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Abstract

Background: Protein-protein interactions (PPIs) play fundamental roles in nearly all biological
processes, and provide major insights into the inner workings of cells. A vast amount of PPl data
for various organisms is available from BioGRID and other sources. The identification of
communities in PPl networks is of great interest because they often reveal previously unknown
functional ties between proteins. A large number of global clustering algorithms have been applied
to protein networks, where the entire network is partitioned into clusters. Here we take a
different approach by looking for local communities in PPl networks.

Results: We develop a tool, named Local Protein Community Finder, which quickly finds a
community close to a queried protein in any network available from BioGRID or specified by the
user. Our tool uses two new local clustering algorithms Nibble and PageRank-Nibble, which look
for a good cluster among the most popular destinations of a short random walk from the queried
vertex. The quality of a cluster is determined by proportion of outgoing edges, known as
conductance, which is a relative measure particularly useful in undersampled networks. We show
that the two local clustering algorithms find communities that not only form excellent clusters, but
are also likely to be biologically relevant functional components. We compare the performance of
Nibble and PageRank-Nibble to other popular and effective graph partitioning algorithms, and show
that they find better clusters in the graph. Moreover, Nibble and PageRank-Nibble find
communities that are more functionally coherent.

Conclusion: The Local Protein Community Finder, accessible at http://xialab.bu.edu/resources/
Ipcf, allows the user to quickly find a high-quality community close to a queried protein in any
network available from BioGRID or specified by the user. We show that the communities found
by our tool form good clusters and are functionally coherent, making our application useful for
biologists who wish to investigate functional modules that a particular protein is a part of.

Background ple, Kleinberg used the link structure of the Internet to
Using the link structure of a network to gain insight into  give each node a hub and an authority index [9], and Brin
the function of its nodes is a ubiquitous technique in bio- ~ and Page utilized the structure of the Web, rather than its
logical, social, and computer networks [1-11]. For exam-  content, to rank Web pages [10,11]. Of particular interest
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is the identification of network communities, also in the
context of the Internet [6-8], and social and biological net-
works [1-5]. Communities are especially relevant in pro-
tein-protein interaction (PPI) networks because they often
represent protein complexes or other modules with
related function.

There are several ways to define a community in a net-
work. One definition is to say that a community is a group
of highly interconnected nodes. Finding large cliques in a
graph, which are subsets of nodes that are completely con-
nected, is a well-studied problem. It is computationally
infeasible for large networks: finding the size of the largest
clique in a graph is NP-Complete [12], and approximating
it is hard as well [13]. Thus many heuristic methods have
been developed, which look for defective cliques (cliques
that are missing some edges), or more generally dense
components.

In the context of biological networks, Bu et al. use spectral
analysis of the adjacency matrix of a graph to find nodes
in cliquish components [14]. They apply this technique to
yeast PPI networks to identify imperfect cliques, in order
to predict the functions of the unknown proteins that they
contain. In addition to using spectral approaches, a sim-
pler strategy for finding defective cliques is to first enu-
merate maximal cliques using an exact (but time
consuming) solution, and then combine them if they
have significant overlap [15].

A different way to characterize a community is to look at
it as a cluster: a group of nodes that are highly intercon-
nected among themselves, but sparsely connected to the
rest of the network. The quality of a cluster can be meas-
ured by the ratio of the number of its outgoing edges to
the sum of the degrees of its nodes, known as conductance
[16]. For example, a cluster has a conductance of 0 if it is
disconnected from the rest of the network, and 1 if there
are no edges within the cluster.

In order to find clusters in a network, we can use two
kinds of algorithms that differ in whether or not they con-
sider the entire graph. A global clustering algorithm seeks
to partition the entire graph into clusters, while a local
clustering algorithm only considers a small part of the
graph close to a given vertex. Much effort has been
devoted to using global partitioning algorithms on pro-
tein networks [17-22], but the same cannot be said about
local techniques. Local algorithms have an obvious
advantage because they are often faster. In addition, they
may be more useful if the user is only interested in a cer-
tain neighborhood of the network. Even though a local
algorithm uses less information, it can utilize a local view
of the graph to find a quality cluster [23].

http://www.biomedcentral.com/1471-2105/10/297

Contribution

The objective of this work is to develop a tool (Local Pro-
tein Community Finder) for finding high-quality commu-
nities near a queried protein in a PPI network. Here we
measure the quality of a community by its conductance,
and the functional coherence of its proteins. We expect
clusters of interacting proteins to be functional modules,
yet this may not always be the case. Therefore, we need to
validate the biological significance of the found commu-
nities. To evaluate functional coherence, we consider how
functionally related the proteins inside the cluster are to
each other, and to the other proteins in the network. In
order to determine the functional distance between a pair
of proteins, we use a measure derived from annotation
based on biological literature [24].

