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Abstract

Background: Gene annotation is a pivotal component in computational genomics, encompassing
prediction of gene function, expression analysis, and sequence scrutiny. Hence, quantitative
measures of the annotation landscape constitute a pertinent bioinformatics tool. GeneCards® is a
gene-centric compendium of rich annotative information for over 50,000 human gene entries,
building upon 68 data sources, including Gene Ontology (GO), pathways, interactions, phenotypes,
publications and many more.

Results: We present the GeneCards Inferred Functionality Score (GIFtS) which allows a
quantitative assessment of a gene's annotation status, by exploiting the unique wealth and diversity
of GeneCards information. The GIFtS tool, linked from the GeneCards home page, facilitates
browsing the human genome by searching for the annotation level of a specified gene, retrieving a
list of genes within a specified range of GIFtS value, obtaining random genes with a specific GIFtS
value, and experimenting with the GIFtS weighting algorithm for a variety of annotation categories.
The bimodal shape of the GIFtS distribution suggests a division of the human gene repertoire into
two main groups: the high-GIFtS peak consists almost entirely of protein-coding genes; the low-
GIFtS peak consists of genes from all of the categories. Cluster analysis of GIFtS annotation vectors
provides the classification of gene groups by detailed positioning in the annotation arena. GIFtS also
provide measures which enable the evaluation of the databases that serve as GeneCards sources.
An inverse correlation is found (for GIFtS>25) between the number of genes annotated by each
source, and the average GIFtS value of genes associated with that source. Three typical source
prototypes are revealed by their GIFtS distribution: genome-wide sources, sources comprising
mainly highly annotated genes, and sources comprising mainly poorly annotated genes. The degree
of accumulated knowledge for a given gene measured by GIFtS was correlated (for GIFtS>30) with
the number of publications for a gene, and with the seniority of this entry in the HGNC database.

Conclusion: GIFtS can be a valuable tool for computational procedures which analyze lists of large
set of genes resulting from wet-lab or computational research. GIFtS may also assist the scientific
community with identification of groups of uncharacterized genes for diverse applications, such as
delineation of novel functions and charting unexplored areas of the human genome.
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Background

In the quest for revealing the function of DNA sequences,
scientists have used a variety of approaches, from molecu-
lar techniques targeting specific genes, to systematic anal-
yses of thousands of functional units encompassed by the
transcriptome, proteome, and metabolome. This hetero-
geneous mass of knowledge is time-dependent, with new
information constantly arising from a variety of sources.
Thus, a quantitative tool for assessing annotation depth is
important for directing ongoing research and for analyz-
ing the emerging results. Efforts in this field have included
the Genome Annotation Scores (GAS) algorithm [1],
which demonstrates a quantitative methodology of
assigning annotations scores at the whole genome level,
the GO Annotation Quality (GAQ) score, which gives a
quantitative measure of GO annotations [2], and the
Gene Characterization Index (GCI), which scores the
extent to which a gene's functionality is described, based
largely on the quantification of human perception, and
applied only to protein-encoding genes [3]. We now
introduce the GeneCards Inferred Functionality Scores
(GIFtS) tool [4], which utilizes the wealth of gene annota-
tion within GeneCards [5] to quantify the degree of func-
tional knowledge about >50,000 GeneCards entries.
GeneCards is a comprehensive gene-centric compendium
of annotative information about human genes, automati-
cally mined from nearly 70 data sources [6-12]. Thus,
GIFtS can provide quantitative annotation estimates for a
very large number of genes, and at a significant depth,
made possible by the exploitation of dozens of annota-
tion resources.

