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Abstract

Background: Prediction of antigenic epitopes on protein surfaces is important for vaccine design.
Most existing epitope prediction methods focus on protein sequences to predict continuous
epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available
and they have not yet shown satisfying performance.

Results: We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring
(EPCES) from six different scoring functions - residue epitope propensity, conservation score, side-
chain energy score, contact number, surface planarity score, and secondary structure composition.
Applied to unbounded antigen structures from an independent test set, EPCES was able to predict
antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The
performance of the method is statistically similar to other published methods. The AUC value of
EPCES is slightly higher compared to the best results of existing algorithms by about 0.034.

Conclusion: Our work shows consensus scoring of multiple features has a better performance
than any single term. The successful prediction is also due to the new score of residue epitope
propensity based on atomic solvent accessibility.

Background

Realistic prediction of protein surface regions that are
preferentially recognized by antibodies (antigenic
epitopes) can help in the design of vaccine components
and immuno-diagnostic reagents. Antigenic epitopes are
classified as continuous or discontinues epitopes. If the
residues involved in an epitope are contiguous in the
polypeptide chain, this epitope is called a continuous
epitope or a linear epitope. On the other hand, a discon-
tinuous or non-linear epitope is composed of residues

that are not necessarily continuous in the polypeptide
sequence but have spatial proximity on the surface of a
protein structure. A significant fraction of epitopes are dis-
continuous in the sense that antibody binding is not fully
determined by a linear peptide segment but also influ-
enced by adjacent surface regions [1].

However, the majority of available epitope prediction
methods focus on continuous epitopes due to the conven-
ience of the investigation in which the amino acid
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sequence of a protein is taken as the input. Such predic-
tion methods are based upon the amino acid properties
including hydrophilicity [2,3], solvent accessibility [4],
secondary structure [5], flexibility [6], and antigenicity
[7]- In addition, based on the known linear epitope data-
bases such as Bcipep [8] and FIMM [9], there also exist
some methods using machine learning algorithms such as
Hidden Markov Model (HMM) [10], Artificial Neural Net-
work (ANN) [11], and Support Vector Machine (SVM)
[12,13] to locate linear epitopes. A study by Blythe and
Flower has demonstrated that, using single-scale amino
acid property profiles, a linear epitope prediction method
was not able to predict epitope location reliably [14],
whereas Greenbaum et al. showed that, using a combina-
tion of more than one amino aid property scale, machine
learning algorithms could improve prediction accu-

racy[15].

Unlike linear epitope prediction, only a small number of
studies have been performed so far on the prediction of
discontinuous epitopes employing structural information
of a target protein. Although such studies are of highly
importance, the small number of available structures of
antibody-antigen complexes limits this kind of studies.
Several databases, such as IEDB [16], SACS [17], and CED
[18], collected all existing structures of antibody-antigen
complexes from the PDB bank. With the 3-dimentional
structures of proteins as input, a few methods have been
designed to predict putative antigenic epitopes by using
conservation score, amino acid statistics, accessibility, and
spatial information [19-24]. Ponomarenko and Bourne
evaluated DiscoTope[20] and CEP[19] along with six
other protein binding site prediction methods by bench-
marking on 62 epitope structures and 82 antibody-anti-
gen structures. They concluded that none of those
prediction methods have a performance exceeding 40%
precision and 46% recall[25]. Clearly, there is still a large
gap between the strong need for antigenic epitope predic-
tion and the low accuracy that existing prediction meth-
ods can achieve.

Use of multiple features could potentially improve per-
formances on predicting antigenic epitopes, but this raises
another question: are the properties effective for the lim-
ited number of antigens with available complex structures
also work as well for all antigens? In this study, we tested
6 properties, which were used in protein/antibody bind-
ing site prediction previously, with the published data-
bases plus the most recently released PDB entries. We
found that the performances of the 6 terms were quite dif-
ferent for the two databases. Nevertheless, consensus pre-
diction of the 6 terms resulted in reasonable accuracy for
both databases.

