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Abstract

Background: We have incorporated Bayesian model regularization with biophysical modeling of
protein-DNA interactions, and of genome-wide nucleosome positioning to study protein-DNA
interactions, using a high-throughput dataset. The newly developed method (BayesPl) includes the
estimation of a transcription factor (TF) binding energy matrices, the computation of binding affinity
of a TF target site and the corresponding chemical potential.

Results: The method was successfully tested on synthetic ChIP-chip datasets, real yeast ChIP-chip
experiments. Subsequently, it was used to estimate condition-specific and species-specific protein-
DNA interaction for several yeast TFs.

Conclusion: The results revealed that the modification of the protein binding parameters and the
variation of the individual nucleotide affinity in either recognition or flanking sequences occurred
under different stresses and in different species. The findings suggest that such modifications may
be adaptive and play roles in the formation of the environment-specific binding patterns of yeast
TFs and in the divergence of TF binding sites across the related yeast species.

Background

Regulation of gene expression is performed on several lev-
els: transcription (DNA—RNA), translation (RNA—pro-
tein) and the post-translational modifications. Gene
transcription is usually controlled by the interaction
between regulatory factors and a regulatory DNA
sequence located mostly on the up-stream of the tran-
scription starting site. This regulatory region contains a
short DNA sequence to which the gene regulatory pro-
teins, such as transcription factors (TFs), bind in order to
activate/repress the gene expression[1,2]. The DNA of

eukaryotic cells is packaged into nucleosomes which
build up chromatin. The DNA in the nucleosomes is not
as readily accessible to binding of proteins like transcrip-
tion factors as in naked DNA. The DNA packaging, nucle-
osome positioning and remodeling have been suggested
to be mechanisms to control protein-DNA interactions
involved in the transcription, replication and recombina-
tion [3]. The nucleosome positioning is coordinated by
complex processes such as DNA-DNA interaction, pro-
tein-DNA interaction, histone modification, and chroma-
tin remodeling[4]. Recent genome-wide experiments have
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generated high resolution genomic map of nucleosome
locations in multiple species including yeast[5], Dro-
sophila[6] and humans|[7]. A few computational meth-
0ds[8,9] have been used to investigate chromatin
dynamics.

For silicon identification of the transcription factor bind-
ing sites, a pioneering work by Bussemaker et al. [10] sug-
gests a linear regression model to infer the binding motifs
of TFs on the regulatory region by combining high-
throughput microarray data with DNA sequence informa-
tion. Recent research in the field is integrating the bio-
physical model with the computational identification of
TF binding sites [11-14]. Though the statistical-mechani-
cal theory of selection of the DNA binding sites has been
used for almost two decades|[15], the application of such
an old theory in a new way (computational prediction of
TF binding sites using ChIP-chip dataset[16]) has gener-
ated numerous new algorithms. Most of these early devel-
oped methods are based on an assumption of low protein
concentration, i.e., only the strongest DNA binding sites
are bound by proteins. Thus, the protein binding proba-
bility in the models, namely MatrixReduce[12],
MARS[17], PREGO[18], Precise Physical Models[13],
BART[19] and CSI-Tree[20], is approximated by Maxwell-
Boltzmann probability. The protein binding probability is
dependent on the average number of proteins in a cell
[15,21]. For a full biophysical modeling of protein-DNA
interaction without the low protein concentration
assumption, a term called chemical potential has been
introduced[15]. The chemical potential is equivalent to
the concentration of each protein inside a cell and can be
changed when the protein binding probability varies in
the cell [22,23]. Fermi-Dirac form of protein binding
probability suggests that a DNA sequence with binding
energy far below the chemical potential is always bound
to a protein. In contrary, if the binding energy is well
above the chemical potential then the sequence is rarely
bound|21]. To build a full biophysical model for identify-
ing protein binding sites using a high-throughput micro-
array dataset, a novel computational approach by
incorporating the chemical potential with the protein
binding probability is developed.

Except for the protein binding probability issue men-
tioned above, an improvement of the parameter fitting for
a protein binding probability may also increase the accu-
racy of in silico prediction of protein-DNA interactions.
Usually, the parameter estimation (the position-specific
energy matrices of TF binding sites) is a nonlinear optimi-
zation problem|[18]. An exact model fitting of such non-
linear parameters by using a regression method is not
possible[18,24], which may suffer from "over-learn-
ing"[25]. Though the nonlinear parameter fitting is an
important issue in designing a computer algorithm, it has
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rarely been addressed before[12,13]. We could use "cross-
validation" and "early stopping" roles to partially over-
come the obstacle. However, the best solution to deal with
the nonlinear parameter fitting is a Bayesian method (i.e.,
Bayesian model regularization) [25] which has been
proven to be a robust and comprehensible procedure to
search for models that are better matched to the data.

We developed a new approach, a combination of Baye-
sian parameter inference, Fermi-Dirac form of protein
binding probability and genome-wide positioning of
nucleosome. The real value of our new program - BayesPI
- was assessed on synthetic datasets and genome-wide
ChIP-chip data. We also investigated the condition-
dependent modification of protein binding energy matri-
ces as well as the protein binding parameters (minimal TF
binding energy and the corresponding TF concentration)
by using the proposed new method. In earlier works, the
protein binding parameters were seldom studied [22,26].
Particularly, few researchers have taken the advantage of
using genome-wide TF occupancy data [27,28] to investi-
gate either condition-specific or species-specific protein
binding parameters. Through a systemic study of the pro-
tein binding parameters under different experimental
conditions or across several related species, we may
uncover certain crucial mechanisms behind the complex
genome expression and regulation [29,30].

Results

Validation of BayesPI using synthetic ChIP-chip datasets
For an initial trial, we tested BayesPI on 16 synthetic ChIP-
chip datasets where various lengths of binding motifs
were implanted in synthetic DNA sequences. In Figure 1,
we illustrated the results of these tests by a scatter plot of
the motif similarity score as a function of the sequence
length. The result indicates that the performance of Baye-
sPI is quite robust against either the sequence length or
the target motif size. All motif similarity scores are
between 0.75 and 0.85, except for two cases with smaller
motif similarity scores than the others. In these two cases,
we found that the target motifs were long (i.e., motif
length > 10 bp), suggesting that the long binding site may
severely hinder the computational prediction of motif tar-
gets. To estimate good or bad motif matches, we identified
a threshold value for the motif similarity score. For exam-
ple, a similarity score > 0.75 represents a reasonable
match between a pair of motifs. A score < 0.75 suggests a
poor match [see Additional file 1: Supplemental Figure
S2]. Such a threshold value, which has been used in a pre-
vious work [31], will be applied to compare the motif sim-
ilarities among various predictions in follow-up studies.