Results

GIFtS definition and applications

We devised the GeneCards Inferred Functionality Score
(GIFtS) which allows a quantitative assessment of a gene's
annotation status, with potential relevance to the degree
of relevant functional knowledge. A GIFtS value for a gene
is defined as the number of GeneCards sources, out of a
total of 68 (see additional file 1: Table S1), that include
information about this gene (see Methods). Data sources
have heterogeneous sizes, as estimated by the number of
human gene entries for which the source contains infor-
mation (Fig. 1), having an average of 11,404 + 10,970
entries per source. One of GeneCards' main aims is to
incorporate overlapping sources, and perform integration
of data for different annotation fields. Considerable atten-
tion is also directed to conflicts among sources, one clear
example being the GeneLoc [8] member of the GeneCards
suite, which handles conflicts in genomic coordinates
from Ensembl [13] and NCBI [14]. The overlap problem
is particularly applicable for data extracted from genome-
wide sources such as Entrez Gene, Ensembl, GO [15], Uni-
Prot [16] and InterPro [17] which are all closely linked
and share some of the information presented, which may
introduce a degree of redundancy.
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Source size. The number of human gene entries in each
one of the sources contributing to the GIFtS score. Sources
are shown by their rank according to their size (see addi-
tional file I: Table SI). A source's size is defined to be the
number of GeneCards entries containing annotations from
this source.

To study the effect of overlap between sources, we gener-
ated a pairwise overlap matrix for all 68 data sources (see
additional file 2, 3, 4: Tables S2, S3 and Fig. S1-A). For this
we utilized a parameter (see Methods) which assesses the
overlap by gene set sharing. The rational is that if, for
example, all information about a set of genes, such as
microRNAs, is imported from one source to another, it
will result in an overlap in gene sets. Based on the overlap
matrix, we proceeded to select the 20 source pairs with the
highest overlap (>0.8), and eliminated (typically) one
source of each pair. Fig. 1S-B (see additional file 3: Fig.S1)
shows that the exclusion of overlapping sources has only
a minor effect on the overall shape of the distribution,
hence, by inference, on the relative positions of the major-
ity of genes on the GIFtS scale. This may suggest that hav-
ing an overlap among sources does not impose an adverse
effect on proposed functionality scale. While such a find-
ing could be interpreted as suggesting over-representation
of information items, we believe that source redundancy
also has its advantages, as pointed out below.

We also asked whether overlap might exert an advanta-
geous effect. For this, we comparatively analysed the GCI
scale with 6 data sources, i.e. having a lower (but not neg-
ligible) degree of source overlap, and GIFtS, which has 68
sources and a considerably higher extent of source over-
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lap. Focusing on the 489 genes with highest functionality
scores in GCI, all having the same score of 10.0, we note
that the same genes span a rather broad range of GIFtS val-
ues, from 51 to 84 (see additional file 5: Fig. S2-A). Thus,
for the most well-annotated genes, the GIFtS scale dis-
plays a fine resolution not seen in GCI. We suspect that
this may actually arise from the diversity of overlapping
sources in GIFtS. That this is the case is tentatively sup-
ported by the fact that when eliminating the 21 smallest-
size sources (below source size of 2200, see characteriza-
tion of data sources by GIFtS, and additional file 1: Table
S1) the spanned score range for the top 500 GeneCards
genes diminishes appreciably, from 68-84 (span of 16
units) to 92-100 (span of 8 units) (see Methods for scale
shift details). When performing a similar analysis for
1961 low-annotation genes, all having a GCI score of
exactly 2.2, a wide range of GIFtS scores was seen again,
between 2 and 34 (see additional file 5: Fig. S2-B), sug-
gesting that the enhanced resolution afforded by the
larger number of sources is not unique to top-scoring
genes.

GIFtS is fully implemented in GeneCards. Every Gene-
Cards gene entry is marked with its GIFtS value. Also pro-
vided on the GeneCards homepage is a capacity for
obtaining a random gene with a specified GIFtS score
within a given range, constituting a useful tool for brows-
ing the human gene annotation landscape. Linked from
the GeneCards homepage is the expanded GIFtS tool,
which affords additional functionalities such as: a) retriev-
ing a list of genes within a specified range of GIFtS value,
thereby obtaining random genes with more detailed GIFtS
specifications; b) obtaining a list of sources that did not
comprise data for a selected gene, thereby facilitating fur-
ther characterization for genes of interest, and potentially
useful for understanding poorly researched genes; ¢)
obtaining the GIFtS value of a selected gene, which results
in an annotation indicator graphically superimposed on
the overall distribution graph; and d) displaying GIFtS
distributions and statistics.

