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Abstract
Background: Identification of transcription factor binding sites (TFBSs) is a central problem in
Bioinformatics on gene regulation. de novo motif discovery serves as a promising way to predict and
better understand TFBSs for biological verifications. Real TFBSs of a motif may vary in their widths
and their conservation degrees within a certain range. Deciding a single motif width by existing
models may be biased and misleading. Additionally, multiple, possibly overlapping, candidate motifs
are desired and necessary for biological verification in practice. However, current techniques either
prohibit overlapping TFBSs or lack explicit control of different motifs.

Results: We propose a new generalized model to tackle the motif widths by considering and
evaluating a width range of interest simultaneously, which should better address the width
uncertainty. Moreover, a meta-convergence framework for genetic algorithms (GAs), is proposed
to provide multiple overlapping optimal motifs simultaneously in an effective and flexible way. Users
can easily specify the difference amongst expected motif kinds via similarity test. Incorporating
Genetic Algorithm with Local Filtering (GALF) for searching, the new GALF-G (G for generalized)
algorithm is proposed based on the generalized model and meta-convergence framework.

Conclusion: GALF-G was tested extensively on over 970 synthetic, real and benchmark datasets,
and is usually better than the state-of-the-art methods. The range model shows an increase in
sensitivity compared with the single-width ones, while providing competitive precisions on the E.
coli benchmark. Effectiveness can be maintained even using a very small population, exhibiting very
competitive efficiency. In discovering multiple overlapping motifs in a real liver-specific dataset,
GALF-G outperforms MEME by up to 73% in overall F-scores. GALF-G also helps to discover an
additional motif which has probably not been annotated in the dataset. http://www.cse.cuhk.edu.hk/
%7Etmchan/GALFG/

Background
In this section, motif discovery is introduced, followed by
the summarization of existing methods, and methods
beyond the scope of this paper. Motivations are then
given and the paper layout is presented.

Motif Discovery
Transcription Factor Binding Sites (TFBSs) are small
nucleotide fragments (usually ≤ 30 bp) in the cis-regula-
tory/intergenic regions in DNA sequences. Regulatory
proteins, namely the Transcription Factors (TFs), bind in

Published: 7 October 2009

BMC Bioinformatics 2009, 10:321 doi:10.1186/1471-2105-10-321

Received: 21 January 2009
Accepted: 7 October 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/321

© 2009 Chan et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 22
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/321
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19811641
http://www.cse.cuhk.edu.hk/%7Etmchan/GALFG/
http://www.cse.cuhk.edu.hk/%7Etmchan/GALFG/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:321 http://www.biomedcentral.com/1471-2105/10/321
a sequence-specific manner to TFBSs to activate or sup-
press gene transcription (gene expression). Therefore,
TFBSs are a critical component in gene regulation, and
identification of TFBSs is a central problem for under-
standing gene regulation in molecular biology.

The DNA binding domain(s) of a TF can recognize and
bind to a collections of similar TFBSs, from which a con-
served pattern called motif can be obtained. Based on this
phenomenon, de novo motif discovery using computa-
tional methods have been proposed to identify and pre-
dict TFBSs and their corresponding motifs. Motif
discovery provides significant insights into the under-
standing of the mechanisms of gene regulation. It serves
as an attractive alternative for providing pre-screening and
prediction of unknown TFBS motifs to the expensive and
laborious biological experiments such as DNA footprint-
ing [1] and gel electrophoresis [2]. The recent technology
of Chromatin immunoprecipitation (ChIP) [3,4] meas-
ures the binding of a particular TF to DNA using microar-
ray technology at low resolution in a high-throughput
manner, and produces more reliable input data of co-reg-
ulated genes for motif discovery [5].

Existing Methods
Categorization
Because the conservation of motifs is often degenerated
due to TFBS mutations, the searching is difficult (NP-hard
[6]). Extensive algorithms have been proposed for de novo
motif discovery since the last decades. There are two major
representations for TFBS motifs (conserved patterns): (i)
Consensus Representation and (ii) Matrix Representation;
and there are two main different searching paradigms: (a)
Enumeration Methods and (b) Stochastic Searching [4].
They are briefly described as follows:

(i) Consensus Representation is based on discrete
strings. A simple model is to minimize the mismatches
between the consensus and the TFBS instances [7-10].

(ii) Matrix Representation is usually a Position Fre-
quency Matrix (PFM; see Table 1), or a Position Weight
Matrix (PWM), to show the quantitative frequencies or
weights of nucleotides in the motif. Representative evalu-
ations for a motif matrix include Information Content
(IC) [11], maximum a posterior (MAP) [12] and the Baye-
sian models [13] (see the probabilistic models in Methods
section).

The searching techniques with respect to the two represen-
tations, are discussed below.

(a) Enumeration Methods are usually applied [7,8,14-
16] to the consensus representation, but they do not scale
up for long widths. However, they are useful to provide
candidates for further searching and evaluations
[5,17,18]. Weeder [15,16] is one well-known representa-
tive in this category.

(b)Stochastic Searching is usually applied to align TFBSs
and obtain the motif matrix for the matrix representation.
Typical techniques can be categorized into local search-
ing [5,12] and global searching, where the latter can be
classified into (S) Single-point and (M) Multi-point or
group-based searching. Global searching is more likely
to find the global optima compared with local searching.
While Gibbs sampling is popular in motif discovery tools:
e.g. BioProspector [19], AlignACE [20] and MotifSampler
[21]). Its single-point nature requires numerous iterations
to converge to the global optima, otherwise the perform-
ance may be affected significantly. Alternatively, the
multi-point global searching approach, the genetic algo-
rithm [22,23], has shown promising results in motif dis-
covery [9,10,24-28]. There is great potential for them to be
applied to more sophisticated models and provide multi-
ple optimal motifs [26].

Table 2 summarizes the representations, the associated
models and the searching techniques employed by the

Table 1: Motif discovery example. 

Sequences S SIM A TFBSs R PFM Θ (4 × w(= 7))

S1: acgtCGATTGCctaag 0000100000000000 CGATTGC
S2: taTGATCGAtgacgca 0010000000000000 TGATCGA A: 0.0 0.2 0.6 0.1 0.1 0.0 0.7
S3: cgaCAATTGAgcttac 0001000000000000 CAATTGA C: 0.8 0.0 0.2 0.3 0.3 0.2 0.3
S4: gCGCTCGAcaagctgt 0100000000000000 CGCTCGA G: 0.0 0.8 0.0 0.0 0.0 0.8 0.0
S5: cgttTGTCACAgtcta 0000100000000000 TGTCACA T: 0.2 0.0 0.2 0.6 0.6 0.0 0.0
S6: tcagcCACACCCagct 0000010000000000 CACACCC
S7: ccagagCGTCTGAttg 0000001000000000 CGTCTGA Background: Θ0:
S8: gacttcaCGACTGAgc 0000000100000000 CGACTGA θ0A = 0.24 θ0C = 0.29
S9: gctgcccatCGATTGA 0000000001000000 CGATTGA θ0G = 0.24 θ0T = 0.23
S10: ccaggtacCGATTGCa 0000000010000000 CGATTGC

An artificial example of motif discovery. It shows the sequences S, the SIM A, the motif instances R, the PFM Θ and the background frequencies Θ0. 
In sequences S, the nucleotides from the background are shown in lower case, while the nucleotides from the motif instances in upper case.
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motif discovery methods. The table serves to illuminate
the representative methods in each category including
those we have compared in our experiments.

Methods beyond
Methods out of the scope of this paper but worth intro-
ducing are briefly mentioned as follows: Ensembles of
multiple motif discovery programs have been recently
shown to improve their performance [4,29,30]. However,
modelling TFBS motifs is critically beneficial for better
understanding and predicting novel motifs, and provides
essential performance improvement for ensembles. As a
result, we will focus on individual motif discovery meth-
ods in this paper.

Incorporating additional information sources [31,32] is
another trend to improve the motif prediction accuracy.
While extra requirements are needed for their success, the
sequence-based motif discovery problem remains chal-
lenging [33-35] and calls for our serious attention because
generalization and improvement on the sequence-based
methods will without doubt help the integrated
approaches.

Motivations
Challenges
There still exist great challenges for de novo motif discovery
algorithms to succeed. Challenges mainly include (i) NP
hardness (ii), width uncertainty and (iii) multiple (over-
lapping) motifs, of which the latter two demand for more
focus.

• (i) NP hardness: The most well-known challenge is
the NP hardness [6] due to the unknown conservation
degree, where extensive approaches have been pro-
posed to achieve optimality under certain models, as
surveyed in the last sub-sections.

• (ii) Width uncertainty: An often overlooked chal-
lenge in real-life problems is the uncertainty in the
motif widths.