http://www.biomedcentral.com/1471-2105/10/302

Methods

Protein datasets

Protein Dataset |

48 antigen-antibody complexes with resolution <3.0 A
were selected from the 59 representative antigen-antibody
complexes compiled by Ponomarenko and Bourne[25]:
2ADF, 1FE8, 1BGX, 1E6], 1EG], 1FSK, 1HOD, 1IQD,
1RIL, 1SY6, 1TZI, 1WE], 1YID, 1YY9, 1ZTX, 2]JEL, 1A14,
INCA, 1BVK, 1JHL, 1NDG, 1P2C, 1JPS, 1AR1, 1EQS,
1QFU, 1EZV, 10S8P, 1FI1, 1ENS, 1G9M, 1R3], 1N8Z,
1INFD, 1TQB, 2VDL, 1V7ZM, 1XIW, 2AEP, and 1R0A. All
entries were released before January 2006 except for
2VDL, which was the new version of original entry 1TXV.
This dataset was used to derive residue epitope propensi-
ties.

Protein Dataset 2

22 antigen-antibody complexes and their unbound struc-
tures were selected from protein docking Benchmark 2.0
[26]. Benchmark 2.0 was published in 2005 and overlaps
with Protein Dataset 1. The complex structures in this
dataset were used to locate the antibody binding sites.
Interface residues on the surface of unbound antigens
were used to optimize the parameters for the binding site
prediction method and considered as the training set.

Protein Dataset 3

This dataset was curated by us and served as an independ-
ent test set, which has 17 antigen-antibody complexes
released between February 2006 and October 2008.
Within this window, there were 180 entries returned by
querying the PDB with a resolution <3.0 A, using key
words "antibody" and "complex". All complexes of anti-
bodies with non-protein-ligands were manually removed
from those 180 structures. Subsequently we performed a
sequence alignment for antigens in the remaining com-
plexes and Protein Dataset 1. A complex was kept if the
maximum sequence identity between its antigen and any
antigen in Protein Dataset 1 was less than 35% in local
alignment. For a complex with a maximum sequence
identity in the range of 35~50%, we accepted the com-
plexes if the binding topology was not the same as the cor-
responding complex in Protein Dataset 1. The same
criterion was also applied on any two complexes within
Protein Dataset 3 itself. As a result, a total of 17 antigen-
antibody complexes were selected. The unbound struc-
tures of the antigens in those 17 complexes were also
obtained from the PDB. The structure with the best reso-
lution was selected if there was more than one protein
structure available in PDB. For the case that an antigen's
unbound structure was not available, its bound structure
in a complex with another protein was used for evalua-
tion.
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Definition of surface residues, surface patches, and
interface residues

Following previous work [27], we consider an amino acid
residue as a surface residue if the relative accessibility of its
side chain is greater than 6% with probe radius = 1.2A.
Also to confirm with previous work on protein binding
site prediction [27] a surface patch is defined as a central
surface residue and its 19 nearest surface neighbors in
space. Solvent vector constraints [28] were applied in
order to avoid patches sampled on different sides of a pro-
tein surface. An interface residue is the surface residue
with solvent accessibility decreased more than 1 A2 upon
association.

Six terms for antibody binding site prediction

Residue epitope propensity[29], conservation score[29],
side chain energy score[29], contact number[20], surface
planarity score[30], and secondary structure composi-
tion[5] were exploited for antibody binding site predic-
tion. We previously used the first three terms for protein-
protein interface prediction (PINUP[29]). In an inde-
pendent comparative study the PINUP method showed
the highest prediction accuracy compared to other pub-
lished interface prediction approaches [31]. The last three
terms have already been used for antibody binding site
prediction by others. We describe the details of those six
terms in the following paragraphs.

Residue epitope propensity
The score of antibody binding site propensity, E
(9), is defined as

propen-

sity

interface S
T T

surface | cave
Py Sy

E (1)

propensity(i) =| In

Where pinterface apg psurface gre the contribution of resi-
due type r to the antibody binding site and to the protein

surface area, respectively, S, and S'¢ are the relative

accessible surface area of residue r at the sequence posi-
tion i and the average relative accessible surface area of
surface residues of type r, respectively. The C, atom of Gly
is considered as a side chain atom for convenience. Since
antigen-antibody interfaces have different residue compo-
sition compared with other protein-protein interfaces, we
used Protein Dataset 1 to derive residue antibody binding
site propensity instead of using the former residue inter-

face propensity score[29]. Here, pnteface apq psurface
were obtained from statistical analysis of Protein Dataset
1. Some antigens in Dataset 1 have multiple epitopes.