GIFtS distributions

To explore the annotation landscape of the human
genome, we analyzed the distribution of GIFtS for all
GeneCards entries (Fig. 2). The bimodal shape of the
GIFtS distribution suggests a division of the human gene
repertoire into two main groups, based on the degree of
annotation. Dissecting the curve according to GeneCards
gene categories (Fig. 2A), we find that the high-GIFtS peak
consists almost entirely of protein-coding genes, while the
low-GIFtS peak consists of genes from all of the categories
(see examples in Table 1). It should be pointed out that
low GIFtS genes include not only those originally identi-
fied as predicted genes, e.g. CiiORFjjj (where ii is a chro-
mosome number) and FAMxxx genes (family with
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sequence similarity), but also many genes that are not eas-
ily defined by their symbols, such as non protein-coding
genes.

We asked what might distinguish genes with extremely
high GIFtS score (>75, right tail of the high-GIFtS peak) as
compared to those at the top of the same peak (genes with
GIFtS value of 51); we note that some sources are particu-
larly enriched (>X8) in the former. Such sources include,
for example, databases on Genetic Association (GAD),
Cytogenetics in Oncology and Haematology (ATLAS),
Human Gene Mutation (HGMD), drug response varia-
tions (PHARMGKB), news about biomedical research
(DOCTOR'S GUIDE) genetic testing of inherited disor-
ders (GENETESTS) and Human Genome Epidemiology
(HUGE NAVIGATOR), all indicative of advanced stages in
functional gene annotation.

We subsequently clustered the GeneCards entries accord-
ing to the source combinations that provide their annota-
tion (Fig. 2B). As an example, under the assumption of 8
clusters, the most distinct was cluster 6 (T-test for differ-
ence of means, p < 0.001), with contribution from the
sources AlmaKnowledge Server (AKS, [18]), Expoldb [19]
and GeneWiki [20]. Since these sources integrate data
which is usually available for highly annotated genes (e.g.
AKS uses text mining to find genes' interactions with
chemical compounds and their relationships to diseases),
it is conceivable that they appear in this unique cluster of
high GIFtS. We see that different parts of the GIFtS distri-
bution are dominated by different clustered patterns of
annotation sources. Genes with high GIFtS tend to consist
of data from the same source combination, as shown by
the high degree of similarity among clusters of the high
GIFtS peak (Fig. 2B, inset).

Characterization of data sources by GIFtS

GIFtS is also useful for characterizing and comparing dif-
ferent database sources. Plotting source size against GIFtS
values, an inverse correlation was found for GIFtS>25
(Fig. 3). While the top of the graph (labeled G) comprises
general sources pertinent to a large number of different
genes (e.g. NCBI Entrez Gene [14], Ensembl [13]) the
lower end of this curve includes sources that specialize in
a small number of highly annotated genes (euGenes [21],
HGMD [22]). A separate cluster (SP) arises from another
class of specialized sources (e.g. miRBase [23], IMGT [24])
whose genes tend to be poorly studied. The standard devi-
ation of GIFtS values tends to be higher for the larger,
high-GIFtS sources, reflecting annotation heterogeneity
(represented by colors in Fig. 3).

To achieve a higher resolution of sources analysis, we cal-
culated GIFtS distributions for all sources. Three typical
prototypical distributions are shown in Fig. 4. The first