In real datasets, it is not easy to determine a single
motif width (1) experimentally or (2) biologically. (1)
Experimental: Annotated TFBSs are often affected by
limited experimental resolutions, and it is thus diffi-
cult to choose any single width to fit the TFBSs before
a motif can be discovered. (2) Biological: The most
conserved binding contacts are between the short
binding core of the target TFBS and the binding
domain of a TF. The binding core may be fixed-width
(< 6 bp). However, the short binding core may not
provide enough binding affinity for its corresponding
TF to recognize. Instead, a TF contain flexible segments
of polypeptide chain, and these flexible arms work
together with the DNA binding domain of the TF to
add additional affinity [36]. The complication makes
the effective width not easy to be fixed at a single
value. For example, the TFBS widths vary in the famil-
ial binding cases of the Zn2-Cys6 motif [37].

Existing methods usually assume a known and fixed
TFBS motif width or model a distribution around an
expected width when there are uncertainties involved.
The conservation contributed from different motif

Table 2: Motif discovery methods summary. 

Representations
(i) Consensus
(ii) Matrix and Evaluations

(a) Enumerations (b) Stochastic Search

Exhaustive Non-exhaustive Local Global

Single-point (Gibbs Sampling) Multi-point (GAs)

(i) Hamming [7,8] [14] [17,18] [9,10]

Z-score Weeder [15,16] [24]

(ii) IC [41] [46] [10], GALF-P [28]

Bayesian BioOptimizer [40] BioProspector [19]
Motif Sampler [21]

GAME [27]

MAP MEME [12]
MDScan [5]

AlignACE [20]

Summary of the representative motif discovery methods. The methods included in our comparison experiments are shown with their names. IC 
stands for Information Content.
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parts by varying the widths may be under-utilized in a
single-width approach, and the so-called expected
value may be misleading and biased. Statistical signif-
icance to rank different widths, e.g. E-value [38], is
computational intensive and still only picks a single-
value width at the end. In the illustrative example of a
real motif with 19 LexA binding sites in Figure 1, if a
single width is chosen, it may be 5 if only the stringent
core part (3-7) is chosen; or it may be 12 if considering
all columns (1-12). In the former case, the short motif
may not be ranked higher than those non-TFBS fre-
quent patterns happening by chance. In the latter case,
since both highly and weakly conserved columns are
evaluated equally, it may include additional false pos-
itives. On the contrary, modelling those uncertain
bases with a range concept can better capture the dif-
ferent resolutions for assessing the motif signals, and
thus potentially better describe the real TFBS motif.

• (iii) Multiple (overlapping) motifs: Another chal-
lenge which is not well handled is the overlapping
nature of TFBSs for different motifs because competi-
tive binding exists amongst different TFs in the same
regulatory region. Current techniques used are mainly
masking/erasing and implicit maintaining.

- Masking/erasing: These techniques can only dis-
cover one motif in a single execution, and thus sev-
eral executions are required for outputting
multiple motifs. Masking/erasing techniques also
prohibits the subsequent discovery of the TFBSs
overlapped with those previously masked ones.
However, in real cases, different kinds of TFBSs
may overlap with each other due to competitive
binding of TFs.

- Implicit maintaining: There are existing methods
to sample different motifs simultaneously but with
little or no mechanism to explicitly distinguish dif-

The generalized modelFigure 1
The generalized model. An example of the generalized model on the motif of 19 real LexA binding sites (the first 12 col-
umns) from the SequenceLogo website. Each A(wi) is chosen based on the maximal P(A(wi)), where the bits bounded by the red 
dashes reflect P(A(wi)) for illustrative purpose. In practice, P(A(wi)) can be chosen flexibly.
Page 4 of 22
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:321 http://www.biomedcentral.com/1471-2105/10/321
ferent solutions or flexibly control the overlapping
degrees of TFBSs. As a result, highly redundant
motifs may be produced. If there are limited
number of output solutions, redundant top-scored
variant motifs will dominate and less-fit but differ-
ent solutions will be missed. If non-redundant and
different solutions need to be provided, a large
output number has to be set and post-processing is
required [39] with additional costs.

Therefore, it is desirable to discover multiple motifs
more effectively and efficiently with certain flexible
and explicit overlapping control.

Paper Layout
To overcome all these drawbacks of the existing de novo
motif discovery algorithms, we propose the generalized
model which presents a new angle to handle the variable
motif widths to better reflects the biological uncertainty.
Then we present the meta-convergence framework to
support multiple optimal solutions with flexible overlap-
ping control using similarity tests. Based on the general-
ized model and the framework, a new algorithm called
GALF-G is developed.

The rest of the paper is arranged as follows. The general-
ized model, the meta-convergence framework and the
new algorithm GALF-G are first given. Extensive experi-
mental results are reported, including single/multiple
motif discovery problems with fixed-width/variable
widths inputs. A large number of both synthetic and real
benchmark datasets are used in the experiments. After the
substantial analysis of the results, discussion and conclu-
sive remarks are made. The detailed implementations of
our algorithm are given in the last Methods section.

Results
In this section, we present the generalized model and the
meta-convergence framework in detail, and propose the
resulting GALF-G algorithm.

The Generalized Motif Model
To tackle the challenge raised from the uncertainty of
motif widths, we propose a new generalized model by
considering a width range of interest simultaneously. A
range is more practical and suitable for real biological
cases for two reasons:

• First, it is easier to define a rough range than a partic-
ular width. All widths within contribute accordingly to
the motif solution, and thus it is less sensitive than a
wrongly chosen single width.

• Second, TFBSs of a motif in reality vary in their
widths and exhibit certain higher degrees of conserva-

tion compared to the non-site fragments (the back-
ground). A range model can more appropriately
capture the different conservation degrees than any
single width.

Assume the width input is R = [wmin, wmax] and |R| = wmax
- wmin + 1, and a candidate solution, i.e. a set of TFBSs to
form a motif, is defined as A, with the TFBS positions
denoted by {pi}. The formal problem denotations and
formulations are shown in the Methods section: The Pro-
posed Model and Evaluation. The generalized model eval-
uates A based on the whole range R. An illustrative
example is shown in Figure 1. The model or scoring func-
tion (illustrated by the heights of color nucleotides in the
figure) for a fixed width wi is well established, e.g. a prob-
abilistic model, denoted as P (A(wi)|wi), where P(A(wi)) is
a part from the complete candidate solution A with
respect to wi. The generalized model can then be formu-
lated by summing them together as

For the most common case when there is no prior knowl-
edge on which width is more likely to happen, wi can take
a uniform distribution, i.e. P(wi) = 1/|R| for each wi. On
the other hand, any prior distribution such as the Poisson
one used in Bayesian models [40] can be also adopted.
For each wi-component where wmin ≤ wi <wmax, there are
more than one choice and we only pick the component
A(wi) by argmax(P(A(wi)|wi)) (caps in Figure 1). The addi-
tional computational cost compared to a fixed width
model is O(|R|2), which is feasible since motif ranges
(width variations) are usually short (≤ 10 bp). The major
difference of the generalized model from the previous
ones is that all the widths from the input range R contrib-
ute to the solution score/fitness in the model, rather than
choosing a certain single width by argmax(P(A(wi)|wi) P
(wi)), which has the risk of bias on a certain single value.
If only one width is input, the generalized model reduces
to one of the existing fixed-width models.

Intuitively, the generalized model is a weighted sum of the
probability of different widths from the range R. It is com-
patible with the existing probability models and is even
applicable to non-probability models, as long as there is a
consistent expression of P(A(wi)); here it refers to an eval-
uation function in general. We employ the fixed-width
probabilistic model in our generalized model, which will
be discussed in detail in the Methods section.

The Meta-convergence Framework
For practitioners in molecular biology and medical
research, it is desirable that multiple optimal candidate
motifs can be provided concurrently for biological verifi-

P A P A w w P wi i i

w Ri

( ) ( ( ) | ) ( ).=
∈

∑ (1)
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cation. Due to the limitations of masking/erasing and
implicit maintaining, it is desired to explicitly maintain
different solutions with flexible (typically overlapping)
control efficiently. To address these issues, we propose a
meta-convergence framework employing Genetic Algo-
rithm (GA) with the similarity test as the overlapping con-
trol.

(i) The similarity test is first introduced to fulfill flexible
overlapping control over different motifs. Positional
information is considered since the generalized model
involves a width range R of positions. In particular, to
compare two candidate solutions/individuals Aa and Ab,

the test calculates the relaxed Hamming distance h

between each pair of their aligned TFBS positions: (Aa)

and (Ab) in sequence i,

where tol is the shift tolerance. The similarity test is passed,
if

, where dr is defined as the difference ratio, m indicates the
number of sequences, and st is the similarity threshold.
When dr <st, Aa and Ab are considered to be similar, i.e.
belong to the same motif kind. The intuitive settings of tol,
st for different purposes, and how the test is applied are
detailed and included in Methods: Meta-convergence
Framework Details.

The similarity test proposed allows users to control the
differences between the expected motifs in an easy and
intuitive way. On the contrary, the other possible compar-
isons based on the PFM involve complicated cut-off
which is not trivial to specify and counterintuitive for
common users.

