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Abstract

Background: Riboswitches are a type of noncoding RNA that regulate gene expression by
switching from one structural conformation to another on ligand binding. The various classes of
riboswitches discovered so far are differentiated by the ligand, which on binding induces a
conformational switch. Every class of riboswitch is characterized by an aptamer domain, which
provides the site for ligand binding, and an expression platform that undergoes conformational
change on ligand binding. The sequence and structure of the aptamer domain is highly conserved
in riboswitches belonging to the same class. We propose a method for fast and accurate
identification of riboswitches using profile Hidden Markov Models (pHMM). Our method exploits
the high degree of sequence conservation that characterizes the aptamer domain.

Results: Our method can detect riboswitches in genomic databases rapidly and accurately. Its
sensitivity is comparable to the method based on the Covariance Model (CM). For six out of ten
riboswitch classes, our method detects more than 99.5% of the candidates identified by the much
slower CM method while being several hundred times faster. For three riboswitch classes, our
method detects 97-99% of the candidates relative to the CM method. Our method works very well
for those classes of riboswitches that are characterized by distinct and conserved sequence motifs.

Conclusion: Riboswitches play a crucial role in controlling the expression of several prokaryotic
genes involved in metabolism and transport processes. As more and more new classes of
riboswitches are being discovered, it is important to understand the patterns of their intra and inter
genomic distribution. Understanding such patterns will enable us to better understand the
evolutionary history of these genetic regulatory elements. However, a complete picture of the
distribution pattern of riboswitches will emerge only after accurate identification of riboswitches
across genomes. We believe that the riboswitch detection method developed in this paper will aid
in that process. The significant advantage in terms of speed, of our pHMM-based approach over the
method based on CM allows us to scan entire databases (rather than 5'UTRs only) in a relatively
short period of time in order to accurately identify riboswitch candidates.
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Background

Recent discoveries of noncoding RNAs (ncRNAs), RNA
molecules that do not code for proteins but function
directly, reveal that they are abundant, widespread and
perform truly diverse functions. [1,2] Significant and
rapid advancements in RNA-mediated genetic control
studies have established the importance of RNA in gene
regulation [3,4]. The catalytic and regulatory roles of
RNAs like ribozymes and riboswitches lend support to the
hypothesis of RNA world and highlight the importance of
RNA in the primordial world [5,6].

Riboswitches are cis-acting regulatory RNAs residing in the
5' untranslated regions (UTRs) of primarily prokaryotic
mRNAs. They are complex folded structures that act as
high affinity receptors for specific cellular metabolites [7-
9]. On metabolite binding they undergo conformational
change, which modulates gene expression at post-tran-
scriptional level, either through premature termination of
transcription [10] or inhibition of translation initiation
[11]. They are composed of two structural domains: an
aptamer domain [12] and an expression platform [13].
The aptamer domain binds the metabolite with high spe-
cificity resulting in the alteration of the RNA folding pat-
tern mainly in the expression platform. Switching
between two alternative RNA conformations, one of
which is favoured in the absence of the bound metabolite
and the other in its presence, leads to regulation of gene
expression. The aptamer domain is highly conserved both
at sequence as well as structure level among widely diver-
gent organisms whereas the expression platform is highly
variable even amongst the same riboswitch class. Ribos-
witches regulate genes in several metabolic pathways
involved in the biosynthesis of vitamins, amino acids and
purines [14,15].

Riboswitches have various important applications. Since
they are believed to be the descendants of ancient metab-
olite sensors, they can be useful in gaining valuable
insights into how gene regulation mechanisms evolved
from the primitive forms of life to the more complex ones.
Riboswitches have also been used as potential drug targets
for antibacterial and antifungal agents [16]. Examples of
such antimicrobial drugs are Pyrithiamine, which targets
the TPP riboswitch [17] and S-(2-aminoethyl)-L-cysteine
(AEC) which acts by binding to the lysine riboswitch [18].
Artificial riboswitches have also been engineered for the
manipulation of gene expression; for example a theophyl-
line-sensing synthetic RNA switch causes reduced access
to an adjacent Shine Dalgarno sequence on theophylline
addition [19]. Elucidating the underlying principles of
riboswitch-mediated regulation may lead to the develop-
ment of engineered ligands capable of modulating gene
expression. More detailed characterization of the distribu-
tion and function of riboswitches across and within differ-
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ent genomes is essential to determine their precise role as
riboregulators and potential drug targets.