Validation of the BayesPI using real ChlP-chip datasets
After success on the synthetic datasets, we applied BayesPI
on the real protein-DNA interaction datasets from ChIP-
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Validation of the BayesPI using synthetic ChIP-chip datasets. Here 16 synthetic ChIP-chip datasets were used in the
program test and implanted motif lengths were 6, 8, 10 and 12 bp as indicated. The synthetic log ChIP-chip ratios follow a nor-

mal distribution [see Additional file |: Supplemental Figure SI].

chip experiments in rich medium conditions [27]. We
applied the same search strategy used in the synthetic
datasets to find putative TF binding energy matrix for 61
selected yeast TFs. By comparing the putative TF binding
energy matrix of each TF with the corresponding SGD
(Saccharomyces Genome Database) consensus sequences,
we found that ~88.5% of our predicted TF energy matrices
had motif similarity scores greater than 0.75. The result
demonstrates that the majority of our defined putative TF
binding energy matrices (54 out of 61 TFs) bear good
resemblance to the "known" SGD motifs.

MatrixREDUCE[12], a statistical mechanical model for
genome-wide occupancy data, was used to compute the
sequence specificities of 203 yeast transcription factor
binding sites in rich medium conditions. These predicted
position-specific affinity matrices (PSAM) were published
in an online database, TransfactomeDB|[32]. In the theo-
retical background, MatrixREDUCE and BayesPI share
several similarities. They, however, have two major differ-
ences: i) the earlier approach does not use Bayesian
method to control the fitting of model parameters by
using least squares; ii) the protein binding probability of
MatrixREDUCE is approximated by a Maxwell-Boltzmann
distribution with an assumption of very low protein con-
centration, but such an assumption in BayesPl is

lifted[15,21,22]. Therefore, a comparison between the
TransfactomeDB PSAM and the SGD consensus sequences
may provide insights on improving the model if we utilize
a Fermi-Dirac form of protein binding probability to
interrogate the same TF occupancy data[27]. Among all
available TFs in the TransfactomeDB, we only compared
61 of them (e.g. the same 61 TFs used in the validation of
BayesPI) with SGD consensus sequences. The result
showed that there were ~50% good matches between the
TransfactomeDB PSAM and the SGD consensus
sequences. In other words, BayesPI did improve the pre-
diction accuracy by considering both Bayesian inference
and the Fermi-Dirac form of protein binding probability
[15].

A number of binding sequence specificity information for
DNA-binding proteins has been published. In particular,
the sequence specificity data for yeast, TRANSFAC[33]
and a publication by Maclsaac et al.[34] have been exten-
sively used. The former is a manually created database that
contains experimentally measured position weight matri-
ces for particular DNA-binding proteins. The later is a
recent refinement of yeast regulatory sites using two con-
servation-based motif discovery algorithms to reanalyze
the genome-wide ChIP-chip data [27]. The sequence spe-
cificity information of 61 yeast TFs examined in this work
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are available in the collection from Maclsaac et al. (33),
but that of 21 TFs are found in the TRANSFAC database.
Comparisons of the two sequence specificity datasets with
the present gold standard (SGD consensus sequences)
showed that the percentage of motif similarity scores
greater than 0.75 was ~87% for Maclsaac et al. and ~100%
for TRANSFAC, respectively. This suggests that the quality
of our predicted position-specific energy matrices using
BayesPI is as good as the two most popular yeast sequence
specificity repositories.

Prediction of protein binding energy matrices by taking
nucleosome positioning in consideration

As mentioned earlier, nucleosome occupancy affects tran-
scription by decreasing the accessibility of DNA to protein
binding. Thus, including nucleosome density may
improve computational identification of protein binding
sites using in vivo protein-DNA interaction datasets. Based
on a modified protein binding probability (equation [8]),
we tested BayesPI on a set of ChIP-chip experiments on 10
yeast TFs under rich medium conditions. It has been
shown that three (MET31, RFX1 and PDR1) of the 10 TFs
are not functional while the other seven are active under
the growth conditions. Interestingly, we found that
inferred protein binding energy matrices of the three non-
functional TFs were poor [see Additional file 1: Supple-
mental Table S2], even if the binding of proteins is associ-
ated with the nucleosome-depleted region (i.e.,
PDR1[35]) and the nucleosome positioning information
is considered in the program. Of the seven active TFs, five
(SWI14, ACE2, MBP1, LEU3 and MCM1) showed either
improved rank orders or increased motif similarity scores
for the best motif when the nucleosome weighted protein
binding probability was used, in which both SWI4-bound
and LEU3-bound loci are known nucleosome-poor|8,35].
Experimental work has suggested that the low nucleo-
some occupancy at loci bound by LEU3 is not a conse-
quence of LEU3 binding[8]. Two TFs, RAP1 and ABF1 are
global regulatory proteins and can open chromatin in the
vicinity of their binding sites [5,35-38], and did not show
major improvements in the quality of their inferred bind-
ing energy matrices [see Additional file 1: Supplemental
Table S2] although both TFs are known to bind nucleo-
some-depleted promoters. These outcomes indicate that
the inclusion of the nucleosome information in the com-
putation does improve the performance of BayesPl. How-
ever, the improvement is TF dependent because the
activities of different TFs in the transcription are affected
by the nucleosome position differently. It is to be noted
that the effect of the inclusion of the nucleosome posi-
tioning information in silico motif prediction was not
strong if a TF (i.e. PDR1) is non-functional under certain
growth conditions.

http://www.biomedcentral.com/1471-2105/10/345

Protein binding parameters in the BayesPI prediction and
other in silico calculations for a set of 61 yeast TFs