(ii) Meta-convergence, with the similarity test, monitors
the convergence of different optimal solutions and adap-
tively controls the numbers of GA runs rather than using
a relatively large fixed number of GA runs in previous
works [27,28]. Furthermore, only a small number of can-
didates are subject to the similarity test to compete for the
multiple optimal motifs, compared with the other
method [26] that compares the whole population of solu-
tions with non-trivial overhead. Therefore, the efficiency
can be significantly improved. More details can be found
in Methods: Meta-convergence Framework Details.

GALF-G
Incorporating Genetic Algorithm with Local Filtering
(GALF) with the generalized model and the meta-conver-
gence framework, GALF-G (G for generalized) is proposed
to discover multiple optimal motifs with flexible overlap-
ping control using the similarity test. To fit into the gener-
alized model with range input, the operators in GALF are
extended accordingly and detailed in the Methods section:
GALF-G implementations.

In the following section, we will report the results of
GALF-G tested on both synthetic and real benchmark
datasets for various cases, namely fixed-width, variable
width, for single motif [with single (K = 1) or multiple
outputs (K > 1) for single motif] and multiple motifs (K >
1) discoveries.

Experiments
In this section, The summary of the experiments is intro-
duced, and then the experimental results are reported and
analyzed in corresponding categories. Finally experiments
concerning the efficiency of GALF-G are presented.

Experiment Summary
First of all, the evaluation measurements are introduced
here. For most experiments except the benchmark ones
[34,35], the measurements employed are the site level
(prefix s) ones: positive predictive value/precision sPPV,
sensitivity/recall sSn and F-score sF with shift restrictions,
similar to [27,28]. The advantage is that they reflect both
site level and part of the nucleotide level performances
concisely. For the benchmark experiments, we have to fol-
low their standard measurements which employ looser
site level measurements but introduce additional nucle-
otide level (prefix n) PPV (nPPV) and sensitivity (nSn), as
well as performance coefficient (PC) [14,33-35] and cor-
relation coefficient (CC) [33,35] on both levels [see Addi-
tional file 1 for details of evaluation measurements for
different experiments].

(i) Single motif discovery experiments (K = 1) were
firstly performed to test the generalized model. GALF-G
was verified on the 800 synthetic datasets from [28], and
compared with other state-of-the-art algorithms with
fixed-width inputs as a special/degenerative case. GALF-G
was then further tested on the 8 real datasets employed in
GAME [27] with both fixed-width (the assumed true
widths from [27]) inputs and range (variable widths)
inputs relatively close to the true widths. The challenges
raised by the eukaryotic benchmark [33,35] are then
addressed, where there is no dataset-specific prior knowl-
edge on the motif widths and only single motif outputs (K
= 1) and compared.

′pi

′pi

h p A p A
p A p A tol

i a i b
i a i b( ( ), ( ))

| ( ) ( ) |

.
′ ′ =

′ − ′ ≤⎧
⎨
⎩

0

1

if

otherwise

(2)

dr h p A p A m sti a i b
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(ii) Multiple motifs experiments (K > 1) were then per-
formed for two scenarios. In the first scenario, since mul-
tiple candidates are desirable for biological testing even
for single motif discovery [34], GALF-G was tested and
compared with the state-of-the-art algorithms on the 62 E.
coli benchmark datasets [34], without dataset-specific
prior knowledge on the motif widths. In the second sce-
nario, since it is also desirable to discover different real
motifs simultaneously, GALF-G, GAME and MEME were
tested on the real liver-specific dataset with multiple
(overlapping) motifs. Investigating into the exceptional
case of GAME's 8 datasets using GALF-G with multiple
motifs discovery, we discovered a putative motif not
annotated in the dataset previously has been identified.

Single Fixed-width Motif Discovery on Synthetic Data
GALF-G was first verified in the special cases of fixed-
width single motif discovery (K = 1) on the 800 synthetic
datasets used to test GALF-P in [28], which had performed
best for these fixed width cases. We compared GALF-G
with GALF-P, GAME, MEME, BioProspector (BioPro.),
and BioOptimizers based on MEME and BioProspector.
Weeder was not compared because it cannot be run on the
long-width (16) datasets due to its width limit of 12.
Details on generating the datasets were provided in [28]
[see Additional file 1]. The average F-scores sF on the site
level for each scenario are presented in Table 3, with the
best results shown in bold. The full table with precisions
(sPPV), recalls (sSn), including BioOptimizer results
(almost identical to MEME and BioProspector), is shown
in [Additional file 1]. GALF-G and GALF-P are in general
the best among all scenarios, especially in the difficult sce-
narios (for example, short widths and low conservation).
GALF-G is slightly better than GALF-P in the last 4 scenar-
ios. To compare GALF-G with another close competitor,
MEME, t-test was employed [see Additional file 1]. GALF-
G is shown to be better than MEME within the signifi-
cance level 0.05 in 4 out of the 6 scenarios with better sF,

while MEME shows no convincing significance of being
better in the other 2 scenarios.

We do not expect great differences between GALF-G and
other algorithms here, because under the fixed-width
cases the generalized model is similar to other models in
representative power. The experiments demonstrate the
search capability of GALF-G is comparable to or better
than the previous best GALF-P on the synthetic datasets.
The main reason is that they use similar effective searching
techniques based on local filtering [28]. The results from
the synthetic data can be interpreted intuitively with
respect to searching difficulties, because their respective
conservation degrees are explicitly generated. For variable-
width (range) cases, the complicated nature of different
conservation degrees of TFBSs is not easy to model or eval-
uate with synthetic data, hence it is more appropriate to
test different methods with substantial real datasets, and
the experimental results are presented in the following
sub-sections.

Single Motif Discovery on Real Datasets
In this sub-section, GALF-G was evaluated and compared
with other methods on the 8 real datasets used to test
GAME [27], for both fixed and variable widths cases in
single motif discovery (K = 1).

Information of the 8 datasets is shown in Table 4. The
CRP dataset contains the binding sites for cyclic AMP
receptor, and has been widely tested since [41] was pub-
lished. The ERE dataset contains the binding sites for the
ligand-activated enhancer protein estrogen receptor (ER)
[42]. The E2F datsets correspond to TFBSs of the E2F fam-
ily from mammalian sequences [43]. CREB, MEF2, MyoD,
SRF and TBP are chosen from the ABS database of anno-
tated regulatory binding sites [44]. More details of the
datasets can be found in [27].

Table 3: Synthetic experiments. 

Scenarios GALF-G GALF-P GAME MEME BioPro.
Width/Num/Con

Short/Small/Low 0.48 ± 0.29 0.44 ± 0.27 0.30 ± 0.30 0.39 ± 0.35 0.39 ± 0.31
Short/Large/Low 0.55 ± 0.22 0.55 ± 0.22 0.36 ± 0.30 0.42 ± 0.29 0.45 ± 0.23
Long/Small/Low 0.89 ± 0.13 0.89 ± 0.14 0.82 ± 0.22 0.88 ± 0.14 0.83 ± 0.14
Long/Large/Low 0.91 ± 0.06 0.91 ± 0.05 0.90 ± 0.07 0.90 ± 0.07 0.80 ± 0.11
Short/Small/High 0.84 ± 0.07 0.80 ± 0.09 0.75 ± 0.23 0.85 ± 0.07 0.78 ± 0.12
Short/Large/High 0.85 ± 0.04 0.83 ± 0.05 0.83 ± 0.10 0.83 ± 0.04 0.76 ± 0.06
Long/Small/High 0.98 ± 0.02 0.98 ± 0.03 0.97 ± 0.03 0.98 ± 0.02 0.97 ± 0.03
Long/Large/High 0.99 ± 0.01 0.97 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.96 ± 0.02

Average 0.81 0.80 0.74 0.78 0.74

Average site level F-scores for the 800 fixed-width synthetic datasets experiments. ± indicates the standard deviation (over the 100 datasets 
generated for each scenario). Width: the motif width, Num: the number of sequences and Con: conservation degree.
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The comparison studies for fixed and variable widths
cases are given as follows:

(i) Fixed-width single motif discovery (K = 1) experi-
ments were performed, where GALF-P was previously
tested and compared with GAME in a fixed-width man-
ner. GALF-G shows comparable overall F-scores sF (0.81)
to the best average results from GALF-P (0.82) and is bet-
ter than GAME (0.61) by 33% on average from 20 runs.
While GALF-P shows significantly smaller variations than
GAME in the performance [28], GALF-G shows even more
stable and robust performance than GALF-P, which is dis-
cussed further in the Efficiency Experiments.

We have also tried Weeder [15,16] on part of the datasets
because Weeder can only handle widths 6, 8, 10 and 12.
Weeder is optimized for several width range modes [16]
rather than fixed widths and will be formally compared in
the following range experiments. For the fixed-width
experiments, only CREB, MyoD, SRF and TBP were tested.
The averaged sPPV, sSn and sF of Weeder for the 4 datasets
are 0.43, 0.63 and 0.51, respectively. On the other hand,
GALF-G is better where the corresponding values are 0.79,
0.83 and 0.81.