Enormous growth of genome sequence data makes it
practically infeasible to discover riboswitches solely by
experimental means. In order to understand the extent to
which organisms use these regulatory RNAs, time efficient
algorithms for genome wide identification of riboswitches
are required. Algorithms for detecting RNA homologs can
be divides into two classes, those which are specific to a
particular RNA class (e.g. tRNAscan-SE, miRscan etc.) and
those which are general approaches applicable to all struc-
tured RNAs (e.g. INFERNAL). Each approach has its
advantages and disadvantages. The specific tools use fam-
ily specific properties to maximize speed and sensitivity
but a new approach is required for each new RNA class.
General tools can be used to detect members of any RNA
class; however they are slower.

The most sensitive general-purpose method available for
riboswitch search is the Covariance Model (CM). CM can
be viewed as profile stochastic context free grammar
which scores a combination of sequence consensus and
RNA secondary structure consensus. Searches using CM
require high quality hand curated RNA sequence align-
ments along with covariation information. These searches
are complicated due to the incorporation of two levels of
information and therefore require a huge amount of com-
puting time. The search time scales roughly with the cube
of the query length, so it becomes practically infeasible to
search databases using larger RNA models.

The aim of this study is to develop a fast and efficient
method for riboswitch identification. We propose profile
Hidden Markov Models (pHMMs) [20] for consensus
modelling of riboswitch sequences and their applicability
for riboswitch detection. The method was used to search
the Refseq database for riboswitches belonging to differ-
ent classes. The whole genome search results as well as
computational time required for the searches were com-
pared with the Covariance Model. We find that our
pHMM-based method is able to detect riboswitches
belonging to eight of the ten families with high sensitivity
and specificity while being more than a hundred times
faster than the CM. We also compared our method with
other web-based tools available for riboswitch discovery
such as RibEx and Riboswitch finder. In both cases, our
method is either more sensitive or as sensitive as the other
method in detecting riboswitches. Our results indicate
that pHMMs provide a fast and effective alternative for
genome wide riboswitch searches.

Results and Discussion
Hidden Markov Models (HMMs) [21,22] provide a coher-
ent theory for probabilistic modelling of proteins and
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nucleotide sequences. HMMs have been demonstrated to
be effective in detecting conserved patterns in multiple
sequences [23]. A profile HMM (pHMM) [20,24] is an
HMM with a structure that allows insertions and deletions
in the model, and models gaps in a position dependent
manner to give position sensitive gap scores. pHMMSs can
be constructed from a set of sequences belonging to a fam-
ily and can be used for selective and sensitive database
search for finding other members of that family. In this
study we used two well known pHMM packages, SAM
(referred in the text in uppercase italics to distinguish it
from the Sam riboswitch family) [25] and HMMER [26]
to construct pHMMs for each riboswitch family and used
them to search for riboswitches in the Refseq database.
SAM is known to be sensitive at model estimation while
HMMER is known for more accurate model scoring [27].
Therefore SAM was used for pHMM construction and
HMMER was used for database searching (as described in
"Methods").

Performance evaluation of the models constructed for
different riboswitch families

The pHMMs constructed for each riboswitch family were
used to screen and classify the sequences in the test data
set. The construction of the test dataset is described in
Methods. For a given threshold score, a particular family
model can classify member of a family in the test set either
as a true positive (TP), if it correctly identifies it or as false
negative (FN) if identifies it incorrectly as non family
member. Similarly the model can classify non family
members in the test set either as true negatives (TN), if
predicts them correctly as non family member or as false
positives (FP), if it predicts them incorrectly as a family
member. Using these terms, sensitivity i.e. the fraction of
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the true matches that are accurately predicted by the
method (calculated as TP/(TP+FN)) and specificity i.e. the
fraction of all sequences predicted as matches that are
indeed true matches (calculated as TP/(TP+FP)) may be
used to measure the performance of a classifier. Receiver-
Operator Characteristic (ROC) curves (1 - specificity v/s
sensitivity)[28] generated for each family model indicate
the discriminating potential of the HMM profile is high
for all families except Sam alpha and PreQ1. ROC for two
of the families Lysine and Sam alpha, are shown in Figure
1 and for other families the curves are provided in Addi-
tional files 1, 2, 3, 4, 5, 6, 7, and 8.