We have shown that the TF binding energy matrices
derived from BayesPI are consistent with the known
sequence specificities. The new method is robust on both
synthetic simulated datasets and real TF occupancy data-
sets. However, there are several protein binding parame-
ters (TF minimal binding energy and the corresponding
chemical potential) need to be verified. Aurell et al. [26]
calculated transcription factor concentrations (chemical
potential) and the corresponding minimal binding ener-
gies (consensus) for 61 yeast TFs in rich medium condi-
tions. They used two separate methods, the classical work
of Berg and von Hippel [15] (BvH) and an approximation
of recently introduced Quadratic Programming Method
of Energy Matrix Estimation [21] (QPMEME or QP), to
estimate the minimal binding energy of a specific TF. BvH
does not include chemical potential. QPMEME may esti-
mate the chemical potential but it fails if the measured TF
abundance [39]n,, is too low. As shown in [Additional
file 1: Supplemental Table S1], both BayesPI (BP) and
BvH gave solutions to all 61 TFs in rich medium condi-
tions but QPMEME only solved 38 of them due to the
internal limitation of the method [26]. A comparison
between BP and QPMEME shows that ~57% of estimated
minimal energies (consensus, p < 2.5e-4) and ~57% of
predicted chemical potential (p < 1.8e-3) have a reasona-
ble match. Following the same threshold [see Additional
file 1], a comparison between BP and BvH reveals that
~64% of predicted minimal binding energies (p < 2.0e-4)
have a good match. However, a comparison between
QPMEME and BvH shows only ~52% of the predicted
minimal energies (p < 1.5e-3) have good correlations.
Thus, the estimation by BP is more consistent with the
BvH prediction than the QPMEME estimation. This may
be explained by the similarity of the biophysical back-
ground behind both BP and BvH methods[15]. Figure 2
shows scatter plots of the above comparisons across three
methods. The results indicate that the estimated protein
binding parameters of 61 yeast TFs in rich medium condi-
tions are comparable among three different calculations
(BP, BvH and QPMEME).

Computation of condition-specific protein binding
parameters for yeast TFs

As shown above, the TF binding energy matrices com-
puted by BP are consistent with the SGD consensus
sequences. Particularly, the calculated TF binding param-
eters [see Additional file 1: Supplemental Table S1] by BP
are in line with the other calculations in yeast under rich
medium conditions (YPD). Thus, we could apply the new
method to investigate condition-dependent TF binding
parameters, i.e., stress-specific protein binding parame-
ters. Here we selected four yeast TFs (i.e., MSN2, ROX1,
YAP1 and SKN7) from in vivo ChIP-chip experiments[27].
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Comparisons of the binding parameters for a set of 61 TFs of the yeast S. cerevisiae (YPD condition). E;pand Uy,
are minimal binding energy (consensus) and chemical potential estimated by the BayesPl, Eypand Ugpare minimal binding energy
(consensus) and chemical potential obtained by QPMEME[21], and Eg,,, is the minimal binding energy (consensus) computed
from BvH[15]. CV is a coefficient of variation of the predicted binding parameters between two different methods. Here for
each TF, if the CV<30% then we consider the two estimates are reasonably matched.

These TFs are known to be required for activation of the
stress-induced gene transcription. For example, (1)
MSN?2, a zinc finger protein, is a transcriptional activator
of the multi-stress responses in S. cerevisiae [40] such as
heat shock (heat), oxidative stress (H,0,), glucose starva-
tion (Rapa) and sorbic acid (Acid) [40]. Our estimation in
Figure 3 shows that the chemical potential and minimal
binding energy of MSN2 (large negative value represents
high chemical potential or binding energy [41]) were
increased due to H,0O,, heat and Rapa but not with acid.
(2) ROX1, a heme-dependent repressor of hypoxic genes,
may repress its own expression by binding its own
upstream region to prevent the accumulation of excess
ROX1 in the cell under high oxygen levels[42,43]. Here
we found an increasing of ROX1 binding parameters
under hyperoxic conditions (H,0O,) relative to the YPD.
Such increasing to high hyperoxic condition (H,O, hi)

was relatively smaller than that to low hyperoxic condi-
tion (H,0,lo) (Figure 3). The result may reflect a self-
repression role of ROX1 to control its own cellular level
[43]. (3) YAP1 [44] and SKN7 [45] are essential for resist-
ance to oxidative stress (H,0O,) response but do not
always function together in the activation of H,0,-induc-
ible genes [46]. Here we observed that the minimal bind-
ing energy and chemical potential for YAP1 were
decreasing while those for SKN7 were increasing under
heat and hyperoxic conditions although the responses
were weak (Figure 3). These results are in agreement with
previous reports which found YAP1 and SKN7 coopera-
tively control several H,O, target genes, exerting the same
or opposite effects[46]. It is worth noting that the protein
binding parameters for each TF investigated responded in
essentially the same pattern to each stress.
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Condition-specific binding parameters for four yeast TFs known for being activated by stress conditions. Y-axis
are predicted TF binding parameters (e.g. minimum binding energy and chemical potential) by the BayesPl. Magenta line stands
for minimal binding energy E,; (consensus) and blue line for chemical potential Ugp. For estimating uncertainties in the predic-

tions, error bars of binding parameters were computed by applying the BayesPI three times on each ChIP-chip dataset, 80 per-
cent of randomly selected original dataset was included in every calculation.

In a recent work, Harbison et al[27] had characterized sev-
eral types of environment-specific binding for yeast tran-
scriptional regulators: condition-invariant, condition-
enabled, condition-expanded, and condition-altered
binding behaviors. We are particularly interested in the
last three because these binding events are dynamically
changed during a shift of a condition. For example, the
stress response factor MSN2 belongs to a condition-ena-
bled binding as shown above (Figure 3). We have used the
BP method to estimate the protein binding energy matri-
ces (Figure 4) and the corresponding binding parameters
(Table 1) for the last three types of condition-specific

bindings. Here is an overview of the results: i) for condi-
tion-enabled binding protein MSN2 in rich medium con-
dition, we found a marginal match between the inferred
binding energy matrices and the SGD consensus sequence
(motif similarity score ~0.76; Table 1). However, under
the oxidative stress known as an activation condition
(H,0,lo and H,0,hi) for MSN2, we found the inferred
binding energy matrices changed in both binding param-
eters (i.e. ~17.4% and ~22.8% variation|[47,48] in pre-
dicted chemical potential in H,0,lo and H,O,hi,
respectively, compared to that under the YPD condition,
Table 2) and shape (Figure 4) but still had good resem-
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Table I: Condition-specific binding parameters for three yeast TFs.
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Binding behavior TF name Environment Egp Ugp Motif similarity score
Condition enabled MSN2 YPD -21.96 -13.97 0.76