Similar to the conclusion on fixed-width synthetic experi-
ments, GALF-G demonstrates competitive searching
capacity on the fixed-width real data experiments, while
GALF-G makes a looser assumption.

(ii) (K = 1) variable-width (range) experiments were
performed, where GALF-G was compared with GAME,
MEME, Weeder, and FlexModule from CisGenome [45]
on the previous 8 real datasets. The additional FlexMod-
ule is a Gibbs sampling [46] motif discovery module
implemented in the recent integrated system CisGenome
[45] for analyzing transcriptional regulation.

For each dataset, 3 different width ranges were input for
testing where

Each range represented variations of ± 3 bp on the width
wi while the lower bound for wmin((i) was set to 5 because it
is rare for a motif width being smaller than 5. With
increasing i, wi = wtrue + (i - 1) reflects larger divergence of
shift from the biological truth wtrue [See Additional file 1
for the running parameters]. The average results of execut-
ing each program 20 times are shown in Tables 5 and 6.
Weeder is deterministic, and MEME performs constantly
in different runs for a same dataset (as contrast to different
datasets in Table 3), so there are no standard deviations
shown for them.

In most cases (19/24) GALF-G achieves the best F-scores
sF on the site level, as well as the average sPPV, sSn and sF
averaged on all the cases. The overall F-score of GALF-G is
19% better than GAME, 14% better than MEME, 85% bet-
ter than Weeder, and 21% better than FlexModule. The
standard deviations of GALF-G are also lower than GAME
and FlexModule in most cases. The t-test on sF shows that
GALF-G is better than MEME in 20 cases within signifi-
cance level 0.01, and in 1 case within significance level
0.02, while MEME is better in 3 cases within level 0.01. It
should be noted that GALF-G significantly outperforms
the other algorithms in sSn, probably because the general-
ized model not only predicts motifs as precise as the other
models, but also accepts more correct TFBSs based on a
wider range than single widths.

The above experiments demonstrate that with a range rel-
atively close to the true widths, GALF-G with the general-
ized model shows favorable performance even compared
with the results based on E-values. In fact, the perform-
ance with the input width ranges close to the true widths
is comparable to that with fixed-width inputs, except for
the MyoD dataset. The exceptional case of MyoD will be
investigated separately and shown containing multiple
motifs later.

To summarize, on the 8 real datasets for single motif dis-
covery, GALF-G demonstrates competitive performance in
fixed-width experiments, and provides obvious improve-
ment over other methods in variable-width (range) exper-
iments. For the cases without much prior information on
the exact widths, experiments will be described in the next
sub-sections.

Single Motif Discovery Challenges on Eukaryotic 
Benchmarks
The recent well-known eukaryotic benchmark by Tompa
et al [33] imposes great challenges to motif discovery algo-
rithms. The problems of Tompa et al benchmark include
the insufficient signals (few but long sequences) and inap-
propriate evaluation methods (unclear expert-tuned
parameters for running and single top-scored motif out-
puts for comparisons) [See Additional file 1 for a more

R w w w w ii min i max i i i= = − + =[ , ] [ , ]( , , ).( ) ( ) 3 3 1 2 3

(4)

Table 4: The 8 real datasets. 

CREB CRP ERE E2F MEF2 MyoD SRF TBP

N 17 18 25 25 17 17 20 95
l 200 105 200 200 200 200 200 200

wtrue 8 22 13 11 7 6 10 6
#t 19 23 25 27 17 21 36 95

Summary of the 8 real datasets. N is the number of sequences, l is the 
sequence length, wtrue is the motif width, and #t is the number of 
TFBSs embedded.
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detailed discussion]. It has been indicated that many
motifs in the Tompa et al benchmark are not able to be
discriminated by common motif models from remaining
sequence [35]. An improved benchmark [35] has thus
been proposed for being more suitable to evaluate motif
discovery algorithms. The algorithm benchmark suite [35]
extracts motifs from TRANSFAC and includes representa-
tive eukaryotic species. There are 50 datasets with back-
grounds generated by Markov models and 50 with real cis-

regulatory region backgrounds. The widths are not given
in the benchmark and thus a uniform width range input
has to be set for all experiments. The additional evalua-
tion measure corresponding to this benchmark is the
nucleotide level correlation coefficient (nCC) [33-35].

GALF-G was tested on the corresponding algorithm
benchmark suite [35] and compared with MEME and
Weeder, the two most widely used algorithms [see Addi-

Table 5: Experiments on the 8 real datasets (1). 

Datasets GALF-G GAME

sPPV sSn sF sPPV sSn sF

CREB
R1 0.76 ± 0.00 0.68 ± 0.00 0.72 ± 0.00 0.34 ± 0.37 0.35 ± 0.36 0.34 ± 0.36
R2 0.75 ± 0.06 0.68 ± 0.04 0.71 ± 0.05 0.33 ± 0.34 0.34 ± 0.35 0.33 ± 0.34
R3 0.76 ± 0.00 0.68 ± 0.00 0.72 ± 0.00 0.39 ± 0.36 0.38 ± 0.35 0.38 ± 0.35

CRP
R1 0.94 ± 0.00 0.73 ± 0.02 0.82 ± 0.01 0.79 ± 0.02 0.78 ± 0.00 0.78 ± 0.01
R2 0.89 ± 0.02 0.74 ± 0.00 0.81 ± 0.01 0.82 ± 0.00 0.78 ± 0.00 0.80 ± 0.00
R3 0.79 ± 0.06 0.71 ± 0.04 0.75 ± 0.05 0.93 ± 0.03 0.66 ± 0.03 0.77 ± 0.01

ERE
R1 0.64 ± 0.02 0.83 ± 0.02 0.72 ± 0.02 0.53 ± 0.00 0.80 ± 0.00 0.63 ± 0.00
R2 0.67 ± 0.03 0.85 ± 0.03 0.75 ± 0.03 0.55 ± 0.04 0.79 ± 0.02 0.65 ± 0.02
R3 0.77 ± 0.05 0.84 ± 0.01 0.80 ± 0.03 0.60 ± 0.04 0.80 ± 0.03 0.69 ± 0.03

E2F
R1 0.79 ± 0.02 0.84 ± 0.03 0.81 ± 0.02 0.76 ± 0.09 0.84 ± 0.10 0.80 ± 0.10
R2 0.79 ± 0.00 0.81 ± 0.00 0.80 ± 0.00 0.72 ± 0.00 0.85 ± 0.00 0.78 ± 0.00
R3 0.79 ± 0.00 0.81 ± 0.00 0.80 ± 0.00 0.75 ± 0.00 0.78 ± 0.00 0.76 ± 0.00

MEF2
R1 0.93 ± 0.00 0.82 ± 0.00 0.88 ± 0.00 0.65 ± 0.29 0.75 ± 0.33 0.69 ± 0.30
R2 0.94 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.73 ± 0.26 0.77 ± 0.28 0.75 ± 0.27
R3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.00 0.83 ± 0.03 0.88 ± 0.01

MyoD
R1 0.33 ± 0.04 0.42 ± 0.05 0.37 ± 0.04 0.13 ± 0.10 0.16 ± 0.10 0.14 ± 0.10
R2 0.21 ± 0.01 0.23 ± 0.02 0.21 ± 0.05 0.12 ± 0.11 0.16 ± 0.16 0.11 ± 0.11
R3 0.25 ± 0.00 0.29 ± 0.00 0.25 ± 0.06 0.13 ± 0.12 0.14 ± 0.15 0.13 ± 0.14

SRF
R1 0.72 ± 0.04 0.87 ± 0.03 0.79 ± 0.03 0.71 ± 0.02 0.87 ± 0.04 0.78 ± 0.03
R2 0.74 ± 0.03 0.78 ± 0.04 0.76 ± 0.03 0.66 ± 0.02 0.87 ± 0.01 0.75 ± 0.02
R3 0.70 ± 0.02 0.74 ± 0.08 0.72 ± 0.05 0.70 ± 0.06 0.77 ± 0.05 0.73 ± 0.02

TBP
R1 0.86 ± 0.01 0.82 ± 0.02 0.84 ± 0.01 0.80 ± 0.08 0.75 ± 0.12 0.77 ± 0.09
R2 0.87 ± 0.02 0.86 ± 0.02 0.87 ± 0.01 0.79 ± 0.05 0.78 ± 0.04 0.78 ± 0.03
R3 0.87 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.71 ± 0.17 0.74 ± 0.18 0.72 ± 0.18

Average 0.74 0.75 0.74 0.61 0.66 0.62

Average results (precision (sPPV), recall (sSn) and F-scores (sF) are averaged separately) of GALF-G and GAME on the 8 datasets. Each range Ri = [w 
+ (i - 1) - 3, w + (i - 1) + 3] in general indicates different shifts i from the true width w. ± shows the standard deviation (based on 20 independent 
runs of each dataset with each range). The results with best sF among this table and Table 6 are shown in bold.
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tional file 1 for the running parameters of GALF-G]. The
average results of nSn, nPPV, nPC and nCC are shown in
Table 7. For Markov backgrounds, GALF-G is 31% better
than MEME, 214% than Weeder in nPC, and 42% better
than MEME, 165% than Weeder in nCC. Similar conclu-
sions can be drawn for the real backgrounds. It should be
noted that while MEME and Weeder perform poorly in
one of the two backgrounds, GALF-G maintains the com-
petitive performance well in both.