pHMMs for all the families except Sam alpha and PreQ1,
show high sensitivity and specificity at the default
HMMER threshold (threshold values for all classes are
listed in the file "cutoff" in http://ccbb.jnu.ac.in/data/
models/). Sam alpha models were least sensitive while
PreQ1 models were least specific. The cutoff threshold for
PreQ1 was redefined so as to enhance the specificity of the
model. The new threshold value of 7, at which PreQ1
model maintains high sensitivity and specificity, was
selected. The threshold was decided on the basis of the
scores assigned to the sequences in the test set. The sensi-
tivity and specificity for all the families are reported in
Table 1.

Comparison of pHMMs with the Covariance Models

Although models have been generated and evaluated on
the constructed test set, however it may not necessarily
reflect the true randomness and signals observed in real
whole genome data. In order to test the performance of
our method for genome wide searches, we used the
pPHMM models for scanning Refseq database [29] and
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Table I: Sensitivity and Specificity for different riboswitch
families.

Family Sensitivity Specificity
FMN 0.99 |
Cobalamin 0.99 |
TPP 0.99 |
Purine | |
Sam | |
Sam alpha 0.67 |
Glms | |
Glycine | |
Lysine 0.97 |
PreQIl 0.95 0.95

compared the results with the current most successful gen-
eral approach for ncRNA homolog detection, the Covari-
ance Model (CM) [30]. CMs are probabilistic models that
flexibly describe the secondary structure and the primary
sequence consensus of an RNA sequence family. They are
very sensitive and capture twice as much information as
an HMM but have the drawback of being extremely slow.
The main advantage of our pHMM-based method over the
CM is the time factor. The pHMM-based method is several
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hundred times faster than the CM method. The scanning
time (calculated over genomes of different lengths) taken
by pHMM and CM for each riboswitch class is shown in
Figure 2. pHMMs are extremely useful for large database
searches as they are fast and take substantially less com-
puting time.

CMs and pHMMs were used to scan the Refseq database
for the candidates belonging to each of the ten riboswitch
families. These families show different levels of sequence
conservation and are of variable length. Some families
like FMN and Sam are highly conserved while others like
Cobalamin and Lysine show low sequence conservation.

The results obtained from the two different approaches
were compared to determine how well the pHMM based
models work for riboswitch identification. The genomic
context of the exclusive hits were examined to determine
their validity. While fool-proof validation of the exclusive
hits can only come from their experimental detection, the
relevance of the genomic context of the exclusive hits (the
downstream genes are implicated in the ligand biosynthe-
sis) allow for the possibility that these hits are genuine
riboswitches. The performance of the pHMMs for each
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Figure 2

Comparison of computational time of CM, RAVENNA and pHMM searches for different riboswitch families. Red
- CM, green - RAVENNA, pink - pHMM. Time is represented on log scale. It shows that pHMMs are several 100 times faster
than CM. 73 complete genomes from Refseq database with size ranging from 20 KB to 13 MB were used to calculate comput-