Page 3 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:348

Table I: GIFtS values for selected genes.
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Gene_Symbol Category Gene_Description HGNC Approval GIFtS
| TP53 Protein-coding Tumor protein p53 Yes 84
2 SODI Protein-coding Superoxide dismutase I, soluble Yes 82
3 NFKBI Protein-coding Nuclear factor of kappa light polypeptide gene enhancer in B-cells |~ Yes 78
4 RAC2 Protein-coding Ras-related C3 botulinum toxin substrate 2 Yes 76
(rho family, small GTP binding protein Rac2)
5 IL2 Protein-coding Interleukin 2 Yes 73
6 BRCAI Protein-coding Breast cancer |, early onset Yes 72
7 CD4 Protein-coding CD4 molecule Yes 72
8 DLEUI RNA-gene Deleted in lymphocytic leukemia | (non-protein coding) Yes 48
9 HMGBILIO Pseudogene high-mobility group box I-like 10 Yes 31
10 GBAP Pseudogene Glucosidase, beta; acid, pseudogene Yes 28
Il ABCC6PI Pseudogene ATP-binding cassette, sub-family C, member 6 pseudogene | Yes 9
12 MIRNI1224 Uncategorized MicroRNA 1224 Yes 7
13 SNORAIID* RNA gene Small nucleolar RNA, H/ACA box | 1D Yes 6
14 Cl4orf7* Protein-coding Chromosome 14 open reading frame 7 Yes 4
I5  AASTHI* Genetic locus  Allergic/atopic asthma related QTL | No |
16  Céorfl79* Uncategorized Chromosome 6 open reading frame 179 Yes |

* Unknown genomic location.

Well studied genes are prominent at the top of the table. Lines 8-10 depict genes with unexpectedly high GIFtS values for their category.

(illustrated by Ensembl) is genome-wide sources whose
GIFtS distribution conforms with the one seen when all
sources are combined together for all GeneCards entries.
The second relates to sources, characterizing already
known genes, whose genes are mainly found in the high
GIFtS peak, illustrated by KEGG [25]. The third includes
sources, characterizing new and unusual genes, whose
genes are mainly found in the low GIFtS peak, as exempli-
fied by miRBase.

GIFtS facilitates the analysis of experimental genes sets

Inspecting the level of annotation for a list of genes gener-
ated by experiments can supply additional insight about
the data, and may facilitate research by suggesting targets
for further study. As an example, we have generated the
GIFtS distribution for genes whose expression was signifi-
cantly altered vs controls in 3 different published experi-
ments (see additional files 6, 7: Fig. S3-A and Table S4). As

seen, different datasets show somewhat different distribu-
tions, suggesting better or worse typical prior knowledge
about the constituent genes. In each of the sets, well stud-
ied genes in the high GIFtS region may suggest a higher
probability for being associated with the relevant biologi-
cal change, while genes in the low GIFtS tail may necessi-
tate further earmarked functional studies. In parallel, we
have performed a similar analysis for three sets of genes
derived from GeneCards searches with keywords with dif-
ferent expected level of annotation, and showed that
indeed the GIFtS distribution can capture such annotation
differences that result from different depths of experimen-
tal evidence (see additional files 6, 8: Fig. S3-B, Table S5).

The power of GIFtS in aiding experimental research so as
to achieve deeper understanding of a gene sets is further
highlighted by a source-depletion analysis. For this we uti-
lized, as an example, 8 sets of genes expressed in exactly
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Figure 2

Distribution of GeneCards Inferred Functionality
Scores (GIFtS). (A) Dissection of GIFtS by gene categories.
(B) Clustering analysis of sources of the GIFtS tool (with
highest significance for cluster 6, T-test for difference of
means, p < 0.05). Inner frame presents correlation between
clusters (highest correlation -1) calculated by scalar-multipli-
cation of unit vectors of cluster centers.

two normal human tissues (see Methods) derived from
microarray experiments previously performed in our lab-
oratory [12]. We asked what might be recommended for
further scrutiny based on GIFtS-related evaluation of the
information available about each of these gene sets.
Within the GIFtS database, each gene in every one of the
eight sets is characterized by a different pattern of sources
from which information is available. We compute a statis-
tic stemming from the set-average of such annotation val-
ues, and identify the sources with the least information for
the given gene set (Fig. 5). Such paucity of representation
of a given source in a gene set (see additional file 9: Table
S6) can point to new directions within the researcher's set-
specific studies. For example, under-representation of the
source ASD [26] in the genes expressed in pancreas and
muscle indicates lack of sufficient information about
alternative splicing; under-representation of KEGG [25] in
the genes expressed in the brain and muscle, similarly
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Characterization of GeneCards sources by GIFtS sta-
tistics. Characterization of GeneCards sources by GIFtS sta-
tistics. Each point represents all genes within a given
annotation source (circles below dashed line were excluded
for the production of GIFtS reduced by 21 lowest ranked
sources, see additional file |: Table S1). Generating the GIFtS
distribution for each source achieved higher resolution (e.g.
Fig. 4).
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GIFtS fingerprint. Distribution of GIFtS values for 3