In the improved eukaryotic benchmark [35], which is con-
sidered more suitable to test motif discovery algorithms,
GALF-G shows superior performance to the widely-used
MEME and Weeder, while only top-scored motifs are
compared. However, as stated in [33], it is more meaning-
ful in practice to provide multiple motifs for testing [5]
where the experiments are reported as following.

Table 6: Experiments on the 8 real datasets (2). 

Datasets MEME Weeder FlexModule

sPPV sSn sF sPPV sSn sF sPPV sSn sF

CREB medium
R1 0.73 0.58 0.65 0.44 0.84 0.58 0.68 ± 0.04 0.76 ± 0.04 0.72 ± 0.04
R2 0.83 0.53 0.65 0.44 0.84 0.58 0.62 ± 0.22 0.69 ± 0.24 0.65 ± 0.23
R3 0.83 0.53 0.65 0.44 0.84 0.58 0.67 ± 0.07 0.72 ± 0.07 0.69 ± 0.07

CRP large
R1 0.93 0.61 0.74 0.41 0.71 0.52 0.94 ± 0.14 0.55 ± 0.11 0.69 ± 0.12
R2 0.89 0.70 0.78 0.41 0.71 0.52 0.97 ± 0.07 0.56 ± 0.06 0.70 ± 0.06
R3 0.89 0.70 0.78 0.41 0.71 0.52 0.96 ± 0.13 0.50 ± 0.10 0.65 ± 0.11

ERE large
R1 0.88 0.60 0.71 0.29 0.64 0.40 0.74 ± 0.03 0.85 ± 0.01 0.79 ± 0.02
R2 0.88 0.60 0.71 0.29 0.64 0.40 0.73 ± 0.02 0.85 ± 0.02 0.79 ± 0.02
R3 0.88 0.60 0.71 0.29 0.64 0.40 0.68 ± 0.17 0.77 ± 0.24 0.72 ± 0.21

E2F large
R1 0.78 0.67 0.72 0.23 0.93 0.37 0.56 ± 0.28 0.58 ± 0.29 0.57 ± 0.28
R2 0.83 0.70 0.76 0.23 0.93 0.37 0.60 ± 0.29 0.60 ± 0.29 0.60 ± 0.29
R3 0.78 0.67 0.72 0.23 0.93 0.37 0.63 ± 0.25 0.62 ± 0.25 0.63 ± 0.25

MEF2 medium
R1 0.93 0.82 0.88 0.01 0.06 0.02 0.86 ± 0.02 1.00 ± 0.00 0.93 ± 0.01
R2 0.93 0.82 0.88 0.01 0.06 0.02 0.79 ± 0.27 0.90 ± 0.31 0.84 ± 0.29
R3 0.93 0.82 0.88 0.01 0.06 0.02 0.88 ± 0.02 0.99 ± 0.04 0.93 ± 0.02

MyoD small
R1 0.00 0.00 0.00 0.07 0.10 0.08 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
R2 0.00 0.00 0.00 0.07 0.10 0.08 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
R3 0.00 0.00 0.00 0.07 0.10 0.08 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

SRF large
R1 0.65 0.86 0.74 0.54 0.63 0.58 0.64 ± 0.00 0.87 ± 0.02 0.73 ± 0.01
R2 0.70 0.86 0.78 0.54 0.63 0.58 0.63 ± 0.01 0.82 ± 0.05 0.71 ± 0.02
R3 0.70 0.86 0.78 0.54 0.63 0.58 0.64 ± 0.00 0.86 ± 0.01 0.74 ± 0.00

TBP small
R1 0.70 0.67 0.69 0.56 0.90 0.69 0.47 ± 0.32 0.59 ± 0.40 0.53 ± 0.35
R2 0.70 0.67 0.69 0.56 0.90 0.69 0.41 ± 0.34 0.51 ± 0.42 0.45 ± 0.38
R3 0.70 0.67 0.69 0.56 0.90 0.69 0.45 ± 0.34 0.55 ± 0.41 0.49 ± 0.37

Average 0.71 0.61 0.65 0.32 0.60 0.40 0.61 0.63 0.61

Average results of MEME, Weeder and FlexModule in the same comparison experiments described in Table 5. Weeder was run with the width 
mode (small: 6, 8; medium: 6, 8, 10; large 6, 8, 10, 12) that are closest to the ranges R for each dataset.
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Multiple Motifs Outputs on the E. coli Benchmark
In this sub-section, GALF-G was tested, to address a more
realistic scenario, where multiple candidate motifs are
desired for identifying the true TFBSs in biological
research, on the E. coli benchmark. The E. coli benchmark
ECRDB62A [34] has 62 datasets, on average about 300 bp
in the sequence length varying from 86 to 676 bp, 12
sequences per dataset, around 1.85 sites per sequence and
the average site width is 22.83 with standard deviation >
10, which indicates very diversified widths.

Specifically, minimal parameter-tuning policy was
employed as if the programs were run by a common user
with minimum prior knowledge in practice. Results of
AlignACE [20], BioProspector [19], MDScan [5], MEME
[12], MotifSampler [21] and Weeder [16] were obtained
for comparison. A uniform width of 15 was input for
those fixed-width algorithms, namely AlignACE, BioPros-
pector, MDScan and MotifSampler. On the other hand,
MEME was run with the default setting for widths and the
optimal one was chosen automatically within. Weeder
was run with the large width mode. For GALF-G, we ran it
on the benchmark datasets with both the uniform fixed
width 15 and also the widest range accepted for the pro-
gram of R = [10,20] with |R| = 10 around the central width
15. For all algorithms, 5 motifs were output for detailed
comparisons.

We employ the evaluation criteria from [34], namely pre-
cision PPV, sensitivity Sn, performance coefficient PC and
F-score F, on both nucleotide (prefix n) and site (prefix s)
levels [see Additional file 1] (We use the standard nota-
tion of PPV instead of the non-standard specificity defini-
tion in their work). In the comparisons shown in Table 8,
the accuracy of the best prediction out of the top 5 scoring
predictions is evaluated with respect to nPC. With both
fixed-width and range inputs, GALF-G outperforms the
other algorithms in all evaluation criteria. For example,
GALF-G (15) outperforms the best among the other algo-
rithms by 49% in nPC, 29% in nF, 28% in sPC and 18%
in sF. GALF-G (rg), with width range input [10,20], out-
performs the other best algorithms by 46% in nPC, 29%
in nF, 25% in sPC and 24% in sF. By comparing the two
different input settings for GALF-G we can see that with
little sacrifice in other measures (< 0.01 on the nucleotide
level and < 0.02 on the site level), the generalized model
based on the range (rg) demonstrates improved site level
sensitivity, in particular 15% (or 0.082) in sSn compared
with GALF-G (15) and 34% (or 0.172) compared with the
best among other algorithms.

Besides the best predictions out of the 5 outputs, investi-
gation was also done to analyze the top-scored motifs as
well as the rest individually for different algorithms. The
statistics in terms of nPC, which reflects both nPPV and
nSn, are shown in Table 9. As indicated before in [34], the

Table 7: Experimental results on the improved eukaryotic benchmark. 

Algorithms Markov Real

nSn nPPV nPC nCC nSn nPPV nPC nCC

GALF-G 0.117 0.184 0.102 0.138 0.116 0.156 0.095 0.126
MEME 0.115 0.107 0.077 0.097 0.103 0.092 0.063 0.083

Weeder 0.133 0.043 0.032 0.052 0.202 0.071 0.055 0.096

Average performances (nSn, nPPV, nPC and nCC) of GALF-G, MEME and Weeder on the algorithm benchmark suite (50 datasets with Markov 
backgrounds and 50 with real backgrounds).

Table 8: Experimental results on the E. coli benchmark.