The Local Protein Community Finder uses a recently
developed local clustering algorithm called Nibble [23],
and its extension PageRank-Nibble [25]. Both of them
start from a single vertex, and look for a cluster of good
conductance in its neighborhood. To our knowledge, our
study is the first application of non-heuristic local cluster-
ing algorithms to protein networks. We compare Nibble
and PageRank-Nibble to Metis, a popular and effective
graph partitioning algorithm [26], and a common spectral
clustering implementation [27]. Metis partitions the
entire network into mutually disjoint balanced clusters,
keeping the edge cut, which is the set of edges with end-
points in different clusters, as small as possible. The intu-
ition behind spectral clustering is described in [27-34],
and Metis works better than commonly used spectral clus-
tering methods in terms of the size of the resulting edge
cut [26]. We show that among the algorithms considered,
Nibble and PageRank-Nibble find better clusters in terms
of conductance and functional coherence, making our
tool useful for finding interesting communities close to a
queried protein.

Methods

Preliminaries

We model a protein network as an undirected,
unweighted graph where the nodes are the proteins, and
two nodes are connected by an edge if the corresponding
proteins are annotated as interacting with each other.

Graph Representation

Formally, a graph is given by a set of vertices V and a set
of edges E. The degree of a node u € V, denoted by d(u), is
the number of edges adjacent to u. A graph is often repre-
sented by its adjacency matrix. The adjacency matrix of a
graph G = (V, E) is defined by

1 if(uv)eE
0 otherwise.

Ag(u,v) ={
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Random Walks

We can learn a lot about the structure of a graph by taking
a random walk on it. A random walk is a process where at
each step we move from some node to one of its neigh-
bors. The transition probabilities are given by edge
weights, so in the case of an unweighted network the
probability of transitioning from u to any adjacent node is
1/d(u). Thus the transition probability matrix (often
called the random walk matrix) is the normalized adja-
cency matrix where each row sums to one:

We =DZ'Ac.

Here the D matrix is the degree matrix, which is a diagonal
matrix given by

diu) ifu=v
0 otherwise.

D¢(u,v) :{

In a random walk it is useful to consider a probability dis-
tribution vector p over all the nodes in the graph. Here p
is a row vector, where p(u) is the probability that the walk
is at node u, and %, _ , p(u) = 1. Because we transition
between nodes with probabilities given by W, if p, is the
probability distribution vector at time ¢, then p,,, = p,W.

If we modify the random walk to reset at each step with
nonzero probability ¢, it will have a unique steady-state
probability distribution. This steady-state distribution,
which is known as a PageRank vector, is useful because it
tells us how much time we will spend at each vertex in a
very long random walk on the graph. For starting vector s,
and reset probability ¢, the PageRank vector pr, (s) is the
unique solution of the linear system

pr,(s) =as+(1—-a)pr,(s)W.

The s vector specifies the probability distribution for
where the walk transitions when it resets. The original
PageRank algorithm used a uniform unit vector for s
[10,11]. PageRank with non-uniform starting vectors is
known as personalized PageRank, and has been used in
context-sensitive search on the Web [35,36].

Partitioning

A common problem in graph theory is to partition the ver-
tices of a graph into clusters while minimizing the
number of intercluster edges. A matrix often used for this
purpose is the graph Laplacian. The Laplacian matrix of an
undirected graph G = (V, E) (with no self-loops) is defined
as follows:

http://www.biomedcentral.com/1471-2105/10/297

d(u) ifu=v
Lo(w,v)=9-1 ifu#vand (u,v)eE
0 otherwise.

In other words, L = D, - Ac. The eigenvectors of L reveal
some structure of the graph [30], and are often used by
spectral graph partitioning algorithms.

