting to
examine whether 'signal-less' proteins form a functional
group characteristic of a given environment. We are cur-
rently applying the rank-BLAST procedure for the study of
metagenomic data.

Methods

Estimating divergence distance

The protein sequences and annotations of the five fully-
sequences species analyzed (Table 1) were retrieved from
the DOE Joint Genome Institute website IMG http://
img.jgi.doe.gov/. The evaluated divergence distances
between species were derived according to the scores of
the CLUSTALW pairwise alignments [37] between the 16S
rRNA from each species and the 16S rRNA from M. geni-
talium. CLUSTALW (version 1.83) was run from the EBI
website http://www.ebi.ac.uk/Tools/clustalw/ using the
default parameters [37]. Each alignment score was nor-
malized from the score of the alignment of the 16S rRNA
of M. genitalium against itself. For example, the self align-
ment of the 16S rRNA from M. genitalium yielded a score
of 100, and the alignment of the 16S rRNA from M. geni-
talium against the 16S rRNA from U. parvum yielded a
score of 83. The divergence distance of M. genitalium from
itself was considered to be 0 (100-100) and the divergence
distance between M. genitalium and U. parvum was 17
(100-83). In case of multiple copies of 16S RNA, the clos-
est sequence in a species is considered. Divergence dis-
tance scores were also compared to scores obtained when
using the greengenes website http://greengenes.lbl.gov/
[38]: Aligned 16S RNA sequences from the five species
studied were retrieved from the website and then pairwise
compared via the website using default parameters. Align-
ments are done using NAST, distance matrix is calculated
using the DNAML option of DNADIST (PHYLIP package)
[38]. The same divergence order is obtained by both
methods (Table 1).

Constructing a rank-BLAST profile

All proteins in the selected synthetic dataset were subject
to a BLAST search (default BLAST parameters) against a
collection of fully sequenced species. The collection of the
complete genomes was retrieved from the COGENT data-
base [39] representing the entire protein sequence com-
plements from 243 species (including 197 Bacteria, 22
Archaea and 24 Eukaryota species). For each database pro-
tein (i.e., a protein coming from one of the five species in
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the analysis, as listed in Table 1) we used the scores of the
BLAST search against the query proteins to construct a vec-
tor of the corresponding query species, each species in the
vector is represented by the highest BLAST score of a
homologue. Species within each vector were ranked
according to the order of their corresponding scores. Spe-
cies for which the E-value of their recorded score (best
match) is of the same order (the same exponent) were
assigned to an identical ranking score. This was done in
order to provide a buffer which reduces the effect of subtle
changes (for example small differences in the ranking
order of closely related strains) on the overall analysis.

Calculating the Kendall tau rank correlation coefficient
The Kendall tau rank correlation coefficient is used to
measure the degree of correspondence between two rank-
ings [40]. The correlation coefficient was calculated using
the R statistical platform.

Computing the hypergeometric probability

In order to calculate the hypergeometric probability, the
correlation matrix was first transformed into a binary
matrix, where values of tau correlation coefficient > 0.7
were converted to 1 (positive events) and lower values
were converted to 0. This cut-off was selected as a trade-off
between achieving maximum intra-inter genomic separa-
tion and keeping as many "positive" correlations as possi-
ble (Figure 2).

The probability of observing at least x positive events in
common between two different columns in the binary
matrix was computed using the hypergeometric distribu-
tion, assuming that every pattern of n positive events is
equally probable. In that case, if, in the binary matrix
obtained from correlation coefficients, the total number
of events (positive and negative) in columns A and B is N,
and n and D are the number of positive events in A and B
respectively, the probability of observing at least x com-
mon positive events by chance alone is:

D Y N-D nY N-n
o i )| n-i o | i) D-i
P(sz):lz [N) =1z [N)
i=0 i=0
n D

Generating genomic clusters

The P values for the hypergeometric probability are stored
in memory and then written into five binary files, each of
which represents a different threshold, so that they need
not be recomputed for subsequent analysis. Each file
describes a network which consists of proteins (nodes)
connected by P values above the set threshold (edges).
The five thresholds for the P values are: 1 x 10-2%; 1 x 10
50, 1 x 1075, 1 x 10-100; 1 x 10-150- We use the MCL
(Markov Clustering) algorithm to cluster this network

http://www.biomedcentral.com/1471-2105/10/355

according to connectivity and local structure [41]. The
inflation value parameter of the MCL algorithm is used to
control the granularity of these clusters. The data was
tested under inflation values ranging from 1 to 3. The use
of different parameters for the P value threshold and for
the inflation values yielded stable clusters (not shown).
Optimal results (reported here) were obtained using P
value threshold of 1 x 10-7> with inflation value 1.8.

To examine the effect of genome size on the efficiency of
the classification procedure we have studied the correla-
tion between the number of proteins encoding genes in
the species used in the analysis (Table 1) and the effi-
ciency of the classification procedure (Table 2) - no such
correlation is observed (Spearman's rho correlation = 0, P
value = 1).

Comparing the sensitivity of the taxonomic classification
using the rank-BLAST approach to the sensitivity using
BLAST best-hit partner

The rank-BLAST classification approach allows the classi-
fication of 2590 proteins (out of 3891) into genomic
groups. From these, 2505 proteins are classified into a cor-
responding genomic group; that is protein A is classified
into a corresponding genomic group if most proteins in
the cluster are coming from the same species as protein A.
The distribution of proteins within the genomic groups is
listed at Figure 3. Sensitivity is calculated as the fraction of
correct classifications in the entire data set of 3891 pro-
teins (64%). The overall specificity of the genomic groups
is calculated as the fraction of correct classifications out of
all proteins classified into any genomic group (2590 pro-
teins, as listed in Figure 3).

The pre-processed BLAST results of the 3891 proteins ver-
sus the database of complete genomes (as described at the
Constructing a rank-BLAST profile sub-section) were used
for estimating the sensitivity of the taxonomic classifica-
tions according to BLAST best-hit partners. Recognition of
a BLAST best-hit partner within the same genus (excluding
hits versus proteins of the corresponding species) is con-
sidered as a correct taxonomic classification. Sensitivity is
calculated as the fraction of correct classifications in the
entire data set of 3891 proteins (56%).

All software used for the analysis will be provided upon
request from the authors.
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