ing time for different approaches.
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riboswitch class is shown in Figure 3. It was found that
pHMMs work best for families characterized by distinct
conserved sequence motifs in their aptamer region. Out of
the ten riboswitch families studied here, eight families
showed high CM hits coverage, ranging from 97.45% to
100% when hits upstream of hypothetical and putative
genes are ignored and 96.83% to 99.95% when hits
upstream of hypothetical and putative genes are taken
into account. For two families, Sam alpha and PreQ1 the
coverage was relatively low at 69.02% and 90.94% respec-
tively. Very few sequences were available for model build-
ing in both of these cases. This suggested that the training
set used for profile construction was inadequate to cap-
ture the full range of sequence variability within these
families, thereby accounting for the poor performance of
pHMM. Therefore models for these two families were
built again from a larger training set. These training
sequences were obtained after scanning Refseq database
with pHMMs and filtering hits with E-vlaue less than 10e-
5. However, models built from larger training sets also did
not improve the results substantially for these two classes.
It is known that both Sam alpha and PreQ1 have a very
small aptamer domain with relatively simple secondary
structure. Almost all riboswitch classes have highly con-
served sequence patterns interspersed in their aptamer
domains, which are modelled efficiently using pHMMs.
However PreQ1 and Sam alpha being unusually small
carry very few nucleotide positions that are highly con-
served, thus making detection by the profile HMM
method inadequate for these families. This explains the
relatively low coverage of CM hits for these families. Thus
for all families except Sam alpha and PreQ1, the two
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approaches were almost comparable. For all families, the
exclusive CM and exclusive pHMM hits were analysed for
their authenticity. The exclusive CM hits obtained for dif-
ferent families were found to be relatively low scoring
thereby suggesting that these hits must have highly
diverged sequence motifs which may not be detected just
on the basis of sequence similarity using methods like
pHMMSs. The highest number of exclusive CM hits was
found for Sam alpha. The exclusive pHMM hits obtained
were also mostly low scoring and may be recovered using
the CM by lowering the threshold score for identifying
genuine riboswitches. However, this may increase the
number of spurious hits as well. The highest number of
exclusive pHMM hits was obtained for Cobalamin.

The overlap between CM and pHMM hits for each family
is summarized in Table 2. Results for each riboswitch fam-
ily are discussed in detail below.

FMN riboswitch

This riboswitch class is characterized by the greatest
degree of sequence conservation among members that are
widely distributed across diverse bacterial species. When
CM search results for FMN family were compared with
that of pHMM,, it was found that 99.40% of the CM search
hits were obtained using pHMM based search. Exclusive
CM and exclusive pHMM hits were analyzed in detail.
When hits that are located upstream of hypothetical or
putative genes were ignored, the percent hits covered by
PHMM increased to 100%. Thus it is plausible that none
of the exclusive CM hits appear be true positives. However
one genuine hit was picked exclusively by pHMM.
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Performance of pHMM for different riboswitch classes. (a). Exclusive CM hits and common hits that are picked up by

pHMM as well as CM are shown on normalized scale. Orange indicates common hits while green indicates hits picked exclu-

sively by CM. (b). Exclusive pHMM hits and common hits that are picked up by pHMM as well as CM are shown on normalized
scale. Orange indicates common hits while green indicates hits picked exclusively by pHMM.
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Table 2: Percentage of CM hits covered by pHMM.
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Family Total hits(CM) Total hits(pHMM) Common hits % of CM hits covered by % of CM hits covered by
pHMM ¥ pHMM I|I¥#

FMN 844 831 830 99.40% 100%
Cobalamin 1713 1807 1703 99.41% 99.59%
TPP 2245 2250 2242 99.95% 99.95%
Lysine 651 621 618 97.45% 98.25%
Glycine 1185 1260 1174 99.66% 100%
Purine 595 645 594 99.83% 99.83%
Sam 1262 1278 1255 99.44% 99.68%
Sam alpha 194 233 127 69.02% 75.14%
Glms 172 154 153 96.83% 97.45%
PreQl 332 2387 267 90.94% 98.84%

I#: percentage coverage was calculated after removing hits lying in gene, in AT repetitive region and those which were located far upstream of the
genes. |I#: percentage coverage was calculated after removing hits lying in gene, in AT repetitive region, those which were far upstream of the
genes, as well as those hits that were upstream of putative and hypothetical genes.

Cobalamin riboswitch

This riboswitch class is also widely distributed amongst
bacterial genomes. It has the largest average length and
shows poor sequence conservation. A comparison of CM
and pHMM results showed that 99.41% of the CM hits
were reported by pHMM. After removing hits upstream to
hypothetical and putative genes, this coverage increased
t0 99.59%. Seven genuine hits were found exclusively by
CM search and forty-seven genuine riboswitch candidates
were detected exclusively by pHMM search. The validity of
the exclusive pHMM hits was determined by taking into
account the genomic context in which they appeared.