Conductance

Conductance measures proportion of outgoing edges of a
set of nodes in the graph. Given a graph G = (V, E), and a
subset of vertices S € V, let us call the edge boundary of S
the collection of edges with one point in S and the other
outside of S:

S)={{x.y}e E|xe S,ye S}.

Let us also define the volume of S to be the sum of the
degrees of its nodes:

vol(S) = Zd(x).

xe8S

The conductance of S is then defined as the ratio of the
size of its edge boundary to the volume of the smaller side
of the partition:

[9(S)|

*(5)= min(vol(S),vol(S))

The lower the conductance, the better the cluster. Notice
that a cluster can have low conductance without being

dense. Using the minimum of vol(S) and vol(S ) in the
definition disregards vacuous clusters (for example, when

S=@and § =V).

Nibble

Nibble, the local clustering algorithm of Spielman and
Teng [23], works by looking for a cluster of low conduct-
ance among the most popular destinations of a short ran-
dom walk from the starting vertex. The algorithm starts
with a probability distribution vector p that has all of its
probability in the starting vertex, and at every iteration
updates p by setting p, = p, ; W, where W is the lazy random
walk transition probability matrix. A lazy random walk is
a modified random walk where the probability of remain-
ing at each vertex is 1/2; it is used to ensure that the walk
reaches a steady state. After each iteration of the random
walk, Nibble checks the probability distribution vector for
a cluster of low conductance by performing a "sweep" of p.

A sweep is a technique for producing a partition (cluster)
from a probability distribution vector. The vertices are
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ordered by degree-normalized probability, and the con-
ductance of the first j vertices in the order is computed,
where j ranges from 1 to the number of non-zero entries
in the vector (N), returning the set with lowest conduct-
ance. More precisely, let v,,..., vy be an ordering of

(nonzero) vertices of p such that p(v,)/d(v;) = p(vi,,)/
d(v;,,). Consider a collection of sweep sets S;’ ={vi. v}

Let @ (p) be the smallest conductance of any of these sets,

®(p) = min O(S).
(r) min (59)

The algorithm finds @ (p) by sorting the entries of p by
degree normalized probability, and then computing the
conductance of each sweep set to find the minimum. The
degree of each vertex v, denoted by d(v), is proportional to
the amount of probability that v has in the stationary dis-
tribution of the random walk. Therefore the sweep sets
contain vertices that have significantly more probability
in p than they do in the stationary distribution, meaning
that they are visited more often in a walk from the starting
node than they are at steady-state.

In order to bound the runtime of the algorithm, Nibble
only looks at a small part of the graph close to the starting
vertex by using a truncation operation on the probability
distribution vector. Given a parameter , after each itera-
tion of the random walk, we set p(v) = 0 for every v such
that p(v) £ d(v). Nibble takes as input the number of iter-
ations that it performs, as well as , and returns the sweep
set of smallest conductance over all iterations.

Deviating from the algorithm presented in [23], we also
implement a constrained version of Nibble, which always
reports a cluster containing the starting vertex. Here when
we perform a sweep of the probability distribution vector,
we always put the starting vertex s first in the order (set v,
= 5), no matter how much probability there is at that ver-
tex. Therefore, Constrained-Nibble only considers sweep
sets that include the starting vertex. Similarly, Nibble can
also be modified to only consider sweep sets of a certain
size, which is useful when we wish to find a cluster in a
specified size range.

PageRank-Nibble

PageRank-Nibble [25] is similar to Nibble in that it looks
for a cluster containing the closest vertices to the starting
node. However, instead of using an evolving probability
distribution of a random walk from starting node s,
PageRank-Nibble uses a personalized PageRank vector
that gives the stationary distribution of a random walk
that always returns to s when it resets. Once the personal-
ized PageRank vector is computed, the same sweep tech-
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nique described in the previous section is used to return
the cluster of lowest conductance among its sweep sets.

In addition, to bound the amount of time necessary to
compute the PageRank vector and perform a sweep, the
algorithm uses an approximation of it. The approxima-
tion algorithm computes an -approximate PageRank vec-
tor by conducting a random walk that only considers
vertices v that have more than d(v) probability in them.
The resulting PageRank vector has few non-zero entries,
and the amount of error in it for any subset of vertices S is
less than - vol(S).