MSN2 H,0,hi -18.43 -17.57 0.92

MSN2 H,0,lo -21.54 -16.64 0.91
Condition expanded GCN4 YPD -23.84 -22.73 0.94

GCN4 Sm -24.26 -21.68 0.93

GCN4 Rapa -24.54 -21.27 0.94
Condition altered STEI2 YPD -17.80 -16.40 0.91

STEI2 Butl4 -26.45 -22.14 0.92

STEI2 Alpha -20.71 -19.25 0.89

Minimal binding energy (consensus) Egpand chemical potential Ugpy are estimated by the BayesPl using ChlP-chip experimental data under various
conditions [27], such as rich medium condition (YPD), a high hyperoxic (H,O,hi), a moderate hyperoxic (H,0,lo), amino acid starvation (Sm),
nutrient deprived (Rapa), filamentation inducing (Butl4) and mate inducing (Alpha).

blance to the "known" consensus sequence (i.e. motif
similarity score ~0.91 and ~0.92 for H,0,lo and H,0,hi,
respectively; Table 1); ii) For condition-expanded binding
factor GCN4, under different conditions (YPD, amino
acid starvation (Sm), and nutrient deprived (Rapa)), the
binding energy matrices were similar to each other (Figure
4) as well as to the SGD consensus sequence (motif simi-
larity score ~0.94 for YPD, ~0.93 for Sm, and ~0.94 for
Rapa, respectively; Table 1). Particularly, the predicted
binding parameters under different conditions did not
show any dramatic changes (~1.7% variation[47,48] for
Sm and ~2.9% for Rapa in minimal binding energy, Table
2); iii) For condition-altered regulators STE12 under dif-
ferent conditions, we not only observed a strong variation
of the shape of TF binding energy matrices (Figure 4) but
also found a clear alteration of the corresponding binding
parameters (~16% for Alpha and ~30% for But14 in the
chemical potential; ~15% for Alpha and 40% varia-
tion[47,48] for But14 in the minimal binding energy rel-
ative to these in YPD; Table 2), though motif similarity
scores were all good (~0.91, ~0.92, and ~0.89 for YPD,
But14 and Alpha, respectively, Table 1).

Considering these results together, we hypothesize that
for condition-enabled regulators there is a clear difference
between to bind (active) and not to bind (not active) via
sequence specificity once the binding condition is

reached. However, for condition-altered regulators the
variation of sequence specificity between different condi-
tions is less distinguishable. In other words, condition-
altered bindings may share close sequence specificity
among various conditions but the binding affinity of each
individual binding site may have position-specific varia-
tion, for example, dimers TG and CA in the STE12 binding
sites (Figure 4). Nevertheless, condition-expanded regula-
tors not only share the same sequence specificity among
different conditions but also keep similar binding param-
eters in various environments such as GCN4 (Tables 1 and
2). Thus, we speculate that the condition-altered regula-
tors (i.e., STE12) may represent a set of the most active TFs
in a cell since they regulate a large number of diverse set
of genes under different conditions by cooperating with
many other transcription regulators[49]. Such diverse
binding activities of condition-altered regulators may
benefit from the great flexibility of their binding parame-
ters (i.e., an adaptive change of binding affinity in an indi-
vidual nucleotide [50]).

Estimation of species-specific protein binding parameters
for yeast TFs

So far we have characterized the property of the environ-
ment-dependent transcription factor binding parameters
for several yeast(S. cerevisiae) TFs. The results suggest that
both TF binding parameters and the corresponding motif

Table 2: Statistical analysis for accessing difference of the predicted yeast protein binding parameters between paired conditions.

Condition enabled TF - MSN2

Condition expanded TF - GCN4

Condition altered TF - STEI2

YPD vs. H,O,hi YPD vs. H,0,lo YPD vs. Sm YPD vs. Rapa YPD vs. Butl4 YPD vs. Alpha
|AE| 17.5% 2.0% 1.7% 2.9% 39.1% 15.1%
|Au| 22.8% 17.4% 4.7% 6.7% 29.8% 16.0%

The description of each condition is similar to that in Table . The |AE| or |Ap| is the absolute difference between the paired minimal binding
energies or chemical potential (Egy or Ugpin Table I) divided by their mean minimal binding energy or mean chemical potential, respectively.
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Condition-specific binding energy matrices for three yeast TFs. Condition enabled binding -- MSN2 binding site
(AGGGGSGG), condition expanded binding -- GCN4 binding site (TGASTCA) and condition altered binding -- STEI2 binding
site (TGAAACR) [27] were included. The sequence logo was generated by energy matrices estimated by the BayesPI.

binding energy matrices may undergo environment-spe-
cific modifications. It is interesting to see whether such
modification of protein binding parameters would be in a
species-specific manner. For that reason, we obtained
ChIP-chip datasets and the relevant DNA sequence infor-
mation from an investigation on STE12 and TEC1 binding
sties across three related yeast species (i.e., S. cerevisiae -
Scer, S. mikatae - Smik, and S. bayanus- Sbay) under the
same pseudohyphal conditions [28]. Here we used the BP
method to compute both binding energy matrices and
binding parameters for the above two TFs across the three
species. The estimated binding parameters of each TF for
each replicated ChIP-chip experiment for each yeast spe-
cies are listed in Table 3. We found that at least two of the
triplicate experiments for either STE12 or TEC1 showed
similar binding parameters in both Smik and Sbay, which
suggests a good reproducibility of the predictions (Table
3). The recovered binding energy matrices of the three
experiments in each species also showed similarity [see
Additional file 1: Supplemental Figures S4 and S5]. Espe-

cially, motif similarity scores were good for all 16 ChIP-
chip experiments, except for one case where the motif
similarity score was less than 0.75. Thus, the sequence
specificity for either STE12 or TEC1 does share similarities
across the three species but the protein binding parame-
ters bear a species-specific variation.