Glms riboswitch

Glms is the only known riboswitch to exhibit ribozyme
activity. It also shows high degree of sequence conserva-
tion and is found only in a few bacterial groups. For this
family 96.83% of the total CM hits were also picked by the
pHMM method. On closer inspection of the exclusive CM
hits, it was found that many of these were in AT-rich repet-
itive regions that are unlikely to be valid riboswitches.
Considering them as false positives and after excluding
hits in the upstream of hypothetical and putative genes,
only five genuine riboswitches were found exclusively by
CM search and one genuine riboswitch candidate was
found exclusively by the pHMM method.

Lysine riboswitch

The Lysine riboswitch shows low sequence conservation
and is not very abundant in bacterial species. As in the
case of the Glms riboswitch, many of the exclusive CM
hits were in AT-rich repeat regions. After removing all such
spurious hits, 97.45% of CM hits were recovered by
pPHMM search. When hits lying upstream to hypothetical
and putative genes were discarded, only eleven exclusive
CM hits and two exclusive pHMM hits were obtained.

Purine riboswitch

The Purine riboswitch is found in few bacterial groups and
shows intermediate sequence conservation. For the Purine
riboswitch 99.83% of the total CM hits were found using
the pHMM model. One exclusive pHMM hit and one
exclusive CM hit was found. There were no hits lying
upstream to hypothetical or putative genes.

Sam riboswitch

The Sam riboswitch shows high-level sequence conserva-
tion. 99.44% of the total CM hits were recovered using the
PHMM search method. After removing hits upstream to
hypothetical as well as putative genes only three exclusive
CM hits and seventeen exclusive pHMM hits were
obtained.

TPP riboswitch

This is the most abundant riboswitch and is known to be
present even in eukaryotes. It has intermediate level of
sequence conservation. When CM hits were compared
with those obtained using the pHMM method, it was
found that 99.95% of the CM hits overlapped with the
pHMM set. One exclusive CM hit and five exclusive
pHMM hits were found to be true riboswitches on the
basis of their genomic context. No hits upstream to hypo-
thetical or putative genes were present in exclusive CM set.

PreQ| riboswitch

PreQ1 has an unusually small aptamer domain with a
simplified secondary structure consisting of a single stem
loop structure. 90.94% of the CM hits were also obtained
by pHMM search. After hits upstream of hypothetical and
putative genes were eliminated, the coverage increased to
98.84%. However twenty four exclusive pHMM hits were
found.
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Glycine riboswitch

Glycine riboswitch is the only known metabolite binding
riboswitch that consists of two metabolite binding
aptamer domains in tandem. 99.66% of the CM search
hits were obtained using the pHMM method. After dis-
carding hits lying upstream to putative and hypothetical
genes, twenty-seven exclusive pHMM hits were obtained;
however no exclusive CM hits were detected.

Sam alpha riboswitch

The Sam alpha riboswitch is found predominantly in
alpha proteobacteria. It is a short riboswitch with a rela-
tively simple structure composed of a single hairpin.
When CM hits were compared with the profile HMM
results, it was found that the pHMM method covered only
69.09% of the CM hits. After discarding hits lying
upstream to putative and hypothetical genes, forty-two
exclusive CM hits were obtained and pHMM coverage of
CM hits increases to 75.14%. Only two hits were detected
exclusively by the pHMM method.

When we had nearly completed our analysis with covari-
ance models using Infernal 0.72 [31], the new Infernal
version 1.0 was released [32]. Since CM search requires a
large amount of computing time, the new version imple-
ments two rounds of filtering to reduce the search time.
The HMM filtering technique as described in [33,34] is
applied first and then query-dependant banded CYK max-
imum likelihood search algorithm is used as a second fil-
ter [31]. It has been found that the default filters accelerate
the similarity search by about 30-fold overall, while sacri-
ficing a small amount of sensitivity. However, the models
with little primary sequence conservation cannot be effec-
tively accelerated by primary sequence based filters [32].
Although version 1.0 is faster than 0.72, it is still quite
slow compared to pHMM searches. The comparison of
riboswitch search times using Infernal 1.0 and our
pHMM-based method, for different riboswitch families, is
shown in the Additional file 9.