PageRank-Nibble uses the same sweep technique to find a
partition, so it can also be constrained to only consider
sweep sets of a certain size, if we wish to find a cluster in
a specified size range. Unlike Nibble, PageRank-Nibble
always reports a cluster containing the starting vertex
because the starting vertex has the most degree normal-
ized probability in the computed PageRank vector. For
calculations of PageRank, « (the reset probability in the
PageRank equation) is typically chosen to be 0.15. How-
ever, we find that using a lower value of « (such as 0.02)
gives us clusters of lower conductance.

Metis

Metis is a global graph partitioning algorithm that outper-
forms other state-of-the-art methods [26]. It takes the
number of clusters (k) as an argument, and maps each ver-
tex to one of k balanced clusters, minimizing the size of
the edge cut, which is the set of edges with endpoints in
different clusters. Metis is a multilevel algorithm, which
coarsens the graph to perform the partitioning, and then
improves it as the graph is rebuilt. There are two variations
of Metis algorithms for partitioning graphs: Kmetis and
Pmetis. We try both, and decide to use Pmetis because it
gives us clusters of lower conductance. Pmetis works by
recursively bisecting the graph, it is slower but returns
clusters that are more balanced in size. The partitions
reported by Pmetis are almost all of exactly the same size,
so to get clusters of a certain size we simply set k accord-
ingly. Because Pmetis is a global algorithm, we partition
the entire graph once, and for starting vertex s return the
cluster containing s.

Spectral Clustering

We use a common spectral clustering implementation,
taking the first d eigenvectors of the Laplacian matrix of
the graph (other than the one corresponding to the lowest
eigenvalue), to put each vertex in a d-dimensional space.
We then use k-means clustering to partition the vertices
into k clusters, again choosing k to get clusters of the
desired size. However, the sizes of the found clusters vary
greatly, so we also use a variation where we simply return
the k closest vertices to the starting vertex in the spectral
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embedding space. Once again, if we partition the entire
graph, we return the cluster that contains the starting ver-
tex.

Measuring Functional Distance

In order to assess the functional coherence of the found
clusters, we use functional distances from Yu et al. [24].
These values are derived using the Gene Ontology (GO)
Process classification scheme, where functional-dis-
tance(a, b) is the number of gene pairs that share all of the
least common ancestors of a and b in the classification
hierarchy. A low functional distance score means that two
proteins are more functionally related, because there are
few protein pairs that have the same functional relation-
ship.

The functional distance measure of Yu et al., which the
authors refer to as the "total ancestry measure for GO,"
has the obvious advantage that it considers all known
functions of a pair of proteins, allowing for a great degree
of precision in assessing functional similarity. Moreover,
unlike other methods that derive distances from the GO
classification scheme, this method is very resilient to
rough functional descriptions, because it still assigns low
distances to pairs of proteins that only share very broad
terms, as long as there are few other protein pairs that
share all of those terms.

Functional distances from [24] can be quite large, yet dif-
ferences in scores at the low end are more significant than
differences at the high end, which is why we take the log-
arithm in our calculations:

d(a, b) = log,,(functional - distance(a, b))

Calculating Functional Coherence

To determine the functional coherence of community C
in a protein network represented by a graph G = (V, E), we
compute an absolute and a relative functional coherence
score. The absolute functional coherence of a community is
the difference between the average functional distance of
two proteins in the network and the average pairwise
functional distance of proteins in the community:

abs - coh(C) = Lyzvev d(uv) _ ZyzveCcA(uv)
VI(IVI-1) ICl(IC|-1)

The relative functional coherence of a community also takes
into account how functionally related the proteins inside
the community are to the other proteins in the network,
and is defined as the difference in average functional dis-
tance of intercommunity and intracommunity protein
pairs:

http://www.biomedcentral.com/1471-2105/10/297

ZueCveV-Ccdt) 3 pecd(uy)
clv=c| clicl-1)

rel - coh(C) =

Correlating Conductance and Functional Coherence

To determine whether communities with better conduct-
ance are more likely to be functionally coherent, we
choose groups of proteins from each network, rank these
groups by conductance, absolute, and relative functional
coherence, and compute the correlation between the
ranks using the Pearson Correlation Coefficient [37]. How
to choose the protein groups for this experiment is non-
trivial. They cannot be selected by taking random subsets
of nodes in each network, which will most certainly pro-
duce disconnected groups with bad conductance and
functional coherence. Furthermore, they cannot be
selected by using algorithms that minimize conductance,
which will produce groups with strong bias towards low
conductance. A better way to choose these groups is to
first randomly select a vertex, and then choose k - 1 of its
nearest neighbors, breaking ties in distance randomly.
Such "random" protein groups will be connected in the
network, with reasonable and variable conductance and
coherence values. The size of each group is randomly cho-
sen in the range 10 < k < 40, because we expect biologi-
cally relevant communities to be in this size range.