Those residues belonging to any of the epitopes were con-
sidered as antibody-binding interface residues. The values
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of S¢ for 20 amino acid residues were obtained from the

statistical analyses on 41 antigens in Protein Dataset 1.

Residue conservation score

Residue conservation was measured by the self-substitu-
tion score from the sequence profile. Sequence profiles
were obtained by three rounds of PSI-BLAST searches with
the BLOSUMG62[32] substitution matrix. The conservation
score at the position i is defined as

|Mir _Brr |' ifMir _Brr <0,

. ()
0, if M;, — B, >0.

ECODSQI’V(i) = {
where M,, is the self-substitution score in the position-spe-
cific substitution matrix generated from PSIBLAST for the
residue type r at sequence position i, and B,, is the diago-
nal element of BLOSUMG62 for residue type r. Usually,
protein-protein interface residues are more conserved
than other surface residues due to functional constraints,
and hence, the conserved surface residues in the unbound
structure will be predicted as interface residues. The resi-
dues in the antibody-binding site, however, are less con-
served than other surface residues due to the constraint of
the host immune system. The unconserved residues are
considered as the putative antibody binding site residues.

Side-chain energy score

The exact expression for side chain energy score can be
found in Eq. (3) in PINUP [29]. It was calculated from the
side-chain energies of all possible rotamers for a given res-
idue type at a sequence position whereas other sequence
positions have native residue types and observed atomic
coordinates. The weights of the energy function were opti-
mized so that the native residue was predicted energeti-
cally favorable at each position of the training
proteins[33] The assumption is that the residues at the
antibody binding site may have a higher energy score than
other surface residues so that the free energy of the anti-
gen-antibody system could go down significantly upon
association.

Contact number

The residue contact number is the number of C, atoms in
the antigen within a distance of 10 A of the C_ atom of res-
idue i [20]. A residue with a small contact number was
considered as an antibody binding site residue.

Planarity score

The planarity of each surface patch was calculated by eval-
uating the root mean squared (rms) deviation of all the C,
atoms in the surface patch from the least squares plane
through the atoms. The rms deviations were inverted such
that a high planarity score for a patch was interpreted as a
planar patch and antibody binding site[34].
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Secondary structure composition

This score was defined as the fraction of patch residues
forming turns or loops in all 20 patch residues. Following
Chou & Fasman's method[35], the a-helix and B-sheet
were defined as four or more consecutive residues having
¢, v angles within 40° of (-60°, -50°) and three or more
residues having ¢, y angles within 40° of (-120°, 110°)
or (-140°, 135°), respectively. The remaining regions
were considered turns and loops.

Prediction of discontinuous epitopes

Prediction with one term

Given the structure of an antigen, all of its surface residues
were sampled, and hence all its corresponding surface
patches could be obtained. The score of a patch for one
scoring function is given by the average value of its scores
for all 20 residues. Based on a certain threshold, the cen-
tral residue of the top percentile patch was predicted as an
interface residue. In case of secondary structure composi-
tion and contact number score if a patch was not ranked
above the threshold but scored the same as any top ranked
patch, the patch was also added into the top-ranked patch
set.

Prediction with consensus scoring

To take the advantage of the multiple features, we used a
voting mechanism with the above described six scoring
functions. A patch was considered as an interface patch if
five of the all six terms scored it into the top-ranked patch
set. We did not use the vote mechanism of all six votes
from the six scoring function because one surface patch
with a small contact number could not have a high
planarity score at the same time. The number of predicted
residues with each single term is the same but the thresh-
old of how many top ranked patches shall be kept can be
varied to yield predictions with different sensitivities.