selected sources produced three different archetypes repre-
senting sources encompassing: well studied genes (KEGG), all
genes (Ensembl), genes which are poorly studied (miRBase).
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indicates a need to seek more information on pathways
related data; under-representation of SwissProt [27] and
InterPro [17] in the genes expressed in the brain and thy-
mus, indicates lack of sufficient information in the pro-
tein level, including protein domains.

Another feature that assists in gauging biological results as
contained within GeneCards has been introduced in the
new GeneCards version 3 beta [28]. The user can select
gene category or type (such as protein-coding genes or
RNA genes) as well as GIFtS when browsing the genome
by looking for a random gene or performing an advanced
search.

Time-Evolution of human genomic knowledge

We suggest that GIFtS scores reflect the degree of known
functionality for a gene, i.e. its annotation depth. One
plausible parallel measure is the number of publications
for a given gene, as found in its GeneCards entry with inte-
gration of gene-publication links from seven different
sources [14,16,18,29-31]. Indeed, there is ample correla-
tion (for GIFtS>30) between GIFtS and publications
count, which are not part of the standard GIFtS score (Fig.
6), but the lack of perfect correlation, comprising a small
group of 60 genes (of which only one is protein coding)
with GIFtS<13 and publications count>= 10, suggests that
GIFtS provides additional information. Another GIFtS
correlation is with HGNC gene symbol approval date
[30], with higher GIFtS genes tending to be older (Fig. 7).
Genes with symbols approved before 1999 show a plateau
GIFtS value of nearly 50, conforming to the approximate
median of genes in the higher peak of the distribution of
GIFtS for all GeneCards entries. This is statistically signif-
icantly different relative to genes approved after 1999,

ONOUTRWN —-Q

%]* o | :II-I:III[]" s e

Sources

Figure 5

Sources enrichment analysis. The pattern of each of the
sources enrichment for each of eight gene sets expressed
exactly in two tissues (see additional file 10: Table S7) was
calculated based on the significance (p < 0.07) of each of the
source enrichments in each set. Blue and red squares indi-
cate over or under representation of source in set, respec-
tively (see additional file 9: Table S6). Ids indicate co-
expression in: |. Brain and Muscle; 2. Brain and Pancreases; 3.
Brain and Prostate gland; 4. Brain and Thymus; 5. Lung and
Kidney; 6. Lung and Spleen; 7. Muscle and Bone-Marrow; 8.
Pancreases and Muscle.
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which show a declining trend to a low of GIFtS of ~15 by
2007 (T-test for difference of means, p < 0.001).

GIFtS subsectioning and weighting

In its simplest embodiment, used throughout this paper,
the GIFtS tool regards each source as a unitary entity, irre-
spective of content. However, we have also installed
improvements within the GIFtS web tool [4], that include
experimenting with increased resolution by using sub-sec-
tioning of data sources and adjusting scores based on the
presence or absence of detailed annotations within a
source. In addition we have introduced weights related to
the quantitative aspects of annotations items, enabling
better evaluation of the data relevant to annotation levels.
Sub-sectioning was performed on data from a pivotal bio-
informatics source for proteins data, SwissProt [27],
whereby a user may request scores based on the presence
or absence of detailed annotations within this source (see
Methods). Weights were introduced for publications
(based on article counts per gene) and for orthologs
(based on the number of species for which orthologs are
shown).