The Protein Networks

The protein interaction data that we use in our study is
from BioGRID [38], Version 2.0.53, updated June 1,
2009. BioGRID lists interacting protein pairs, and for each
pair gives the experimental method used to observe the
interaction, as well as the source that submitted it. In our
study we use several yeast protein-protein interaction
(PPI) networks formed from interactions detected by dif-
ferent methods.

Two of the networks, where protein interactions are
detected from bait-and-prey type experiments are Affinity
Capture-Western (referred to as ac-western in the figures),
and Affinity Capture-MS (ac-ms). These networks tend to
be much more cliquish and contain dense components,
which is due to the nature of the experiment used to detect
the interactions. A single protein (bait) is used to pull in a
set of other proteins (prey), and an interaction is predicted
either between the bait and each prey (the spoke model),
or between every protein in the group (the matrix model)
[39]. We also use Two-Hybrid data in our study. Two-
Hybrid methods detect binary interactions, therefore PPI
networks based on Two-Hybrid data tend to be less dense
and cliquish than ones derived from Affinity Capture
experiments.

In addition to using a network formed from the union of

all Two-Hybrid interactions listed in BioGRID (two-
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hybrid), we also consider a subset of this data submitted
by [40] (two-hybrid-2). This network is sparser, but is
believed to be of higher quality.

Results and Discussion

The Local Protein Community Finder, accessible at http:/
/xialab.bu.edu/resources/lIpcf, allows the user to find local
communities in any protein network available from BioG-
RID [38], which is specified by an organism and a set of
interaction types. In addition to entering the starting ver-
tex, one can also select the desired cluster size, and
whether the reported cluster must contain the starting ver-
tex (Figure 1). Our tool uses the Nibble and PageRank-
Nibble algorithms described in Methods, and returns the
cluster of lower conductance. The program takes only a
few seconds to run, and generates an image of the
returned cluster, as well as annotation of the found pro-
teins (Figure 2). In addition, the found community can be
displayed in VisANT, a popular protein interaction viewer
[41]. If the user would like to use a network that is not
from BioGRID, the generic Local Community Finder can
be wused instead, available at http://xialab.bu.edu/
resources/Icf, where one can upload any undirected net-
work in edge-list format. The Local Community Finder
also supports weighted networks, as the user can (option-
ally) specify a weight for each edge. The application is also
available as a command-line program (in the form of a

single-file Java executable) at http://xialab.bu.edu/
resources/lcf/commandLine.

A Biological Example

First we provide a concrete example where using our tool
reveals a biologically meaningful community, while a dif-
ferent commonly used approach does not produce a func-
tionally coherent group. We use our tool to query the local
community of yeast protein GET3 in the network from
[40], which returns a group of 38 proteins. To investigate
the functions of these proteins, we use the GO Term
Finder [42] to look for Gene Ontology biological process
terms that are significantly enriched in this group (p-value
<0.001). GET3 is a subunit of the GET complex, which is
involved in Golgi to ER trafficking and insertion of pro-
teins into the ER membrane [43]. We find that the local
community of GET3 contains many proteins with similar
functions. The community is significantly enriched for rel-
evant Gene Ontology process categories such as protein
localization (13 genes, p = 2 x 10-9), cellular protein local-
ization (12 genes, p = 3 x 10-%), intracellular protein trans-
port (11 genes, p = 9 x 10°), and establishment of
localization in cell (15 genes, p =5 x 10-3). On the other
hand, when we simply take the 38 nearest neighbors of
GET3 in the protein network (breaking ties in distance
randomly), we get a group of proteins that are not signif-
icantly enriched for any of these categories. Thus here it is
clear that considering the local community of a protein in
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a PPI network is much more meaningful than simply
looking at its immediate interaction partners.