Algorithms Nucleotide level (n) Binding site level (s)
nPC nSn nPPV nF sPC sSn sPPV sF

GALF-G (15) 0.260 0.290 0.309 0.300 0.386 0.538 0.520 0.529
GALF-G (rg) 0.254 0.297 0.304 0.301 0.379 0.620 0.502 0.555
AlignACE 0.128 0.198 0.152 0.172 0.234 0.355 0.335 0.345
BioProspector 0.174 0.205 0.270 0.233 0.294 0.424 0.374 0.397
MDScan 0.149 0.177 0.230 0.200 0.240 0.328 0.355 0.341
MEME 0.158 0.259 0.199 0.225 0.295 0.461 0.436 0.448
MotifSampler 0.153 0.179 0.237 0.204 0.302 0.331 0.476 0.390
Weeder 0.152 0.162 0.204 0.181 0.307 0.543 0.387 0.452

Prediction accuracy on the ECRDB62A benchmark of E. Coli at nucleotide, binding site levels. GALF-G (15) was run with the fixed width 15 and 
GALF-G (rg) was run with the range [10,20]. The best results are bold.
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top-scored predictions are not necessarily the best predic-
tions, implying that outputting only a single prediction
may not be a good choice in practice or for comparison
studies. However, the top-scored predictions from GALF-
G are significantly better than the best among the other
algorithms, by 30% (w15) and 36% (rg) respectively. We
can also see that, for GALF-G, the generalized model
based on the range provides better performance than on
the fixed width, with respect to both the top-scored and
the mean predictions. This implies that the generalized
model using ranges is useful when the prior width infor-
mation is usually not strong in practice. On this bench-
mark for multiple motif outputs, GALF-G outperforms
other state-of-the-art algorithms considerably. The gener-
alized model exhibits improved sensitivity while main-
taining competitive precision, and thus achieves better
overall performance on the site level.

Multiple Motif Types in Real Datasets
In gene regulation, TFBSs of different kinds of motifs may
appear in the same promoter region. They either work
together to regulate the transcription or compete for the
TF binding when part of the TFBSs overlap with each
other. Thus it is meaningful to discovery multiple TFBS
motifs, possibly with overlaps in some of their TFBSs,
from a dataset simultaneously. The following experiments
tested GALF-G under the corresponding scenario.

The liver-specific dataset
The liver-specific dataset [47] contains 19 sequences,
embedded with several major motifs (with 6-19 sites) var-
ying in widths, namely HNF-1, HNF-3, HNF-4 and C/EBP,
and some other motifs with fewer sites, such as CRE, BRF-
3 and BRF-4 with only one occurrence for each of them.
Some TFBSs from different types of motifs overlap with
each other in the dataset. For example, a TFBS of HNF-1
(width 15) overlaps with a TFBS of HNF-4 (width 12)
with 7 bp in a particular sequence, while co-occurring
TFBSs of HNF-1 and HNF-4 in some other sequences do
not overlap at all. The total number of (overlapping) TFBS

instances is 60. The widths vary dramatically from 7 bp to
31 bp.

On this dataset, GALF-G, GAME and MEME were com-
pared using the width range input R = [8,16], which is
considered a common range for TFBSs, to discover differ-
ent types of motifs. The expected width for GAME was 12,
the mean of the input range. Different numbers of motifs,
K, ranging from 5 to 20 with step 5, were output and eval-
uated.

The site level (with shift restrictions) results of sPPV, sSn
and F-scores sF (with shift restrictions) based on all TFBSs
are shown in Figure 2 for different K. MEME fails to pro-
duce comparable recalls or F-scores to the others. It is
probably caused by the masking techniques not allowing
overlapping of motifs. GAME masks TFBSs individually
rather than the whole motifs, so better sSn (recall) can be
obtained from a diverse GA population. With overlapping
control on the GA, GALF-G shows recalls comparable to
or better than GAME. Moreover, GALF-G has the best sPPV
(precision) while GAME generally has the worst. Both
GALF-G and MEME show an increasing trend of recalls as
K increases. The sudden drop of GAME for K = 20 is prob-
ably because the expected width no longer suits some of
the motifs while GAME actually performs fixed-width
search in its GA. GALF-G provides the best balance
between precisions and sensitivities, and thus gives the
best F-scores in all cases. Averaged on all K, the F-scores
are: GALF-G: 0.54, GAME: 0.45 and MEME: 0.31 where
GALF-G outperforms the other two by 20% and 73%
respectively.

Besides the previous evaluation that treats all the TFBSs as
a whole, type specific investigation was also carried out on
the output results of GALF-G. With the help of STAMP
[48], the predicted motifs with K = 5 GALF-G were
searched for matches of annotated TFBS motifs from the
TRANSFAC database V11.3, based on ALLR (Average Log
Likelihood Ratio). ALLR was considered to be the most
effective in comparisons of single columns for motifs
[48].

The relevant matches for the top 2 motifs are displayed in
Sequence Logo formats in Figure 3. The top 2 high-scored
motifs, labeled in STAMP by Motif (width: 13) and Motif
v2 (width: 11), match HNF-1 and HNF-4 in TRANSFAC
respectively with high statistical significance, i.e., low E-
values (< 0.05). For Motif v4 (width: 16), it matches part
of HNF-3 alpha without high statistical significance (E-
value 2.71e-01), because only part of the HNF-3 TFBSs are
identified in the predicted motif. It indicates that, top-
scored motifs output by GALF-G in general match true
TFBS motifs with high confidence. The other two motifs
do not have relevant top 10 matches in TRANSFAC. C/

Table 9: Statistics on the E. Coli benchmark.

Algorithms Best Worst Mean STD Top-scored

GALF-G (15) 0.260 0.094 0.121 0.031 0.169
GALF-G (rg) 0.254 0.080 0.129 0.040 0.177
AlignACE 0.128 0.029 0.072 0.045 0.083
BioProspector 0.174 0.097 0.124 0.041 0.130
MDScan 0.149 0.068 0.106 0.034 0.099
MEME 0.158 0.002 0.054 0.069 0.116
MotifSampler 0.153 0.010 0.062 0.065 0.069
Weeder 0.152 0.031 0.081 0.106 0.064

The statistics of the top 5 predictions in terms of nPC on the 
ECRDB62A benchmark. GALF-G (15) is run with the fixed width 15 
and GALF-G (rg) is run with the range [10,20]. STD is the standard 
deviation. The best mean and top-scored results are bold.
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EBP cannot be discovered as a whole motif, possibly due
to its low conservation compared to the HNF motifs.
STAMP also provides the phylogenetic profile where Motif
(HNF-1) and Motif v2 (HNF-4) are grouped together, and
so is Motif v4 (HNF-3), implying they belong to the same
HNF family. For K = 10, similar results are obtained, with
matches mainly including HNF-1 and HNF-4.

In-depth investigation on the MyoD dataset
The MyoD dataset seems to be an exceptional case among
the 8 real datasets tested by GAME [27]. Only GALF-G
(sPPV: 19/22, sSn: 19/21, sF: 0.88) and GALF-P (sPPV: 21/
37, sSn: 21/21, sF: 0.72) are able to show acceptable site
level results (with shift restrictions) in the fixed-width (w
= 6) experiments, while in the variable width experiments
none of the programs succeed in providing good results.

To investigate into this exception, GALF-G was set to out-
put K = 3 different motifs with the annotated width 6.
Besides the fittest output being the annotated MyoD
motif, the other two are only marginally lower in their fit-
ness compared to the best one (differences < 2%). That is
probably the reason why most existing algorithms per-
form poorly in this dataset - they either locate a sub-opti-
mal because of the low signal-to-noise ratio, or obtain
inappropriate rankings of the motifs due to the subtle dif-
ferences in the modelling. It indicates that the accurate
width information is still crucial for such subtle and short
motifs. We searched the 2nd ranked motif, Motif v2, for
matches from the TRANSFAC Database using STAMP,
based on the various column comparison metrics pro-

vided by STAMP. Consistent matches, such as E2A
[49,50], p53 [51,52], E47 [53] and E-box [54] motifs,
were obtained with high rankings (within top 10s), and
these motifs are closely related to MyoD for muscle cell
regulation according to the references [49-54]. The most
consistent matches are shown in Figure 4. Thus there is a
high probability that Motif v2 is a true motif which may
not have been annotated previously in the MyoD dataset.
In summary, GALF-G outperforms GAME and MEME by
14% and 73% on average in sF respectively on the liver-
specific dataset for multiple motifs discovery. Addition-
ally, GALF-G sheds light to an additional motif which may
not have been annotated previously in the MyoD dataset.