With the latter modification, it is possible to perform
explorations in the domain of low-GIFtS genes as follows:
the user can request a comprehensive list of genes with
GIFtS scores in a pre-selected range, activating the
orthologs and publications options. The output then indi-
cates genes for which there are known orthologs and pub-
lished articles, so as to facilitate the initiation of study of
a subset of the low GIFtS gene list.

We note that annotation about low-GIFtS genes is often
limited to high-throughput generic genome publications,
a situation which may reduce the usefulness of the publi-
cation-adjusted scores. We have therefore screened our
database for such generic publications by looking for arti-
cles correlated with many genes. We found that only 25
publications are linked to >1000 genes and that 51 publi-
cations are linked to >500 genes. Genes whose only pub-
lications belong to such a category, and that are also
represented in a large fraction (say 50% or higher) of all
such publications, contain GIFtS scores of ~1-2, highlight-
ing them as extremely low GIFtS genes. For genes in the
higher GIFtS realm, the publication adjustment is almost
negligible.

Discussion

GIFtS provides a quantitative tool for assessing annota-
tion depth of every gene in the human genome based on
GeneCards' rich compendium of information sources.
Three previously published relevant efforts focus only on
protein coding genes; two of them are mainly aimed at
gene sets and utilize more limited information sources.
The first, the Genome Annotation Scores (GAS) algorithm
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Figure 6

Correlation of publication count and GIFtS. Correla-
tion between GIFtS scores and the count of publications to
each GeneCards gene.

[1], is broader in scope, since it addresses all species
present in SwissProt [27]. Using 5 major information
areas, literature, curation, sequence, structure and experi-
ment, it provides only an average annotation score for all
protein-coding genes in a given species. The second tool,
the GO Annotation Quality (GAQ) score [2] is a quantita-
tive annotation measure based on the number, detail and
evidence type of GO annotations available for a gene.
GAQ uses only one information source, and in contrast to
GIFtS, focuses on assessing the annotation for an entire set
of gene entries. The third tool, the Gene Characterization
Index (GCI) [3] assesses the characterization status of
individual human genes using annotations from six infor-
mation sources, combined with the count of articles per
each gene based on data from SwissProt [27] and NCBI
Entrez Gene [14]. It is based on an original concept,
whereby the perception of human researchers about the
annotation status of a subset of genes is used as training
data for developing a procedure to assign scores to all
human genes. GCI allows one to identify sets of low-scor-
ing genes suited for experimental investigation as drug tar-
gets. GIFtS, on the other hand, offers a non-biased
approach which does not involve human perception,
scores all human genes (whether protein coding or not),
and is based on a much larger set of data sources.

One of the obvious advantages of the GIFtS scoring
method is its applicability to all genes, irrespective to type

http://www.biomedcentral.com/1471-2105/10/348

and annotation depth. In recent years, several studies have
highlighted the important role of non protein-coding
genes (such as RNA genes) in cellular function [32-34].
Therefore, it is important to develop bioinformatics tools
such as GIFtS which are applicable to all types of genes.
However, in a world of fleeting gene annotations, it
appears that GCI and GIFtS are complementary to each
other: while GCI contains about 33,000 entries, all
defined as protein coding [3], GIFtS (via GeneCards)
addresses only ~22,000 genes defined to be protein cod-
ing (based on uniprot, refseq, and/or ensembl evidence),
along with another ~10,000 non-protein-coding genes
(categorized as pseudogenes, RNA genes, or disorder loci),
and another ~10,000 which are still uncategorized).
Future scrutiny could help resolve this dichotomy.

The usability of GIFtS benefits in significant ways from its
being embedded within GeneCards. As of the introduc-
tion of GeneCards version 3 beta in May 2009, it allows
advanced searches that combine gene category and data
section (e.g. expression, pathways, disorders) with GIFtS
range. Furthermore, GIFtS enjoys the capacities of the
GeneCards batch query engine, GeneALaCart, whereby
the user may receive tables with numerous genes, along
with their GIFtS scores and a variety of annotation items,
including pubmed IDs. Such queries can be keyed by
HGNC official gene symbols or by several alias types,
including Entrez Gene IDs (used in GCI queries), as well
as Ensembl and SwissProt IDs.