Performance Validation

Nibble and PageRank-Nibble have theoretic performance
guarantees [23,25], but their effectiveness has not been
tested in practice. In order to justify our choice of parti-
tioning algorithms, we compare the performance of Nib-
ble and PageRank-Nibble to two other algorithms
commonly used for this purpose: Metis and spectral clus-
tering. We use two variations of spectral clustering: one
that uses k-means clustering in the spectral embedding
space and reports the cluster containing the starting ver-
tex, and another that simply returns the closest neighbors
of the starting vertex in the spectral embedding space (see
Methods). To determine whether partitioning a protein
interaction network is an effective approach to finding
functionally coherent communities, we also compare
with a simple nearest neighbor heuristic. Given a starting
vertex, nearest neighbor returns the k nearest neighbors in
the graph, ties broken randomly. Of course, we do not
expect this heuristic to return clusters of low conductance,
but we do expect it to find functionally coherent groups,
because nodes that are connected in a PPI network tend to
be much more functionally related [24].

Comparing the Algorithms

To compare the performance of the algorithms, we run all
of them from the same set of nodes in each PPI network
described in Methods, and record the conductance and
absolute/relative functional coherence of the found clus-
ters. We then average the statistics of every algorithm in
each network, and report the standard error to see if the
differences are statistically significant. Moreover, we com-
pare the algorithms when they search for clusters of vary-
ing size for the following reasons:

¢ Functional coherence is sensitive to cluster size (it is
usually lower for smaller clusters), therefore we need
to control the size of the reported clusters for a rigor-
ous comparison.

e This gives a more thorough performance compari-
son because it is possible that different algorithms are
better at finding clusters of different size.

Thus we compare all methods when they search for small
(size 10-20), medium (size 20-30) and large (size 30-40)
clusters. We consider this size range because we expect
biologically relevant functional groups to be of roughly
this size (10-40 proteins). Setting the parameters of each
algorithm to only report clusters in a specified size range
is straightforward: for k-nearest neighbor methods we
simply set k accordingly; we restrict the local clustering
algorithms to only consider sweep sets of a certain size
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Local Protein Community Finder

Choose your network:

organism: | yeast

interaction type (vou can select more than one):

Co-fractionation

Phenotypic Suppression

Synthetic Rescue

Dosage Growth Defect

Biochemical Activity
Protein-peptide

Synthetic Haploinsufficiency

Two-hybrid
Affinity Capture-Western i

Invitro

Network generated from the latest BioGRID data.

If you would like to upload your own network, use the generic Local Community Finder.

Choose the starting protein:

Starting protein: | pex5

You can find the official symbol of vour protein by searching for it here.

Choose the community size:

min: 10

[} community must include the starting protein

Figure |

Local Protein Community Finder user interface. The user selects a protein network from BioGRID (specified by an
organism and a set of interaction types) and a query protein. In addition, the user can choose the size of the community and

whether it must contain the starting protein.
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proteins in the community:

PEXS. PEX22. PEX12, PEX3. PEX15, PEX18, RBK1, PEX19, PEX2. PEX13. PEX8, PEX14, PEX7, DCI1, PEX17,
RPL34A, ECI1, PPA2, PEX21, STE3, PEX10, MMT1, WSC3, FADI1, PEX28, POT1, PEX32, PEX4, POX1

cluster statistics:

size: 29

average degree: 5.103448275862069
edge density: 0.18226600985221675
conductance: 0.3593073593073593

network statistics:

number nodes: 4860
number edges: 35210

@ STE3
@ FADL
MMT1
9 @PE3 ) preys
QD PEXS @ PEX22
Q@ PEX12
QP2
PEX4
QPEUS @ PE(10 g
QPEU3 PPEIT
& PEX18 QPE(32  QPE2S
@ POT1
Q PEX7? Q PEXS
@ PE(21 QD PE14
@ RPL34A
Q@ PPA2 & POX1
P ECI
@bcn

QWSC3
@ RBK1

click here to visualize this cluster in Visant

Figure 2

Local Protein Community Finder output. An image of the found community is displayed, with the starting protein (if it is
part of the community) shown in red, and the other proteins in the community shown in blue. A link to information about each
protein is given at the top of the page. The user can also display the community in the protein interaction viewer VisANT by
clicking on the link at the bottom of the page.
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(see Methods); and we vary the desired number of clusters
when using the global partitioning algorithms, which
gives us clusters in the right size range if the partition is
balanced.