We also used Infernal 1.0 to scan the Refseq database for
scanning the riboswitch families and found that at the
same threshold (i.e. same as the one used for infernal 0.72
version), the hits reported by both the versions were sim-
ilar except for TPP and PreQl where Infernal 0.72
reported more hits than Infernal 1.0. However Infernal
1.0 was found to be more specific as it did not report spu-
rious hits in AT repetitive regions. Comparison of pHMMSs
with CM generated using Infernal 1.0 did not change the
reported pHMM coverage of CM hits much (data not
shown).

Comparison with pHMM based heuristic for ncRNA
detection

Extremely slow scans using CMs have inspired the use of
heuristics to improve speed. Rfam uses a BLAST based
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heuristic. For each ncRNA family, the known members are
BLASTed against RFAMSEQ); the full CM is run only on
matches returned by BLAST. These searches are acceptably
fast, but the BLAST heuristic may miss family members
that would be found with a regular (slower) CM search.
Profile HMM based filters such as rigorous filers and Max-
imum-Likelihood(ML) heuristics have also been devel-
oped [34,35]. Rigorous filters guarantee that all homologs
detectable by a given CM are selected by the filter (i.e.
ensures high sensitivity) but does so at the expense of
speed since building rigorous filters can take several hours
[35]. In ML-heuristic, profile HMMs are constructed from
a given CM. The HMM transition and emission probabil-
ities are designed to make the HMM maximally similar to
CM [35]. These pHMM based filters have been imple-
mented in the RAVENNA package. For each family CM,
ML-heuristic profile HMM was built and used to scan the
RefSeq database. The search speed was greatly enhanced
as compared to CMs, nevertheless they were still slower
(ranging from twice as slow to more than 10 times slower,
depending on the riboswitch family) than purely
sequence based profiles. The computational time required
by an ML-heuristic profile HMM and sequence based
pHMMs is compared in Figure 2. The number of hits
obtained for most of the families (when an ML-heuristic
profile HMM is used) is the same as that obtained from
the CM searches. Therefore the percentage coverage statis-
tics does not change.

Comparison with other web based tools available for
riboswitch identification

To determine the efficacy of our method relative to other
riboswitch detection methods, we carried out a compari-
son of our approach with the Riboswitch finder and RibEx
packages.

RibEx (Riboswitch Explorer) [36] scans RNA sequences
for Riboswitch like elements (RLE) by examining its com-
prehensive list of overrepresented riboswitch sequence
motifs [37] which has been compiled using the motif dis-
covery and searching tools MEME [38] and MAST [39]
respectively. Since MEME represents motifs as position-
dependent letter-probability matrices that do not contain
gaps, such an approach is likely to fail when functionally
similar sequences show insertions or deletions within
motifs. It is known that for the most abundant ribos-
witches, RibEx perform very well when compared with the
co-variance models (~90% coverage when analysing bac-
terial sequences). However less common riboswitches
(e.g. lysine and purine) are more difficult to model with
sequence-based weight-matrices and RibEx recover
between 70 and 80% of these riboswitch family members
given in Rfam [36]. Also RibEx does not provide an option
to search for PreQ1 and Sam alpha riboswitch family
members. Since RibEx also follow a purely sequence
based approach, it may not be very effective in detecting
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riboswitches belonging to these families which are charac-
terized by short and low complexity sequence motifs. The
comparison between RibEx and our pHMM-based
method was carried out for remaining eight families. The
performance of RibEx with pHMM was compared on the
test set containing full family members for each of the
riboswitch class obtained from Rfam database. The results
are summarized in Table 3. Results clearly indicate that
pHMMs miss fewer true positives for all riboswitch classes
as compared to RibEx and hence show better accuracy.

Another tool available for riboswitch identification is
Riboswitch finder [40]. It uses sequence patterns, second-
ary structure prediction and scoring functions for the
detection of a riboswitch in a given sequence. However
this software is specifically designed for the purine-sens-
ing riboswitch only. Earlier Riboswitch finder has
reported a total of 18 putative purine riboswitches in
genomic sequences of Bacillus anthracis, Bacillus cereus,
Enterococcus faecalis, Lactobacillus plantarum, Bacillus stearo-
thermophilus, Clostridium tetani, Listeria innocua and Vibrio
parahaemolyticus. We scanned these genomes with Purine
specific pHMM model and not only recovered the hits
reported by Riboswitch finder but also found two new
hits, one in Bacillus anthracis and the other in Bacillus
cereus. We also scanned full members of Purine riboswitch
family available in Rfam using Riboswitch finder. Ribos-
witch finder could detect only 114 out of 122 sequences
listed in Rfam. In contrast, our pHMM-based method
detected all of them.