Efficiency Experiments
Although the effectiveness is the major concern for motif
discovery, practitioners also prefer efficient algorithms
which have capability for large scale data. In this sub-sec-
tion, we tested GALF-G with different GA population sizes
to investigate the trade-off between effectiveness and effi-
ciency of meta-convergence. Firstly, different population
sizes (PS = 500 (default: In the previous work, in order to
be consistent with GAME's PS = 500, GALF-P employed
the same setting as default, and this is followed in GALF-
G for the minimum parameter-tuning purpose), 200, 100,
50, 10) were used to run GALF-G, GALF-P and GAME
(results from [28]) on the 8 real datasets [27] for fixed-
width single motif discovery. For each PS, they were run
20 times on the same Pentium D 3.00 GHz machine with
1 GB memory, running Windows XP, and the results were
averaged. The effectiveness (site F-scores sF) and efficiency

Results on the liver datasetFigure 2
Results on the liver dataset. The results of precision (sPPV), recall (sSn) and F-scores (sF) with shift restrictions for different 
number of output motifs (K = 5, 10, 15, 20) on the liver-specific dataset.
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TFBS matches of the liver datasetFigure 3
TFBS matches of the liver dataset. The matches from TRANSFAC for the top 2 high-scored motifs. The red brackets 
indicate the aligned blocks.
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TFBS matches of the MyoD datasetFigure 4
TFBS matches of the MyoD dataset. The matches from TRANSFAC to the 2nd motif output by GALF-G on the MyoD 
dataset. The red brackets indicate the aligned blocks.
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are shown in Figures 5 (a) to 5 (c). For the default PS =
500, the average time (in seconds) follows that: GALF-G
(43.38) < GALF-P (61.91) < GAME (291.11). Since the
standard deviation of GAME's effectiveness is already
large with PS = 500, we only focus on GALF-G and GALF-
P to compare the effects (except the special MyoD case
better to run with K > 1) of different PS. In Figure 5 (a),
the overall performance for PS = 500 are similar, as well as
the standard deviations: GALF-G 0.004; GALF-P 0.029.
However, when the population size drops to PS = 10, the
performance of GALF-P drops significantly, and the stand-
ard deviation becomes 0.17 on average, and even ≥ 0.40
for MEF2 and TBP datasets (Figure 5 (c)). On the contrary,
the average performance of GALF-G is maintained, and
the overall standard deviation is only 0.031, still a very
small number. Furthermore, the average time of GALF-G
for PS = 10 is just 1.80 seconds, which is over 24 times
speedup of the default PS, as shown in Figure 5 (b).

It is interesting that even with a population size of 10,
GALF-G still performs comparably well, while GALF-P
degenerates significantly. The major reason is due to the
meta-convergence framework with similarity test, which is
not used in GALF-P. With an extremely small population,
GALF may not be able to provide the optimal motif in
every run. However, since different motifs are controlled
and maintained on a meta level in GALF-G, converged
sub-optimal motifs will be replaced by better ones and
eventually the global optimum can be found.

The above results imply that, GALF-G is able to provide
comparable and consistent performance for fixed-width
single motif discovery with a small population for com-
petitive efficiency.

On the E. coli benchmark for multiple outputs (K = 5)
with range inputs, we observed similar performance

Results with different population sizesFigure 5
Results with different population sizes. Different population sizes: (a) The average site level F-scores sF of GALF-G on the 
8 real datasets with fixed width inputs. (b) The average time of GALF-G according to (a). (c) The average F-scores of GALF-P 
on the 8 real datasets with fixed width inputs. (d) The statistics on both nucleotide and site levels on ECRDB62A of GALF-G 
with range inputs.
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maintenance with different PS for GALF-G in Figure 5 (d),
thanks to the meta-convergence mechanism to maintain
different optimal motifs in the solutions. The average time
on each dataset for the three PS is 655.80 (500), 74.40
(50) and 16.05 (10) seconds respectively, where the PS =
10 demonstrates a speedup of over 40 times compared to
that of the default size (PS = 500). For PS = 10, the stand-
ard deviation of nPC is 0.0098, which is still small com-
pared with 0.0070 for the default PS.

According to the efficiency experiments, GALF-G is able to
maintain competitive effectiveness with very high effi-
ciency. Therefore GALF-G has great potential to work on
ever larger scale datasets successfully.

Discussion and Conclusion
To conclude, we summarize the proposed work of GALF-
G, discuss about the challenges and point out future direc-
tions.

Summary
In this paper, the generalized motif model is proposed for
realistic motif discovery problems. It models a possible
range of widths rather than any single width. The model
has the potential to address the biological uncertainty bet-
ter and is more practical in reality because TFBSs of the
same motif may vary in widths and exhibit different
degrees of conservation. The meta-convergence frame-
work is proposed to support multiple and possibly over-
lapping optimal motifs, based on the flexible and easy
control of the similarity test for users. GALF-G is devel-
oped by incorporating the extended GALF searching
methodology into the meta-convergence framework
based on the generalized model.

GALF-G has been tested extensively on over 970 datasets,
including 800 synthetic datasets, 8 real datasets (further
24 range cases), 100 eukaryotic and 62 E. coli benchmark
datasets, as well as a real liver-specific dataset with multi-
ple overlapping motifs. GALF-G has shown its competi-
tiveness and better effectiveness for different kinds of
motif discovery problems with both fixed-width and
range inputs. The generalized model not only predicts the
motifs accurately but also include more correct TFBSs. The
searching capacity for optimal solutions and efficiency of
the meta-convergence framework have also been demon-
strated with the synthetic and real datasets. GALF-G has
also discovered an additional motif which might not have
been annotated previously in the MyoD dataset.

Discussion
However, the motif discovery problem remains challeng-
ing due to the weak underlying motif signals input data,
as well as the diversity and complexity of TF binding
TFBSs [55]. There are also a number of potential improve-

ments for the generalized motif model and GALF-G in our
future work, such as further analysis on the effect of differ-
ent width ranges, more efficient evaluation when han-
dling different width fragments, flexible width
distributions for different motif types, validation of the
putative motif in MyoD dataset, etc. The candidate fixed-
width model for the generalized model still needs more
investigation to better suit the biological observation.
Integrating the generalized model for motif discovery
with additional evidence such as expression data to
increase the prediction power is another attractive
research direction to us.

Methods
The Proposed Model and Evaluation
Denotations and Formulations

With our focus on the matrix representation (PFM), the
motif discovery problem is formulated as follows.

Defined on the alphabet Σ = {A, T, G, C} for DNA
sequences, the input data are a set of sequences S = {Si|i =

1, 2, ..., m}, where each Si is a sequence with length li of

nucleotides from the alphabet. The motif width w is
assumed to be known for the time being. TFBS instances

are represented by R = { } where each  is the kth

instance of width w in Si. If we assume each sequence has

at most one instance (ZOOPS), then  is collapsed to

be ri (ri = null if k = 0) for short. Table 1 illustrates an arti-

ficial example of motif discovery. A site indicator matrix
(SIM) A, which is also used to represent the solution,
locates the TFBS instances as sites, where Aij = 1 if a motif

instance (site) starts at position j of Si and 0 otherwise.

Alternatively, we can use the position  = j to represent

a instance  given w. Thus we have a compact position

representation of A = {p1, p2, ..., pm} especially for ZOOPS,

where some the positions can be NULL. A profile of the
motif can be built from aligning the TFBS instances
indexed by A. The profile is represented as a 4 × w Position

Frequency Matrix (PFM) Θ, where Θjb is the frequency of

nucleotide b in column j of the motif. The nucleotides

from background (non-motif sites) are represented by Θ0,

where Θ0b is the frequency of nucleotide b in the back-

ground and is treated as known from the input.

The motif discovery problem (of a known width w) can be
thus formulated as finding A (with only the TFBS sites
being considered) and the corresponding PFM Θ such that
one of the above scoring/fitness functions is maximized
according to different assumptions.

ri
k ri

k

ri
k=0 1,

pi
k

ri
k
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The Probabilistic Models
To complete our generalized model, the important com-
ponent comes from the existing models handling a
known width input. In this paper, we employ the proba-
bilistic models which have most intuitive explanation
with the generalized model. For a candidate solution A
(which also indicates Θ), the full Bayesian model of like-
lihood [13,40] can be written as

where Θ is the motif PFM, Θ0b is the background distribu-

tion of nucleotide b, njb is the count of nucleotide b in col-

umn j of the PFM, n0b is the count of nucleotide b in the

background, |A| is the total number of sites in the motif,

 is approximately the number of all pos-

sible sites (the number of invalid sites is trivial and can be
ignored), and p0 = |A|/L* is the estimated abundance ratio

which represents the probability of any position being a

site in the dataset. Θjb = njb/|A| (strictly it should be  as

an estimate, but we just use Θjb for simplicity). Similarly

Θ0b ≈ n0b/L* (ignoring the relatively small affect of A).

In Bayesian analysis, noninformative priors of the inde-
pendent p(Θ) and p(p) are integrated out for convenience.
Alternatively, by assuming them as constant we have the
log likelihood as follows:

By ignoring the constant parts and approximating L*
log(1 - p0) ≈ - L* * p0 = - |A| since p0 is very small, the
equivalent score psi' can be written as

which is exactly the approximation form used in the Baye-
sian analysis [40]. With one step further to ignore the pen-
alty of - |A|, we have the approximation form for a known
p [40] and it is also coined as the Kullback-Leibler diver-

gence with parameter (we use this form in the generalized
model since we find the previous one imposes too much
penalty on the number of TFBSs):

Furthermore, if we assume each sequence Si has exactly
one site, i.e. one occurrence per sequence (OOPS), then p0
also becomes constant. As a result we only have to con-
sider part of Equation 8

which is the well known information content (IC) [11].
IC(j) is defined as the positional IC for column j.