Comparing Performance in Terms of Conductance

Figure 3 compares performance of partitioning algorithms
in terms of conductance of found clusters. For each net-
work and size range, Nibble finds the lowest conductance
clusters, followed by PageRank-Nibble and Metis. Spectral
clustering and spectral nearest neighbor do not perform
nearly as well. The nearest neighbor heuristic does not
take conductance into account, but its results are still
reported for completeness. We note that even when we
constrain Nibble to only consider clusters that include the
starting vertex, it still finds high quality communities. It

d
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Figure 3
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follows that Nibble does not do better simply because it
finds good clusters far from the starting node, while all
other algorithms compared here always report a cluster
containing the starting vertex.

From Figure 3 we also see that the local clustering algo-
rithms outperform the global ones, which may seem sur-
prising at first. However, a global partitioning algorithm
assigns every node to a cluster in order to minimize the
edge cut over all clusters in the graph. It is not clear why
the same algorithm should be best at minimizing the edge
cut for a single cluster in a given neighborhood. The local
algorithms, on the other hand, use a view of the graph rel-
ative to the starting node, which is specific to each vertex,
to find the partition. The intuition for why Nibble works
well is that if we take a node inside a cluster of low con-

M ac western
Wacms

mtwo hybrid
H two hybrid 2

spectral spectral nearest

neighbor

nearest neighbor

M ac western
Wacms

W two hybrid
M two hybrid 2

spectral spectral nearest

neighbor

nearest neighbor

M ac western
Mac ms

W two hybrid
M two hybrid 2

spectral

spectral nearest
neighbor

nearest neighbor

Average conductance of communities found by each algorithm. The algorithms compared are listed along the x-axis,
the y-axis specifies the average conductance of communities found by each algorithm. Bars of different color are used to repre-
sent the results for the four protein networks in which the computational experiments are conducted. (a) The results for small
clusters. (b) The results for medium clusters. (c) The results for large clusters.
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ductance, and start a random walk from that node, most
of the probability will stay inside the cluster because there
are proportionally few outgoing edges (and probability in
a random walk moves along the edges). Therefore, most
of the nodes in the cluster will have a lot of probability in
them, and will be in one of the sweep sets (sets of nodes
that have the most probability in them) considered by
Nibble. Even though PageRank-Nibble does not perform
quite as well on all of our data, its theoretic performance
guarantee is better than that of Nibble [25], and we
believe that it can be especially useful for other networks.

Comparing Performance in Terms of Functional Coherence

In addition to finding good clusters, we would also like
our tool to find biologically relevant protein communi-
ties. In order to see whether algorithms that minimize
conductance are useful for finding functionally coherent
groups, we select a large number of protein groups from
each network and calculate their conductance and abso-
lute/relative functional coherence, to see if there is any
correlation between them (see Methods). The results are
presented in Figure 4. We see significant correlation
between conductance and both functional coherence
measures in all four networks. Moreover, for each network
we also compute the average functional distance of inter-
acting and non-interacting proteins (Figure 5). As we
expect, in all of our networks interacting proteins are more
functionally related. These findings lead us to think that
methods that minimize conductance should do well in

0.7 4
0.6
0.5 -

0.4 -
M absolute functional

coherence

03 M relative functional
coherence

0.2 +

correlation with conductance

ac-western ac-ms two-hybrid  two-hybrid-2

Figure 4

Correlation between conductance and absolute/rela-
tive functional coherence in each network. The x-axis
lists the protein networks. The y-axis gives the Pearson cor-
relation coefficient for the correlation between conductance
and functional coherence of protein groups in each network.
Correlation between conductance and absolute functional
coherence is shown in blue, and correlation between con-
ductance and relative functional coherence is shown in red.
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terms of finding functionally coherent groups in protein
networks.

However, we do not expect to see as large a difference in
performance between the algorithms used by our tool and
other methods in terms of functional coherence of the
found communities. There are several reasons for this:

e Our functional coherence calculations depend on
the quality of the Gene Ontology annotations from
which the pairwise functional distances are derived.

¢ The protein networks that we use are noisy, and con-
tain false positive and false negative interactions.

® We should not expect methods designed to mini-
mize conductance to perform equally well when their
performance is assessed using other, albeit related,
measures.

Still, we expect our local partitioning algorithms to find
communities with high functional coherence, giving
more evidence that the communities reported by our tool
are biologically relevant.