The GIFtS scoring concepts demonstrate a generic system
for evaluating genomic annotation that could be applied
to a variety of species, providing that their annotation data
is derived from multiple sources. This becomes more
important for the many species with only minimal anno-
tation, and in the context of the current development of
high throughput, extremely rapid DNA sequencing.

Currently GeneCards focuses only on human genes, but it
is rich in annotation data derived from other species., In
addition to an integrated ortholog section, it has signifi-
cant data from certain mammals, especially mouse, where
we include in the function section mouse phenotypes
from Mouse Genome Informatics (MGI), based on the
strong functional overlap between the species [35], as well
as mouse-related reagents (such as antibodies in the pro-
teins section). This should serve as infrastructure for the
ambitious undertaking of a bona-fide extension of Gene-
Cards to other species, allowing full-fledged application
of GIFtS to such organisms. This will allow, among others,
comparisons of the landscape of annotations of the
human genome, having a Genome Annotation Score
(GAS) of 13081 [1], to those of genomes from other spe-
cies, such as Mus musculus (GAS = 5644), as well as less
studied species such as Bos Taurus with GAS<4000.
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Figure 7

Time-dependence of annotation levels. Correlation
between Human Gene Nomenclature Committee (HGNC)
approval dates [39] and GIFtS average (bars represent stand-
ard deviation).

Two projects currently running in our laboratory provide
clear examples for the utility of GIFtS. One is GeneDecks
[36,37], a relatively new member of the GeneCards suite.
One of its tools, Set Distiller, aims to detect common
attributes for a set of genes. The use of GIFtS enables the
profiling of gene sets, and helps choose the proper GIFtS-
matched control sets for validation. The second project
scrutinizes protein interaction networks in the realm of
synthetic lethality [38]. The GIFtS score of each gene was
used to measure the confidence in the known protein
interactions for that gene, inferring an enhanced accuracy
of known protein interactions for genes with a higher
GIFtS score. This allows one to generate a weighted pro-
tein interaction network where high-confidence interac-
tions receive high weights.

Further, as exemplified here, we believe that understand-
ing the GIFtS profiles for lists of genes that result from
transcription profiling experiments may help experimen-
tal biologists choose or eliminate gene candidates for
future research. Finally, dissections of GIFtS data could be
valuable for database construction, in decisions related to
the incorporation of new gene category (e.g. RNA genes)
or in the selection of additional or most relevant data
sources.

Conclusion
GIFtS yields facile tools for navigating the human gene
annotation landscape, which could be useful in describ-
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ing trends in human genomic knowledge, performing
database maintenance and refinement, and improving
computational procedures for analyzing sets of genes
resulting from wet-lab or computational research. In addi-
tion, GIFtS may also assist the scientific community with
identification of groups of uncharacterized genes and
fields of knowledge which are less studied for diverse
applications, such as delineation of novel functions and
charting unexplored areas of the human genome.

Methods

The GIFtS scores presented here are based on the data in
GeneCards version 2.39, comprising 52,524 gene entries,
encompassing 22,690 protein coding genes, 7,776 RNA
genes, and 9,300 pseudogenes. GeneCards has recently
been updated, but we expect only minor changes in anal-
yses described in this manuscript.

The 68 sources used for the generation of GIFtS are shown
in Table 1S (see additional file 1). The information about
the presence or absence of gene annotation in Ns = 68
sources was extracted from the GeneCards text files by
GeneQArds, the GeneCards in-house quality assurance
tool (available upon request) which is based on a collec-
tion of Perl programs used for data mining and statistics.
We define S as a binary N -dimensional matrix, whose j-
th columns depicts the absence or presence of informa-
tion in data source j. The GIFtS scalar value G; for a gene i,
j=68
is defined as G; =( Z W;S;; /Ng). Where W; is a source
j=1

weight. For the standard GIFtS scale, all weights are set to
1; for the experimental web tool, users can change the
weights for a subset of the annotations. GIFtS vectors, cal-
culated for each of the GeneCards genes, are stored in a
MySQL 5.0 database (Sun Microsystems, Santa Clara, CA)
for further analyses and dissections (e.g. extraction of the
data for the GIFtS distribution of each gene category). It
should be noted that the maximal score depends on the
maximal fraction of the total number of sources available
for the highest scoring genes. When analysing source
elimination for understanding the effect of overlap, we
note that after eliminating 21 sources the maximal score
rises from 84 to 100.