Patch score derived by unevenly averaged single-residue
scores

Patch analysis is widely used in protein binding site pre-
diction. In general, it is assumed that each residue in the
patch contributes equally to the patch score. Here, we
exploited patch scoring with a weight decreasing with the
distance from the center of the patch,

20 —d
EPHICh(i) = 2 E esique(R)ee T, (3)
k=1

where E, . 4,.(k) is the score of residue k in the patch; d is
the distance between residue k and the central residue of
the patch; T is the parameter to be optimized during train-
ing.

Evaluation methods
Sensitivity and precision were defined as the ratios of the
number of correctly predicted interface residues to the
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number of real interface residues and to the number of all
predicted interface residues, respectively. Specificity is
defined as the fraction of correctly predicted surface resi-
dues in the total number of observed surface residues. As
recommended by Ponomarenko & Bourne[25], the area
under the receiver operating characteristic curve (AUC)
was used as the primary evaluation metric. A receiver
operating characteristic (ROC) curve represents a depend-
ency of sensitivity and (1-specificity). To obtain the ROC
curve, we increased the number of predicted residues (or
the predicted residue with the single term in consensus
prediction) in steps of 1% of total surface residues. A java

program downloaded from http://pages.cs.wisc.edu/
~richm/programs/AUC/, was used to calculate the AUC.

Results and Discussions

Predictions with one term

As a first test, we used each single term described in the
Materials and Methods section to evaluate Protein Dataset
2 (training set) and Protein Dataset 3 (testing set). The res-
idue antibody binding site propensity was independently
derived from Protein Dataset 1 (Table 1). The correlation
coefficient between the antibody binding site propensity
and the protein-protein interface propensity values used
in a previous study [29] is -0.15. This indicates clearly that
antigen-antibody complexes have unique interface prop-
erties and that propensity value specifically derived from
antigen-antibody complexes should be used for antibody
binding site prediction. Especially, cysteine has a excep-
tionally large value of

(In pinterface j psurfacey / gave hocayge it is seldom found at

antibody binding sites [20] and usually has a small sol-
vent accessibility. On the other hand, cysteine is enriched
relative to protein surfaces in general at other protein-pro-
tein interfaces[29] Excluding cystine, the correlation coef-
ficient between the antibody binding site propensity and
the protein-protein interface propensity rises to 0.3.

negative

Antibody binding site propensity alone results in a quite
accurate prediction (AUC = 0.637) for the training set
(Protein Dataset 2). This is because the training set over-
laps with Protein Dataset 1, which was used to derive the
antibody binding site propensity values for the 20 amino
acids. The prediction accuracy is considerably lower
(0.577) for the testing set. It is possible that the propensity
values were over trained. Other terms showed prediction
accuracies only slightly better than random. Most of the
contributing terms showed quite different performance
for the training and testing sets (Table 2). For example, the
score based on secondary structure composition showed
no prediction ability for the training set, whereas it was
the most effective term for the testing set. Antibody bind-
ing site propensity, conservation score, and contact
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Table I: The values of (In Prime]rface /Prsurface) / Sive for twenty amino acid residues.

Amino Acid (lIl Prlnterface /Prsurface) / S;ive Amino Acid (ln Prlmerface /Prsurface) / S?ve
Ala -0.392 Leu -1.31

Arg 0316 Lys 0.021

Asn 0.446 Met 1.06

Asp -0.307 Phe 0.979

Cys -7.36 Pro 0.017

Gin -0.006 Trp -0.07

Glu -0.492 Val -0.826

Gly 0.463 Ser -0.004

His 0.207 Thr -0.062

lle 0.334 Tyr 0.979

Prlmerface is the contribution of residue type r to the area of antibody binding site; Prsurface is the contribution of residue type r to the protein

ave . . . .
surface area; S is the average relative accessible surface area of surface residues of type r.

number were the three most effective terms for the train-
ing set but were only medium predictors for the testing
set.