Table 4, for STE12, displays a 13% variation[47,48] of the
chemical potential (or 10% in the minimal binding
energy) between Scer and Smik (or Sbay) but it only gives
about 5% difference between Smik and Sbay; for TECI1,
the variation of the binding parameters between Scer and
Smik (or Sbay) was greater than 16% but it was less than
10% between Smik and Sbay. These results suggest that
closely-related species (i.e., Smik and Sbay[28]) bear less
variation in the protein binding parameters. Particularly,
the shape of the predicted position-specific energy matrix
of each TF also varies across the three species [see Addi-
tional file 1: Supplemental Figures S4 and S5]. For exam-
ple, the magnitude of protein binding affinities of a few
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Table 3: Species-specific binding parameters for two yeast TFs.

http://www.biomedcentral.com/1471-2105/10/345

TF Species Experiment design Egp Ugp Motif similarity score Median Egp Median Ugp
STEI2 Scer R -18.1 -15.09 082 -18.31 -15.09
R -3586  -18.16 0.72
Smik R -2440  -21.11 0.91 -17.35 -17.17
R -17.35 -16.44  0.90
D -16.96  -17.17  0.90
Sbay R -1652  -1624  0.86 -16.52 -16.24
R -1647  -157 0.86
D -21.72 -18.02 091
TECI Scer R -15.63 -1546 091 -18.66 -15.96
R -21.68  -16.45 0.92
Smik R -11.82  -12.95 0.90 -14.03 -13.59
R -1592  -1588 09I
D -14.03 -13.59  0.90
Sbay R -19.39  -13.43 0.79 -15.46 -13.57
R -14.95 -12.63 0.83
D -1597  -1450 093

Minimal binding energy (consensus) Egp and chemical potential Ugpare estimated by the BayesPl based on ChlIP-chip experimental data from S.
cerevisiae (Scer), S. mikatae (Smik), and S. bayanus (Sbay) under pseudohyphal conditions. R represents replicated experiment, and D means dye-

swapped experiment.

key binding positions shows species-specific variation
(Figures 5 and 6): binding affinities of the pyrimidine-
purine dimers YR (TG:CA) and the AA dimer in the STE12
binding site (TGAAACR) [see Additional file 1: Supple-
mental Figure S4], and another two dimers (CA and TT) in
the TEC1 binding site (CATTCY), as well as a nucleotide
in the flanking sequence (the nucleotides on the right side
of TEC1 binding site; [see Additional file 1: Supplemental
Figure S5]) were found to be modified. The mechanism
behind such species-specific variation of individual nucle-
otide affinity seems similar to the stress-dependent altera-
tion. It is possible that affinities of a few important
protein binding positions are being adaptively changed
under environment perturbation. Thus, a combination of
the adaptive modification of protein binding parameters
and the conditional variation of protein binding affinities
in DNA sequences may play roles in divergence of TF
binding sites across the three yeast species.

Discussion and Conclusion

In this work, we have developed a new computational
method, BayesPI (BP), to study protein-DNA interaction
by using high-throughput yeast ChIP-chip microarray.
Validation of the BP method on both synthetic datasets
and real experimental data shows that BP is robust. Com-
parisons of protein binding parameters (e.g., minimal
protein binding energy and the corresponding chemical
potential) of 61 yeast TFs obtained by BP with the estima-
tions from previous models give good correlations ([see
Additional file 1: Supplemental Table S1| and Figure 2).
In particular, the newly introduced protein binding
parameters in the BP method provide an extra dimension
to explore the complex transcription regulation. For
example, the method allows us to observe the change of
protein binding energy matrices under different condi-
tions, and the modification of both protein binding
energy and associated chemical potential after environ-
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Figure 5

Comparison of STEI2 binding energy matrices in three yeast species: S. cerevisiae (Scer), S. mikatae (Smik),
and S. bayanus (Sbay). Only the information content (binding affinity was transformed to bits) at every position in a STEI2
consensus sequence (TGAAACG) is shown. The height of each bar is the mean information content at each position that was
estimated from replicated ChIP-chip experiments, and the error bar is the standard deviation of these estimates. Sequence
logo representations of the STEI2 energy matrices are available in [Additional file |I: Supplemental Figure S4].
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Figure 6

Comparison of TECI binding energy matrices in three yeast species: S. cerevisiae (Scer), S. mikatae (Smik), and
S. bayanus (Sbay). Only the information content (binding affinity was transformed to bits) at every position in a TECI con-
sensus sequence (CATTCC) is shown. The height of each bar is the mean information content at each position that was esti-
mated from replicated ChlP-chip experiments, and the error bar is the standard deviation of these estimates. Sequence logo
representations of the TECI energy matrices are available in [Additional file |: Supplemental Figure S5].
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Table 4: Statistical analysis for accessing difference of the predicted protein binding parameters between paired yeast species.

STEI2 TECI
Scer vs. Smik Scer vs. Sbay Smik vs. Sbay Scer vs. Smik Scer vs. Sbay Smik vs. Sbay
|AE| 5.4% 10.3% 4.9% 28.3% 18.7% 9.7%
|Au| 12.9% 7.4% 5.6% 16.0% 16.2% 0.2%

The description of each species is similar to that in Table 3. The |[AE| or |Ap]| is the absolute difference between the paired minimal binding energies
or chemical potential (Ezpor Ugpin the Table 3) divided by their mean minimal binding energy or mean chemical potential, respectively. The
predicted protein binding parameters with motif similarity score < 0.8 was not considered in the comparison.

mental perturbations (Figure 3, 4 and Tables 1 and 2). The
elasticity of the protein binding parameters under differ-
ent environments is also found to be true in a species-spe-
cific manner (Figure 5 and 6, and Table 3 and 4) which
may be used to judge the phylogenetical distance among
species (Table 4). Particularly, we noticed the position-
specific variation of protein binding affinities at a few key
binding sites when being exposed either to a new environ-
ment or to another species. For example, the pyrimidine-
purine dimers YR (TG:CA) in the STE12 consensus are the
most flexible nucleotides with respect to the binding
affinity changes. An early DNA sequence-dependent
deformability study from protein-DNA crystal complexes
also suggests the same YR dimers are the most flexible
base pairs on the DNA sequences[51]. Such sequence-
dependent structural effects in the DNA duplexes may
indicate that certain nucleotides in the DNA are more flex-
ible and influenced by their surroundings [52,53].

In addition to the variation of the individual nucleotide
affinity in protein binding sites, we also observed a similar
modification in the flanking sequence such as the nucle-
otide adjacent to the right side of TEC1 binding site C, T,
and G in Scer, Smik and Sbay, respectively [see Additional
file 1: Supplemental Figure S5]. This is in line with a pre-
vious proposal of that the flanking sequence variation
may affect the energy required for DNA distortion, the
binding affinity of the nearby protein binding sites may
be either increased or decreased, and consequently may
influence protein-DNA regulation|50]. The significance of
such flanking sequences variation for gene expression and
regulations was also suggested in a few recent studies. For
example, alternative transcriptional regulation by a2-
MCM1 binding in different yeast species [54] and disrup-
tion of p53-MDM2 oscillation by SP1 binding in the
human MDM?2 promoter [55] have been reported. There-
fore, the variation of nucleotide in either protein recogni-
tion sequence or flanking sites may result in a change in
protein binding affinity [56] by responding to different
conditions, which lead to distinct gene expression pat-
terns[57]. This may also explain the adaptive modifica-
tion of protein binding parameters in both environment-
specific (Figure 3 and 4) and species-specific protein-DNA

interactions (Figure 5 and 6). The newly introduced pro-
tein binding parameters are possible phenotypes of bind-
ing sites' evolution as well as of function and non-
function protein binding sites.