Conclusion

Accurate identification of riboswitches across entire
genomes of varying lengths is the first step towards analys-
ing the patterns in their intra and inter-genomic distribu-
tion. The distribution patterns of riboswitches can reveal
important information regarding their evolution. It is
therefore imperative to develop a framework for rapid and
efficient detection of riboswitches across diverse genomes.
Riboswitches are different from other ncRNA's by virtue of
their relatively longer lengths and distinctive folding pat-
terns. This is often manifest in the high level of primary
sequence conservation that is observed between ribos-

http://www.biomedcentral.com/1471-2105/10/325

witches belonging to the same family. This aspect has
been exploited in our method of riboswitch detection.

The strength of the pHMM based approach for riboswitch
identification lies in its speed as well as its accuracy (for all
except two families) in identifying riboswitches. The suc-
cess of the pHMM based approach to riboswitch identifi-
cation depends on several factors such as the degree of
primary sequence conservation, the presence of distinct
and easily distinguishable sequence motifs in the aptamer
domain and the availability of sufficiently large number
of training sequences for model building, which ade-
quately capture the distinct features of each riboswitch
class. If the training set is small but the primary sequence
conservation is high with distinct and easily identifiable
motifs then the effectiveness of the pHMM s in detecting
riboswitches will be high as in the case of FMN, Glms and
Purine. Even for families with overall low sequence con-
servation (such as Cobalamin and Lysine) but which carry
short stretches of multiple distinct motifs, pHMM per-
forms extremely well. However if a family lacks highly
conserved sequence motifs or has low complexity motifs,
then the performance of pHMM will be poor as in the case
of Sam alpha and PreQ1. Therefore these riboswitch fam-
ilies, which are characterized by short aptamer domains,
lacking highly conserved sequence motifs cannot be
found with high sensitivity and specificity using this
approach.

We believe that the riboswitch identification framework
developed in this paper (see also http://ccbb.jnu.ac.in/
data/models/ for resources related to this paper) will be
useful in screening genomic sequences to accurately and
rapidly identify not only riboswitches but any other class
of RNA's that are relatively long and characterized by mul-
tiple distinct sequence motifs.

Methods
The workflow of our approach is illustrated in Figure 4.

Training dataset for model building
Sequences for pHMM construction for each riboswitch
family were obtained from the Rfam database (version

Table 3: Comparison of the performance of the RibEx package with pHMMs.

Family Number of sequences in the test set Number of sequences predicted by Number of sequences predicted by
RibEx pHMM

FMN 183 183 183

Cobalamin 306 302 305

TPP 496 465 495

Glycine 217 184 217

Lysine 112 82 11

Purine 122 107 122

Sam 298 298 298

Glms 44 44 44
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Seed sequence alignments annotated with
secondary structure information obtained
from Rfam and used for CM construction

pHMM estimation from unaligned
seed sequences

Infernal
(cmbuild)

v

Covariance models for the riboswitch
family

SAM
(alignZ2model)

Alignment of seed sequences
to pHMM

SAM
(modelfromalign)

pHMM for the riboswitch family

Infernal
(cmsearch))

HMMER
(hmmsearch) Refseq database search 1

Validation of the hits on the basis of genomic context

Figure 4

Flowchart of the approach. This figure illustrates the workflow of our approach
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8.1) http://www.sanger.ac.uk/Software/Rfam/. Rfam is a

comprehensive collection of ncRNA families, represented
by multiple sequence alignments and profile stochastic
context-free grammars (CM) [41]. "Seed sequences"
which represent a set of known members of a riboswitch
family were used to train the pHMM. It is necessary to
remove redundant sequences from the training and test-
ing data as it influences the performance of a method
[42,43]. Therefore prior to model building, the training
sequences were clustered on the basis of sequence similar-
ity using blastclust [44]. Sequences that were 90% similar
over 90% of their length were considered to be duplicates
and hence were eliminated from the seed sequences thus
generating the training set.