Prediction results for the training dataset with consensus
scoring

As shown in Table 2, all individual terms showed only
slightly better prediction than a random prediction and
the performance varies with the selected protein datasets.
Combination of multiple features to increase the predic-
tion accuracy is a challenge. Recently, Sweredoski & Baldi
concluded that non-linear methods such as SVMs, ANNSs,
and Gaussian Mixture Models did not achieve higher per-
formance than a linear combination [36]. Here, we found
that the precision of most terms does not increase for both
training and testing sets as the number of predicted resi-
dues decreases except for conservation score (Fig 1). Selec-
tion of top scored residues by linear combination has no
advantage over the consensus prediction of several terms.

Table 2: AUC values for training and testing datasets predicted
by the single term

Evaluation terms Training set? Testing setb

Binding site propensity 0.637 0.577
Conservation score 0.593 0.564
Side chain energy score 0.555 0.569
Contact number 0.59 0.556
Planarity score 0.53 0.554
Fraction of turns & loops 0.489 0.587

2 Antigen-antibody complexes from protein docking benchmark 2.0. b
17 recently released antigen-antibody complex structures in PDB.
Unbound structures of both databsets were used for prediction and
bound structures were used for identification of interface residues.
The AUC values were calculated and averaged for all the proteins in
two datasets, respectively.

In fact, when the contribution of the six terms was consid-
ered to be equal (as an example) and the sum of the six
scores was used for re-ranking, we obtained an average
AUC of 0.603 for the training set. When the residues,
which were predicted as interface residues by 5 out of the
6 terms, were selected as the final prediction, the AUC
value was 0.614 for the training set.

The precision of the conservation score always increases
for both the training and testing sets as the number of pre-
dicted residues decreases. The residues scored above the
cutoff value by only conservation were also considered as
interface residues. Furthermore, when the predicted resi-
dues with the single term are less than 28% of total surface
residues, none of interface residues are predicted by con-
sensus scoring for at least one training protein and inter-
face residues are only predicted by conservation score. We
tried the cutoff value of 5%, 10%, 15%, and 20%, and the
AUC values were 0.619, 0.622, 0.626, and 0.618 respec-
tively. The cutoff value (15%) yielding the best AUC value
was selected.

All the residues in the surface patch contributed equally to
the patch score in the above predictions and only the cen-
tral residues of the top scored patches were selected. In
order to optimize the patch score with respect to the posi-
tion of residues in the patch, the score of each patch resi-
due was considered assuming an exponential decrease of
the weight with the distance between patch residues and
the central residue. The decay constant T in equation (3)
was allowed to take the values 4, 8, 12, and 16. The corre-
sponding AUC values were 0.622, 0.633, 0.635, and
0.629, respectively, for the training set. The T value of 12
yielding the best AUC value was selected for applications
on the test set. Table 3 lists the results for the training set.
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Antibody binding site propensity
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Figure |

Correlation between precision and the number of predicted residues (a) Training set; (b) Testing set. The pre-
diction results of all the proteins in the datasets were calculated and averaged. The precisions of random prediction are 15%
and 12.6% for the training and testing sets, respectively.
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Table 3: Prediction results for the training set with 6 combined terms

Complex Unbound No. of Surface Residues No. of Interface Residues Sensitivity?  Precision?  Specificity? AUC
IAHW_AB:C ITFH_A 173 25 0.360 0.153 0.662 0.481
IBVK_DE:F 3LZT_ 98 17 0.765 0.361 0.716 0.835
IDQJ_AB:C 3LZT_ 98 20 0.300 0.182 0.654 0.534
IE6)_HL:P 1A43_ 63 13 0.462 0.353 0.780 0.585
IJPS_HL:T ITFH_B 155 25 0.360 0.170 0.662 0517
| MLC_AB:E 3LZT_ 98 16 0.562 0.250 0.671 0.636
IVFB_AB:C 8LYZ_ 107 18 0.833 0.385 0.730 0.833
IWEJ_HL:F IHRC_ 95 13 0.462 0.188 0.683 0.649
2VIS_AB:C 2VIU_A 247 20 0.900 0.281 0.797 0.901
I1BJI_HLJK:VWP  2VPF_GH 160 35 0.600 0412 0.760 0.705
IFSK_BC:A IBVI_ 145 19 0.526 0.233 0.738 0.587
1I9R_HL:ABCP IALY_ABC 320 65 0.508 0.292 0.686 0.687
11QD_AB:C ID7P_M 127 17 0.765 0.361 0.791 0.848
I1K4C_AB:C 1JVM_A 88 16 0.500 0.258 0.681 0.647
IKXQ_H:A IPPI_ 341 30 0.600 0.148 0.666 0.637
INCA_HL:N 7NN9_ 263 27 0.556 0.163 0.674 0.684
INSN_HL:S IKDC_ 106 23 0.174 0.114 0.627 0.454
IQFW_HL:AB IHRP_AB 170 17 0.235 0.071 0.660 0.484
IQFW_IM:AB IHRP_AB 170 17 0.706 0214 0.712 0.738
2JEL_HL:P IPOH_ 68 18 0.167 0.158 0.680 0.498
IBGX_HL:T ICMW_A 646 66 0.394 0.124 0.683 0.521
2HMI_CD:AB 1S6P_AB 810 14 0.429 0.024 0.697 0.518
Mean 207 24.1 50.7 0.222 0.7 0.635