The new approach, the Bayesian model regularization, has
overcome an important obstacle in nonlinear parameter
fitting: for example, both MatrixREDUCE[12] and Precise
Physical Models[13] are required to rescale their results
(i.e., the estimated protein binding energy matrix) to nor-
malize the matrix elements range between 0 and 1. The
rational of the rescaling of the energy matrix is vaguely
explained in the earlier publications. However, we knew
that the above problem is often caused by non-conver-
gence (or overfitting) of nonlinear parameter fitting (i.e.,
if the algorithm cannot converge or overfit the data then
very large matrix elements will appear). In such a case,
previous methods have to rescale the parameters after the
calculation is completed, but the Bayesian approach can
control the parameters online by searching for model
parameters that are better matched to the data[25]. The
performance of the BayesPI is definitely improved by con-
sidering the Bayesian method.

Finally, the prediction of protein binding parameters
using BayesPI is promising. However, the power of apply-
ing a biophysical model for protein-DNA interaction still
has room for improvement. Here are three possible direc-
tions to make BayesPI more useful in the future: 1) for the
current implementation of the Bayesian nonlinear param-
eter fitting, we used Gaussian approximation for probabil-
ity distribution to estimate the model parameters.
However, not all datasets are suited for the Gaussian
approximation, thus, a Markov chain Monte Carlo sam-
pling of probability distribution may be considered in the
future[25]; 2) for the computation of protein binding
energy matrix by using the biophysical model, we
assumed that every base contributes independently to the
protein binding, which means the total energy of the
interaction is only the sum of the energies of the individ-
ual contact. Though such additive assumption may pro-
vide good approximation to the true nature of the protein-
DNA interactions[58], experimental observations had rec-
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ommended that the future computational methods
should take into account the non-independence of bases
in the nucleotides of the protein binding sites[59,60]. For
example, a biophysical model with a pair-dependent cor-
rection of the energy matrix may give better description of
the true binding site specificities[21]; 3) for the identifica-
tion of the functional regulatory binding sites, the protein
binding probability is not the only factor to define them;
other variables including adjacent co-regulator binding
sites, distance from the transcriptional start site, genome
conservation and nucleosome positioning may affect the
degree of function of a binding site. For these reasons,
future algorithms should use sophisticated methods to
include at least some of the additional variables discussed.

Methods

Prediction of TF binding parameters using BayesPI
Biophysical modeling of Protein-DNA interactions

In a general biophysical modeling [12] of protein-DNA
interactions,

protein + DNA & protein — DNA

binding of a protein to DNA with reaction constants k,
(protein-DNA association) and k4 (protein-DNA dissocia-
tion) can be expressed as the quotients of the two rate con-
stants above,

ka(S) —AG(S)
s =Ko

where K is an inverse equilibrium concentration, AG(S) is
a standard Gibbs free energy exchange of a protein bind-
ing to a short stretch of DNA with sequence S, R is the gas
constant and T is the absolute temperature. Any position
in the sequence S that does contribute to the site-specifi-
city binding will exhibit AG¢(b)<0 for some subset of b,
while the other base types at that position will exhibit A
Gs(b) >0, b €(A, C, G, T) [41]. The probability [21] of the
DNA sequence S to be bound by a protein in a solution

with the concentration n,,,;, is given by
-l
kg(S)+—4——
Nprotein
thus
1
P(S) =
AG(S)—u
1+exp(——————
()

where y is the chemical potential set by the protein con-
centration x = RT In(Kny,,)-
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To further simplify the Fermi-Dirac form of protein bind-
ing probability, we may assume that the concentration of
protein is so low that all DNA sequences S have very low
probability of being bound[21], in  which

exp(m) >>1 and the Fermi-Dirac function can be

approximated by a Maxwell-Boltzmann function

P(S) = esp(Hyexp(2))

This approximated protein binding probability was used
by earlier works such as MatrixREDUCE[12] to model
genome-wide TF occupancy data by combing ChIP-chip
profiles and position-specific affinity matrices (PSAM)
prediction for each TF,

:Er,gFr,rEg Z L _szi(s)_c
i,

i

(C,F,AG)

where t;is the measured ChIP profiles and F, C, and AG are
parameters that are estimated by least squares fitting.

Incorporating nucleosome density into the biophysical modeling of
protein-DNA interactions

It has been shown that nucleosome occupancy plays a key
role in the accessibility of DNA to transcription factors
[8,9]. Thus, a model of DNA occupancy by transcription
factors and nucleosomes, expressed in terms of probabili-
ties, is likely to give a more complete view of the protein-
DNA interactions. Based on this idea, we modified the k,
values in the equation [3] to consider the effect of nucleo-
some occupancy in the protein binding region,

ky (weighted ) = W "o

This weighted kywas first suggested by Liu et al. [8], but we
are the first to attempt to incorporate this modified
k4(weighted) into the protein binding probability P(S),

1
AG(S)—u+Nuc ey log(W))
RT

P(S, weighted) =
1+exp(

where Nuc,, is the measured nucleosome occupancy in
the genomic region spanning the site S, and W is a weight-
ing parameter. In the original work [8], the authors had to
manually adjust the parameter W to find the best value on
their experimental data. However, in the present work, the
W can be estimated automatically from the equation [6]
using a novel Bayesian minimization method that will be
introduced later.
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Building of Bayesian minimization model

We briefly described the transformation of the biophysi-
cal modeling of TE-DNA interaction into a nonlinear min-
imization problem. In this transformation, the measured
ChIP-chip profiles for each TF, genome-wide nucleosome
occupancy data, and the predicted TF concentration with
its binding free energy AG were combined. Now we will
solve the minimization problem with a novel Bayesian
method. First, the model error function can be written as

where t; is the measured ChIP-chip affinity profile to gene
i: for example, we used all available raw ChIP-chip ratios
for each TF in the present yeast S. cerevisiae study; and Y, is
the predicted TF occupancy data for that gene according to
the TF binding probability, such as equations [4] or [8],

n—M+1
Y, =w Z P, +b
I=1
In the above equation, w is the motif weight, b is the motif
bias, and the protein binding probability can be expressed
as