Test dataset for model evaluation

The Rfam database was developed for the annotation of
structured RNA families of genomic sequences, but it has
been widely used as a source of reliable alignments and
structures for the purposes of training as well as bench-
marking RNA sequence and secondary structure analysis
software. In order to test the performance of our method
we obtained sequences from Rfam. For each RNA family
Rfam provides seed sequences, which represent the
known members of a particular family and the full collec-
tion of family sequences, which contains known members
as well as those predicted by CM search. We downloaded
fasta sequences of all the Rfam members filtered to less
than 90% identity. This data not only includes the ribos-
witch family sequences but also contains over 597 other
regulatory RNAs which have been compiled after scan-
ning over 400 complete genomes. This data set was
screened and the training sequences used for building
pHMMs for each of the riboswitch family were removed.
Fifty random sequences were also generated and included
in the test set.

Profile Hidden Markov Model construction

There are two packages available for pHMM construction,
SAM and HMMER. The model was estimated using SAM's
expectation maximization algorithm, buildmodel. The
alignment of the training sequences to the resulting HMM
was accomplished with SAM's align2model program.
pHMMs were then constructed using the modelfromalign
program which uses alignment generated by the
align2model program. The profiles thus obtained were
converted to HMMER-compatible format using the pro-
gram sam2hmmer available with the SAM package. The
profiles were then used to search microbial sequences in
the RefSeq database version 28 using the hmmsearch pro-
gram from HMMER. The pHMMs for different riboswitch
families are provided in Additional files 10, 11, 12, 13, 14,
15, 16, 17, 18 and 19. The detailed commands and the

http://www.biomedcentral.com/1471-2105/10/325

pPHMMSs can be obtained at http://ccbb.jnu.ac.in/data/

models/

CM model construction

In order to objectively compare the computing times of
the pHMM and CM methods, it was necessary to carry out
riboswitch searches using both methods on the same
computing platform. Therefore, covariance models were
constructed using the Infernal software package version
0.72 http://infernal.janelia.org/. CM describes both the
secondary structure and the sequence consensus of an
RNA. CM construction needs sequence alignment along
with secondary structure annotation, therefore they were
trained on the seed sequence alignments available in
Rfam (version 8.1) using the cmbuild program from Infer-
nal. These are manually adjusted alignments annotated
with secondary structure information. CMs thus con-
structed were then used to search microbial genomes in
the Refseq database using cmsearch program from Infer-
nal. Rfam "gathering threshold" was taken as the cutoff
threshold for each family (both for CMs as well as for ML-
heuristic pHMMs). All the hits scoring above the thresh-
old for the respective families were considered as legiti-
mate riboswitch candidates.

Calculating pHMM coverage of CM hits

The results of the pHMM and the CM searches were com-
pared to obtain the sets of common hits picked by both
the approaches and the hits picked exclusively either by
the pHMM or the CM method. Known riboswitches are
generally present at the 5'-ends (UTRs) of the genes impli-
cated in the metabolism of their target molecules. There-
fore, genomic contexts of the hits can be used to ascertain
the authenticity of the riboswitches identified exclusively
by either of the search methods. The exclusive hits
obtained from both the approaches were examined with
respect to the genomic context of the downstream gene to
calculate the percentage of CM hits covered by the pHMM.
The percentage was calculated in two different ways and is
reported in Table 2. Hits located within the genes or far
upstream of the genes (thousands of base pairs upstream)
were considered as false positives. Hits lying in repetitive
regions were ignored. Hence, the estimation of the per-
centage coverage of CM hits by pHMM hits was calculated
after removing all the above mentioned false positives.
For a conservative estimate we included the hits lying
upstream of hypothetical or putative genes because such
hits may possibly be indicative of genuine riboswitches.
However, in the second case we calculated the percentage
coverage by removing the hits upstream of hypothetical
and putative genes also. In this case, only the hits
upstream of genes known to be involved in the corre-
sponding ligand biosynthesis pathway were considered to
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be legitimate candidates for calculation of percentage cov-
erage.
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