The Fitness Function and Evaluation
Recalling the generalized model in Equation 1, we can
now choose P(A(wi) |wi) = exp(ψ(wi)) accordingly from
the previous probabilistic models, where ψ(wi) is a simpli-
fied notation for exactly ψ (Θ, A|S, Θ0) in Equation 8
given wi. For computational convenience, we represent
the fitness function f in log likelihood form as

In the evaluation, a candidate solution consists of A (and
the derived Θ) with the maximal width wmax. For each par-
ticular wi from the range R, we have to choose the frag-
ment (a continuous wi-submatrix A(wi) from the full
matrix Θ) that maximizes ψ(wi) (see Figure 1). It is equiv-
alent to maximizing IC for width wi since p in Equation 8
is now fixed for all A(wi). With the log format of f, we can
avoid overflow with the exp function by taking out the
largest log component during mediate computation and
adding it back upon finishing the evaluation.

For the convenience of implementations of searching and
consistency with other methods for evaluation (which
output single-width motifs), a core fragment, located by
the width wcor and offset w0, is to be selected. wcor and w0

are also determined based on IC. Starting from the two
ends of the maximal PFM with wmax, we iteratively remove

each columns j with positional IC(j) lower than the aver-
age. The remaining submatrix (or A(wcor)) is thus with

width wcor and offset w0. Complexity of the whole evalua-

tion grows quadratic to |R| = wmax - wmin + 1. Since the
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ranges are usually restricted within 5 - 10 bp, f is compu-
tationally feasible in practice with additional O(|R|2)
overhead compared with a fixed width model for wmax.

The offset w0, combined with the position pi of A in the ith

sequence, is also used to determine the aligned position

(  (A)) in the similarity test in Equation 2.

Meta-convergence Framework Details
Similarity test settings
The shift tolerance in Equation 2 is set as tol = 3 + (|R| - 1)/
2. The first part of tol is chosen for convenience to separate
two TFBSs and the latter part is the tolerance for the range
involved. In the case of competition for the same slot in
slot dispatching, the threshold can be flexibly specified by
the users (for general usage, the default is: st = 0.3, which
is used throughout this paper). Users can customize st
based on their needs, either with a large value (e.g. ≥ 0.5)
to force solutions of highly different motifs, or with a
small value (e.g. ≤ 0.1) to allow fine variations of the same
motif type. On the other hand, for deleting individuals in
the case of near convergence, the threshold is automati-
cally fixed at the value of st' = 0.5 to make room for the
other solutions. st' is not sensitive because the similar
optimal motifs are finally controlled by the user-specified
threshold st. However, if st' is set to be too low, many sim-
ilar variations to the converged motif will remain in the
population, and time will be wasted to converge repeat-
edly to the same motif kind.

Meta-convergence
In greater detail, the meta-convergence framework can
incorporate any GA procedure (Genetic Algorithm with
Local Filtering (GALF) [28] in our case). Like in the previ-
ous approaches [27,28], up to a maximum number of the
GA executions, MAXRUN, can be run but it will stop run-
ning if the convergence test is satisfied. Additionally in
meta-convergence, K+1 slots are maintained where K is
the number of optimal solutions expected. Each slot
stores the best solution of a different of motif kind, and is
allocated a counter Cnt, which keeps track of its motif
convergence count. At the end of each GA run, a number
(NUM) of best solutions (individuals) will be dispatched
and subject to the similarity test to the K+1 slots. The cor-
responding counter will increment for each update of a
solution of the same motif kind and reset if the motif is
replaced by a new one. A convergence threshold MAXIND
is used to monitor convergence. MAXIND is a relatively
small number because each dispatched solution is already
a converged one obtained by GA. In general, the meta-
convergence framework needs at most MAXRUN GA runs
to obtain K optimal solutions while the previous methods
such as GAME and GALF-P need K*MAXRUN runs. The
whole procedure of meta-convergence is illustrated in Fig-
ure 6.

Similarity test applied in the framework
Solutions that pass the similarity test, i.e. those belong to
the same motif kind in a particular slot, will compete for
the same slot based on their fitness. On the other hand,
the solution of a new motif will occupy an empty slot or
the slot storing the solution with the worst fitness. After
each GA run, when a slot is near convergence (we define
this situation as Cnt > MAXIND/2), solutions similar to it
will be eliminated, again based on the similarity test, to
make room for the other optimal solutions in the next GA
run. When the solution of a particular motif in the slot has
converged (i.e. Cnt ≥ MAXIND), the motif will be taken
out from the search process, i.e. all the exactly matched
TFBSs belonging to this motif will be deleted, making
room for efficient discovery of other motifs. The extra
(K+1)th slot is used to keep certain sub-optimal solution in
the early stage in order not to lose them, because other-
wise the Cnt may fluctuate especially for the K = 1 case
when there are several motifs with close fitness competing
for the only slot.

GALF-G Implementations
We employ the genetic algorithm (GA [see Additional file
1]) based GALF [28] as the searching procedure. However,
since GALF was previously based on simpler assumptions,
it has to be extended accordingly to suit the need of the
generalized model.

′pi

The procedure of meta-convergenceFigure 6
The procedure of meta-convergence.
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Extended GALF Operators
Local filtering (LF) is the feature operator of GALF, which
employs the combined representations for the whole
motif (PFM Θ) and individual instances (SIM A). How-
ever, it was based on the simple OOPS and fixed-width
assumptions. As a result, extensions have to be made for
more general cases addressed by GALF-G.

Generally, LF refines each individual (candidate solution)
by iteratively scanning the sequence containing the cur-
rently worst instance and choosing the best replacement.
To evaluate each instance (site) of the individual, the sim-
ilarity score with the consensus concept is proposed.
However, the relation between this heuristic score and the
fitness is implicit. In GALF-G, we propose to use the log
likelihood ratio for an instance fragment starting at the

 column with width w',

to evaluate each instance ri, where ri(j) ∈ Σ is the nucle-

otide in column j of ri,  is the corresponding fre-

quency from the PFM and  is the corresponding

background frequency. It measures the ratio of ri gener-

ated by the motif PFM over the background, and is more

closely related to ψ (wi) in Equation 10. The effectiveness

of the log likelihood ratio and the mutation operator are
verified [see Additional file 1] on the 8 datasets tested in
[27]. In range input cases, with the wcor core fragment

stored, we encourage LF to match instances with a longer

width (≥ wcor) so that the width w' is chosen randomly

from [wcor, wmax] and thus LF can be applied with fewest

modifications.

Because now the fitness f can handle the general case with
any motif instances, the new GALF-G can now search
based on zero or one occurrence per sequence (ZOOPS)
assumption rather than OOPS. However, it is unwise to
randomly generate null positions for non-sites at the very
beginning during searching. It is because when most of
the individuals are poor in their fitness, fewer instances
will be strongly biased and the population will suffer from
undesirable premature convergence. To alleviate this
problem, we initialize the population with OOPS
assumption and refine the abundance ratio (p0 in Equa-
tion 8) in later generations using a new mode of LF. The
convergence (CONVER) mode of LF is triggered when the
best individual stagnates for more than 1/4 of the conver-

gence count MAXCONVER, or when it is toward the max-
imal generation of the GA. The convergence mode LF is
applied to all individuals to adjust the motif abundance.
The procedure is similar to normal LF except that the full
wmax fragment will be chosen for each instance and the
worst instances are to be removed rather than refined, if
eliminating it makes the overall fitness f increase.

Other Extensions
We adopt the single-point mutation and pre-selection
from GALF-P [28] and choose multi-point (close to uni-
form) crossover instead of single-point because it pro-
vides higher diversity. Since the new model adjusts widths
automatically, the shift operator in [28] is no longer
needed.

To handle general cases other than the ZOOPS assump-
tion, where there may be several occurrences in a
sequence, we employ a refinement process for additional
instances upon the meta-convergence of GALF runs. Gen-
erally, if a fixed width is input, instances have to increase
f in order to be added, while in the width range case, the
threshold of f is relaxed slightly [see Additional file 1 for
the details].

Combining the meta-convergence framework with
extended GALF based on the generalized model, as well as
the refinement procedure, we have the proposed GALF-G
to discover multiple TFBS motifs [see Additional file 1 for
the pseudo-codes of the new LF, the extended GALF and
GALF-G].

Parameter Setting
Besides the parameters discussed specifically (such as
motif widths and output motif number K), and except the
efficiency experiments (with different PS), the other
parameter setting exactly follows GALF-P [28] with the
purpose of minimum tuning. In the extended GALF:
default population size PS: 500; maximal number of gen-
erations MAXGEN: 300; interval of generations to trigger
local filtering (LF)-INTL: 10; convergence count MAX-
CONVER: 50; mutation rate: 0.9; crossover rate: 0.3; and
maximal runs of GALF MAXRUN: 20. The quite large pop-
ulation size follows the setting of GAME for fair and con-
sistent comparisons, though it turns out that a smaller
population size also works comparably well (in the effi-
ciency experiments).
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