1
Py ( Silj ) = M
l+exp| 3 w/jsi,l,j_b/

j=1
if equation [4] is used, in which I = 1..n-M+1 (n is the
length of sequence length and M is the length of motif)
and i = 1...g (g is the number of genes). In equation [11],
w'; is equivalent to the TF binding energy matrices AG (for

each TF, the sum of all negative w'j values is its minimal

binding energy[41]), and b' represents the chemical
potential p. To avoid possible overfitting to the noise on
the data t;, we added a penalty term, regularization term

E,. to the error function [9]. Here a simple weight decay

form of regularizer is used,

E, = Zw;'

1

N | =

Q
q=

which consists of the sum of the squares of all Q parame-

ters in the model such as w, € ( w’, b w, b). By using a reg-

ularizer of the form [12], the parameters are encouraged
to be small.

http://www.biomedcentral.com/1471-2105/10/345

In a Bayesian framework, we consider a probability distri-
bution over parameters of w. Before including any data,
this is described by a prior distribution P(w | &, A, T'), in
which (A,I) represents the model hypothesis space (A is
the definition of protein binding probability and I is the
selection of a regularization function) and « is a hyperpa-
rameter that controls the distribution of all other parame-
ters of w. Once we observe the data D, we can write down
an expression for the posterior probability distribution for
the parameters of w, denoted by P(w|D, &, 5, A, 1, T). Bis
another hyperparameter that controls the variance of the
data noise, using Bayes' theorem

_ P(DJw, B, An)P(wlo A T)
P(D|a,B8,AT'n)

P(w|D,a,ﬂ,A,n,F)

where P(D | &, 5, A, T, 1) is a normalization factor and the
quantity P(D | w, B, A, i) represents a model for the noise
process on the target data. In general [25,61], we can write
both P(w | &, A, T) and P(D | w, B, A, n) distributions as
an exponential form, for example

_ exp(—aEy(w]A T)))
Zy(a)

where Z, () is a normalization factor given by Z, () =
[dwexp(-aE,); and

P(w|a,AT)

P(D|w B, An)= "-XP(—ﬁZEg((gw,A)))

the function Z,(f) is also a normalization factor given by
Zp(p) = [dDexp(-fEp). After we have defined both distri-
butions in equations [14] and [15], we can use equation
[13] to find the posterior distribution of the parameters

P(w|D,a,ﬂ,A,n,r)=w

where
M(w) = B o Ep(D | w,A,n) +a o E,(w] A,T)

and Z,,(a, f) = ldwexp(-M(w)). Here the task is to find the
most probable parameters of W,,, given the input data D
and the hypothesis model space (A, 7, T') based on equa-
tion [16]. This problem can be solved by using a Gaussian
approximation for the posterior distribution [25] which
will be introduced in the next section.

Parameter inference of Bayesian minimization model

Based on a probability framework of the objective func-
tion [17] described above, we use a two-level inference
method [25] to learn the parameters such as w,,p, o, f.
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i) We assume that the values of o and 3 are known and
then infer the model parameters of w,,, through the pos-
terior probability P(w|D, &, f, A, n, T'). By Taylor-expand-
ing and Gaussian approximation [25] the log posterior
probability, we get

1 o
10g(P(w| Dt B, A, T)) = log(P(wyyp | Dy, B, 8,1, 1)) = 5 (w=wyp) Alw =1w,0)

where A =-VV log P(w|D, a, S, A, 1, T). To maximize this
log posterior probability, we obtained the derivative of
the log posterior probability with respect to the model
parameters of w and set the derivatives to zero [25]. Sub-
sequently, we applied a scaled conjugate gradient algo-
rithm [62] to find the most probable values for the
parameters of w,,, by the given input data and hypothesis
space (A, 7, T'). More information is available in [Addi-
tional file 1] and other relevant references [25].

ii) We update model parameters of w,,, then infer o and 8
through Bayes' rule:

P(Dla, B,An.T)P(a, B|AN,T)
P(a D AN T)= P(D|A,T,)

where P(«, S|D, A, 1, T') is the posterior probability of
hyperparameters o and  given the input data D and
hypothesis space (A, 7, T'), P(D|a, A, 1, T') is the data-
dependent evidence for hyperparameters o and B, and
P(e, BIA, i, T) is the subjective prior over our hypothesis
space. Here we assume equal priors P(¢, S| A, n, T') to the
alternative models and a constant term to the P(D | A, T,
n) then the model [a,B] is ranked only by evaluating the
evidence:

P(a,B|D,ANT)=PD]|a, B,AnT)

Thus the log evidence for hyperparameters o and j is

log(P (e, B|D,AMT))
zlog(P(DW:ﬂIA'”'r))

=-M(w,p) —%log det(A) + glog 2 —log Z (o) —log Z, (B)

To find the condition that is satisfied at the maximum log
evidence, we first need to differentiate the log evidence
with respect to a or 3 then set the derivative to zero, which
results in two conditions [25] suited for the most proba-
ble values of o and f3:

4
App =
2MP
N-—
ﬁMP = MP
ZED
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wherey =k - a®Trace(A!) and A = VVM are the Hessian of
M(w) evaluated at w,,p, k is the dimension of parameters
of w, and N is the degree of freedom in the data set, such
as the number of genes.

Computation of Hessian matrices

The two conditions (equations [22] and [23]) described
for hyperparameters o and § could be used as re-estima-
tion formulas for the Bayesian model fitting. However, an
important issue is how to evaluate the Hessian matrix A,
which requires an efficient algorithm [63] (fast exact mul-
tiplication by the Hessian) to compute products Av with-
out explicitly evaluating A, where v is an arbitrary row
vector whose length equals the number of parameters in
the model. To calculate Av, we define a differential opera-
tor R{e} based on the R-propagation algorithm of Pearl-
mutter [63]

R{F(w)} =2 Flwem)]

which infers R{V,} = Av and R{w} = v. By applying the
R{e} operator on the Back-propagation neural networks
(more detailed information is given in [Additional file
1]), we can easily compute the Hessian matrix multiplied
by an arbitrary vector v.