a Sensitivity, precision, and specificity were recorded when 55% of surface residues were predicted as interface residues by the single term. We
chose the parameter (55%) so that the sensitivity was about 50% in the consensus prediction. PMultiple binding sites.

Independent test

The average AUC value was 0.616 for the testing set when
the residues predicted as interface residues by 5 of the 6
terms were selected in the consensus prediction. The AUC
value increased to 0.621 when the residues top scored by
conservation were included in the prediction (cutoff value
= 15%) and further increased to 0.632 (Table 4) if non-

Table 4: Prediction results for the testing set

uniform averaged patch scores were used (T = 12). The
prediction accuracy was very close to that for the training
set (0.635). Fig. 2 shows two successful predictions. The
real antibody binding sites overlapped with the largest
cluster of red colored residues which correspond to the
predicted antigenic epitope residues.

Complex Unbound  No. of Surface Residues No. of Interface Residues Sensitivity?  Precision®  Specificity? AUC
2ARJ_HL:Q INEZ_G 99 18 0.278 0.227 0.790 0.604
2BDN_HLA IDOK_A 63 13 0.154 0.095 0.620 0.281
2FD6_HL:U IYWH_A 225 14 0.500 0.089 0.659 0.617
2GHW_B:A 2GHV_E 148 27 0.519 0.311 0.744 0.727
2H9G_AB:R ID4V_A 108 18 0.556 0.286 0.722 0.724
2J6E_IMHL:AB® 2DTQ_AB 336 41 0.512 0.202 0.719 0.614
2NR6_CD:A IYG9_A 233 19 0.947 0.234 0.724 0.870
2NYY_CD:A 2VUA_A 321 24 0.750 0.164 0.690 0.810
2P45_B:A IKF2_A 104 13 0.154 0.057 0.637 0.553
2Q8B_HL:A 1Z40_A 228 25 0.440 0.147 0.685 0.645
2QQN_HLA IKEX_A 118 I 0.636 0.200 0.738 0.737
2R29_HLA IOK8_A 317 20 0.300 0.054 0.646 0.567
2R56_HLA IGX9_A 131 22 0.091 0.053 0.670 0.409
2UZI_HLR 2EVW_X 132 21 0.286 0.171 0.739 0.505
3BN9_CD:B IEAX_A 181 32 0.531 0.279 0.705 0.581
3BQU_CD:AB  2F5A_HL 336 12 1.000 0.098 0.660 0914
3D85_AB:C 3D87_A 141 19 0.474 0.180 0.664 0.591
Mean 189 20.5 47.8% 16.7 69.5% 0.632
a Sensitivity, precision, and specificity were recorded when 55% of surface residues were predicted as interface residues by the single term.
bMultiple binding sites.
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Figure 2

Two successful examples of antibody binding site
prediction (a) SARS spike protein receptor binding
domain (2ghv); (b) Cockroach allergen Bla g 2 (1yg9).
The antibodies were colored in grey. The surface residues of
antigens were colored according to predicted possibility to
be an epitope residue (from red to blue in decreasing order)
and the core residues were colored in blue.