Access to modified GIFtS scores weighted by protein sub-
sections, ortholog counts and publication counts is avail-
able in the GIFtS home page [4]. In order to enrich GIFtS
with respect to protein data, we selected the pivotal bioin-
formatics source for such data, namely SwissProt [27],
and dissected it into 6 sub sources: protein subunit, sub
cellular location, post-translational modification, func-
tion, catalytic activity, and other. Each of these subfields
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received a binary score as described above, thereby
increasing the GIFtS vector size by 5. To weight proteins
effectively in the new vectors, the sum of the binary data
was still divided by the original number of sources (with
SwissProt treated as 1 source for this denominator, in
spite of its sub sources contributions to the numerator).
To enrich GIFtS by orthologs or publications data, we
define a new differential score for each of those compo-
nents, which is then added to the default GIFtS to generate
an adjusted score. Specifically, the orthologs and publica-
tions differential scores for each gene are calculated as
round (log,sum(i)), where x equals 3 for orthologs and 5
for publications, and sum(i) is the count of relevant
orthologs or publications. Genes with no orthologs or
publications receive a differential score of zero for the rel-
evant component(s); differential scores rounded down to
0 (for low counts) are set to 1 to distinguish them from a
state of true O publication or orthologs. It should be noted
that in the adjusted scores, the increment due to the addi-
tion of one or more differential scores may be rather
small, as the intention is to only weigh the relevant counts
in, and not to make them dominate the final outcome.

Clustering of genes according to their GIFtS vector values
was performed by the k-means algorithm in MATLAB 7.5
(R2008a). The statistical significance of each cluster was
calculated by using the T-test function in Microsoft Excel
(Microsoft, Bellevue, WA). The HGNC approval date for
gene entries was downloaded from the HGNC custom
download page [39]. The significance of the difference of
average GIFtS between early and late approved genes was
calculated by using the T-test function in Excel.

To study the degree of overlap between a pair of sources,
S1 and S2, we computed the fraction of shared genes as
|G1NG,, /|G, UG,,|, where G; s the set of genes appearing
in source i.

The five Microarray-based gene lists originated from the
ArrayExpress database http://www.ebi.ac.uk/microarray-
as/ae and appearing in: [40,41].

The three keywords-based gene lists were retrieved by
searching for the terms enzyme*, develop*, in the sum-
maries section and for cancer* in the disorders section
using the advanced search of GeneCards version 3 beta
[28].

Sources enrichment analysis was studied on sets of genes
derived from whole genome expression studies in 12
human tissues, previously performed in our lab [12].
Eight sets of genes expressed exactly in two tissues, (based
on their binary expression pattern [12]) were selected for
further research. The following parameters were extracted
using MySQL and PHP scripts: the number of genes with

http://www.biomedcentral.com/1471-2105/10/348

data from each one of the GeneCards sources, SS (source
size); the number of genes entries in GeneCards, TG (total
genes); for each set, a vector consisting of the number of
genes in each of the GeneCards sources was calculated,
SSSS (set specific source size); the number of genes in the
set, GCS (genes count in set). These parameters enabled
calculating a vector of "source enrichment " for each of the
eight gene sets. The "source enrichment" was calculated
for each of the GeneCards sources based on the following
fraction: (SSSS/SS)X(TG/GCS). The significant of each of
the "source enrichments" was evaluated by Z value, based
on the distance from the average value divided by the
standard deviation (average and standard deviation were
calculated for all eight sets).

Sources enrichment analysis was also used to compare
two gene sets (with GIFtS values of 51 or greater than 74)
and is available upon request.
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