Implementation of the Bayesian minimization model - BayesPl

We encoded the two-level inference of Bayesian minimi-
zation model (Bayesian nonlinear parameters fitting) in a
MATLAB toolbox, resulting in a novel method, BayesPI.
Parts of the programs (scaled conjugate gradient algo-
rithm, back-propagating learning procedure for neural
networks, R-forward computation, and R-backward com-
putation) have been developed in C that is an external
program of the MATLAB environment. For building the
neural network topologies and the evidence updating
function in BayesPI, we used NETLAB toolbox|[64]. The
program can run in both Linux/Unix and Windows envi-
ronments, and the source code is publicly available http:/
/www.uio.no/~junbaiw/bayesPI. In the present study, for
one yeast genome-wide ChIP-chip experiment, BayesPI
spends approximately 54 hours on a PC cluster (using a
dual-core CPU SUN X6220 blade node, with 16 GB of
RAM) to complete the calculation of top six binding
energy matrices with 3 possible motif lengths (i.e., rang-
ing from 8 to 10), respectively. Such heavy computational
requirement could be significantly shortened if we paral-
lelize the code (i.e., using MPI language) and run it in par-
allel.
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Prediction of TF binding parameters using the classical
work of Berg and von Hippel (BvH)

BvH[15] computes the discrimination energy (the bind-
ing properties of the TFs) E for a certain DNA sequence

{B;}_, by equation

njo+1
”ZBZH

E({B})= Y

where A is a proportionality factor to relate populations of
base-pair choices to binding free energies and varies
between ~0.5 and ~1.5 at most, B, is each possible base-
pairB(B=0,1, 2, 3, wheree.g. 0=AT, 1 =TA, 2 = GC, and
3 = CQG) at position | (1 = 1, 2,...s, where s is the binding

site size), n;g is the number of occurrences of base-pair B

at position | in the sample of N sites, and n,, is the number
of occurrences of the strongest binder B at that position.

Prediction of TF binding parameters using Quadratic
Programming Method of Energy Matrix Estimation
(QPMEME)

In QPMEME [21], the ratio r of binding energies to a
chemical potential is calculated first, then the absolute
chemical potential |x| is estimated through below rela-
tionship

1
n,. = 2Ljdrp r——
obs ( ) 1+eﬂ|#|(7+1)

where 1, is the measured TF abundance from a previous

work[39], L is a genomic sequence length in a cell, p(r) is
the background density of states for the energy matrix E

obtained from QPMEME, and B equals Rl—T )

Motif similarity score

In an in silico study of TF binding sites, we often encounter
either the evaluation of the quality of the estimated
sequence specificity or the identification of the original of
predicted sequence specificity. Thus, a method is needed
to compute the similarity between a predicted TF binding
motif and a set of known sequence specificity informa-
tion, such as the consensus sequences from the SGD data-
base [65]. In this work, we wused a published
computational strategy (i.e., motif similarity score[66]; a
detailed description is provided in [Additional file 1]) to
accomplish the goal.

Synthetic datasets
To test our newly developed BayesPI, we made a set of
synthetic ChIP-chip datasets: i) four types of synthetic

http://www.biomedcentral.com/1471-2105/10/345

DNA sequences with various sequence lengths (i.e., 50 bp,
100 bp, 500 bp, and 1000 bp, respectively) were gener-
ated by Monte Carlo sampling method through the MAT-
LAB Bay Net toolbox[67]; ii) the relevant synthetic ChIP-
chip log ratios were produced by the MATLAB build-in
random number generator; iii) four yeast TFs (i.e., ACE2p,
SWl14p, INO4p and XBP1p with different binding motif
length of 6 bp, 8 bp, 10 bp and 12 bp, respectively) were
selected as potential prediction targets for the test; iv) for
each synthetic ChIP-chip data, one of the corresponding
TF binding motifs was randomly positioned in a DNA
sequence in which the associated ChIP-chip log ratio is
greater than zero. This way, a total of 16 synthetic ChIP-
chip datasets were generated for four TFs with various
sequence and binding motif lengths. The datasets provide
a good opportunity to access the performance of the
newly developed BayesPI because we have an expected
answer for each synthetic ChIP-chip dataset.

Microarray datasets

Genome-wide in vivo protein-DNA interaction datasets of
203 yeast S. cerevisiae TFs and the corresponding inter-
genic DNA sequences were downloaded from a work by
Harbison et al. [27], in which the ChIP-chip experiments
were performed under various conditions such as rich
medium and heat shock, etc. Genome-wide yeast nucleo-
some occupancy data was obtained from ChIP-chip exper-
iments by Lee et al. [68]. Protein expression microarray
data of yeast under rich medium conditions were availa-
ble [39]. ChIP-chip datasets for STE12 and TEC1 in yeasts
S. cerevisiae, S. mikatae, and S. bayanus under pseudohy-
phal conditions were obtained from a previous work [28].
More information about the pre-processing of these
microarray datasets is provided in [Additional file 1].

Sequence specificity information of yeast DNA-binding
proteins

The most recent yeast sequence specificities (~124 TFs)
were provided by Maclsaac et al. [34]. The experimentally
observed sequence specificity information of yeast TFs
(~41 TFs) was taken from the TRANSFAC[33] database
version 8.3. The consensus sequences of yeast TFs were
found in the SGD[65] database (~61 TFs). The position-
specific affinity matrices (~203 TFs) inferred by MatrixRE-
DUCE were downloaded from the TransfactomeDB data-
base[32].

Predicted TF binding parameters in yeast under rich
medium conditions

The minimal binding energies (consensus) of 61 yeast TFs
in rich medium conditions were generated by both Quad-
ratic Programming Method of Energy Matrix Estima-
tion[21] (QPMEME or QP) and the classical work of Berg
and von Hippel[15] (BvH), but the corresponding chem-
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ical potentials were provided only by QPMEME. These
results were obtained from a work by Aurell et al. [26].

Selection of 61 yeast TFs for the present study

BayesPI requires a full inverse of Hessian matrice which
needs compute-intensive calculation. Such computa-
tional constraint is one of reasons that we did not con-
sider all available yeast TFs in[27]. Additionally, there are
two major quantitative variables that control the binding
of TFs to DNA: the cellular abundance and the affinity.
The localization of TF proteins in nucleus under the rich
medium conditions is a key point to determine the pro-
tein activity and its concentration (chemical potential). So
far we only found the protein abundance of 61 of yeast
TFs could be measured in nucleus [39]. A detailed descrip-
tion of criteria for selecting these TFs are available in
paper[26]. Thus, in this work, we only estimated protein
binding parameters and protein energy matrices of 61
yeast TFs.
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