Comparison with other epitope prediction methods

In this study, we investigated residue antibody binding
site propensity based on atomic solvent accessibility for
20 amino acids. The AUC values for training and testing
sets were 0.637 and 0.577, respectively, when the single
term of propensity score were used for prediction. Cur-
rently, two other algorithms using multiple features for
antibody binding site prediction are available, Disco-

http://www.biomedcentral.com/1471-2105/10/302

Tope[20] and PEPITO[36]. These methods used similar
antibody binding site propensity scores at residue level.
We also tried using the propensity score of DiscoTope [20]
for comparative predictions. The AUC values were 0.587
and 0.551 for our training and testing sets, respectively.
Propensity score based on atomic solvent accessibility has
a slightly better performance than the propensity score of
residue level for both datasets.

We compared our consensus algorithm with the recently
updated version of DiscoTope[20] and PEPITO[36], Dis-
coTope 1.2 http://www.cbs.dtu.dk/services/DiscoTope
and BEpro http://scratch.proteomics.ics.uci.edu. The
computation was conducted on the websites for each
method between December 2008 and January 2009. As
shown in Table 5, all of the algorithms have similar pre-
diction for the training set while our algorithm showed a
better prediction (AUC = 0.632) for the unbound struc-
tures of testing set than DiscoTope (0.589) and BEpro
(0.598). It should be noted that all the PDB files in the
testing set were released very recently so these structures
were not part of the training set for the two published
methods and could serve as independent testing cases for
other algorithms as well. In the original paper an AUC
value of 0.71 was reported for DiscoTope averaged over
five evaluation sets used for cross validation [20]. How-
ever, a considerable smaller AUC value for DiscoTope of
0.566 for 30 targets out of 59 representative antigen-anti-
body complexes, which were compiled by Ponomarenko
& Bourne and not used for training DiscoTope was
reported in a recent study [25]. The prediction accuracy of
recently released DiscoTope 1.2 was slightly improved
compared with the original DiscoTope in the two inde-
pendent tests.

Unlike Discotop1.2 and BEpro, our algorithm has lower
prediction accuracy for the bound structures than the
unbound structures due to the inclusion of the side chain
energy score. The interface residues of bound antigen are
buried in the complex and usually have a lower tempera-
ture factor than other surface residues. In the bound forms
these side chains have systematically lower energies than
in the unbound form which in our algorithm contributes
unfavorably to the score [27]. Predictions with the side
chain energy score as single term yielded AUC values of
training and testing sets of 0.555 and 0.569, respectively,
for unbound structures and 0.532 and 0.521 for bound
structures, respectively.

Conclusion

An important conclusion of the present study is that anti-
body binding site prediction is more difficult than predic-
tion of other protein binding regions. A combination of
multiple surface features which allows relatively accurate
prediction of protein binding sites in general shows
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Table 5: Comparison with other algorithms

Methods Training set Testing set
Bound Unbound Bound Unbound
DiscoTopel.2 0.63 0.628 0.6 0.589
BEpro 0.645 0.639 0.617 0.598
Our algorithm 0.628 0.635 0.603 0.632

poorer performance in case of antibody binding site pre-
diction. An important issue is also that a given protein
usually contains not only one but several putative anti-
body binding sites. Usually an antibody-antigen complex
structure indicates only one of these possible antigenic
epitopes. In addition, care must be taken in evaluating
prediction methods when a relatively small number of
antibody-antigen complexes were used as the testing set.
The prediction algorithm may work reasonably well on
one testing set but could show poorer prediction accuracy
on new targets due to different interface properties. More
training proteins are required for developing new predic-
tion algorithms in the future. Nevertheless, the study
demonstrated that consensus scoring of widely used fea-
tures for binding site prediction showed a better perform-
ance than any single term for the independent test set. The
prediction accuracy was improved further by utilizing res-
idue epitope propensity based on atomic solvent accessi-
bility. However, a detailed comparison with other
published methods indicated that overall the perform-
ance of our combined approach is similar to existing
methods.

Availability
The EPCES program is available upon request. A web-
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