Figure 6 compares performance of all methods in terms of
absolute functional coherence of found clusters. The
coherence of a random subset of proteins in the network
is 0, which is also confirmed in our computational exper-
iments. From the figure we can see that in terms of abso-

lute functional coherence, the local partitioning
6 .
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)
(%]
c
C
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Figure 5

Average functional distance of interacting and non-
interacting protein pairs in each network. The x-axis
lists the protein networks. The y-axis displays the average
functional distance of interacting (blue) and non-interacting
protein pairs (red) in each network.
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Average absolute functional coherence of communities found by each algorithm. The algorithms compared are
listed along the x-axis, the y-axis specifies the average absolute functional coherence of communities found by each algorithm.
Bars of different color are used to represent the results for the four protein networks in which the computational experiments
are conducted. (a) The results for small clusters. (b) The results for medium clusters. (c) The results for large clusters.

algorithms perform better, or at least as well as other
methods. In particular, for small clusters our algorithms
significantly outperform other methods in three of the
four networks, while for larger clusters the difference in
the quality of the communities is smaller. As another neg-
ative control, we rewire each network preserving its degree
distribution, and record the average coherence of commu-
nities found by our algorithms. As expected, the average
coherence of these communities is approximately 0 (for
all cluster sizes), showing that our results are indeed sig-
nificant.

Because our methods minimize conductance, which is a
relative measure of edge density, it is more appropriate to
evaluate them using a relative measure of functional
coherence. Relative functional coherence also takes into

account how functionally related the proteins inside the
cluster are to the other proteins in the network, and
reports the difference in the average functional distance of
intercommunity and intracommunity protein pairs. Thus
methods that find clusters of low conductance, which are
sets of nodes that are better connected among themselves
than they are with the rest of the network, should do well
in terms of this functional coherence measure. Figure 7
shows that this is indeed the case, as there is a greater con-
trast in performance between local partitioning algo-
rithms and other methods in terms of relative functional
coherence of the found communities. As before, our algo-
rithms significantly outperform other methods when
searching for small communities, and the quality of com-
munities found by all algorithms decreases for larger clus-
ters. Once again, the expected coherence of a random
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Average relative functional coherence of communities found by each algorithm. The algorithms compared are
listed along the x-axis, the y-axis specifies the average relative functional coherence of communities found by each algorithm.
Bars of different color are used to represent the results for the four protein networks in which the computational experiments
are conducted. (a) The results for small clusters. (b) The results for medium clusters. (c) The results for large clusters.

subset of proteins in the network is 0, which is also con-
firmed in our computational experiments. Moreover,
when we perform the same rewiring test, the coherence of
the found communities is again approximately 0, show-
ing that our results are indeed significant.

Conclusion

Using conductance to measure the quality of a cluster is
especially useful in PPI networks because of the low sam-
pling rate of protein interaction data. The extremely low
sampling rate (said to be as low as 3-9% in Two-Hybrid
data [39]) presents a problem for any computational
method based on PPI network topology. However, under-
sampling is not likely to affect the conductance of a clus-
ter, because the proportion of outgoing edges is likely to
stay the same. Thus if a good cluster exists in the true PPI

network, it will also exist in the undersampled network,
and will be found by our tool if it is looking in the right
neighborhood. On the other hand, algorithms that use
absolute criteria in looking for a community (such as
seeds of highly-connected nodes, or k-cores [44]) will
work poorly on PPI data unless these criteria are carefully
chosen.

Our results also make an important point about whether
it makes sense to use a local partitioning algorithm when
it is feasible to use a global one. A local partitioning algo-
rithm only looks at a part of the graph, which gives it an
obvious advantage when the graph is very large. However,
not much is said about the quality of partitions that a
local algorithm finds, compared to a global method. It is
easy to think that since a local algorithm only sees a part
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of the graph, it must always do worse. However, here we
show that this is not the case, as the two local partitioning
algorithms outperform the global ones. Additionally, the
concept of local clustering is quite natural, as often we
care about a community local to a part of the graph, rather
than how all the nodes cluster. This may be especially true
in biology, where researchers typically work on specific
proteins of interest.

Finally, we address the biological relevance of communi-
ties found in PPI networks. Our results show that by
locally partitioning a protein network we can find com-
munities whose proteins are functionally related to each
other, and less related to the other proteins in the net-
work.
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