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Background
In this paper we introduce a very simple probe-level pro-

Abstract

Background: The disparate results from the methods commonly used to determine differential
expression in Affymetrix microarray experiments may well result from the wide variety of probe
set and probe level models employed. Here we take the approach of making the fewest
assumptions about the structure of the microarray data. Specifically, we only require that, under
the null hypothesis that a gene is not differentially expressed for specified conditions, for any probe
position in the gene's probe set: a) the probe amplitudes are independent and identically distributed
over the conditions, and b) the distributions of the replicated probe amplitudes are amenable to
classical analysis of variance (ANOVA). Log-amplitudes that have been standardized within-chip
meet these conditions well enough for our approach, which is to perform ANOVA across
conditions for each probe position, and then take the median of the resulting (I - p) values as a
gene-level measure of differential expression.

Results: We applied the technique to the HGU-133A, HG-U95A, and "Golden Spike" spike-in data
sets. The resulting receiver operating characteristic (ROC) curves compared favorably with other
published results. This procedure is quite sensitive, so much so that it has revealed the presence
of probe sets that might properly be called "unanticipated positives" rather than "false positives",
because plots of these probe sets strongly suggest that they are differentially expressed.

Conclusion: The median ANOVA (1-p) approach presented here is a very simple methodology
that does not depend on any specific probe level or probe models, and does not require any pre-
processing other than within-chip standardization of probe level log amplitudes. Its performance is
comparable to other published methods on the standard spike-in data sets, and has revealed the
presence of new categories of probe sets that might properly be referred to as "unanticipated
positives" and "unanticipated negatives" that need to be taken into account when using spiked-in
data sets at "truthed" test beds.

cedure for determining differential expression in single-
color microarray experiments. It is not based upon any  a) under the null hypothesis that a gene is
tially expressed for specified conditions, for any probe

particular model for probes sets or gene expression, and
depends on just two requirements for each probe set:

not differen-
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position in the gene's probe set the probe amplitudes are
independent and identically distributed (IID) over the
conditions, and

b) at each probe position distributions of replicated probe
amplitudes are amenable to classical analysis of variance
(ANOVA).

After log transformation followed by within-chip stand-
ardization, the resulting within-chip standardized scores
(z-scores) meet requirement a), and within chips, logs of
probe values are reasonably well modeled as being
gamma-distributed. Since ANOVA is quite robust with
respect to the within-treatment distribution, b) holds as
well. (Note that we could drop requirement b) and work
with a nonparametric version of ANOVA. Classical para-
metric ANOVA is, however, more powerful than its non-
parametric counterparts, so it makes sense to use it
whenever feasible.) We hereafter assume that each CEL
file's perfect match (pm) values have been log2 trans-
formed, that a gamma distribution has been fit (using the
CRAN R [1]fitdistr function) to the transformed data with
the lower 0.1% and the upper 1% trimmed off, and that
the log scores have been standardized by subtracting the
mean of the gamma fit and dividing by the standard devi-
ation of the fit. We will hereafter refer to the results of the
transformation process as "standardized probe values" (or
"within-chip standardized probe values" when it is impor-
tant to make it clear that standardization does not take
place across chips.) In order to focus on the "first princi-
ples" perspective and concepts presented here, we do not
perform any background correction or normalization of
probe sets in this paper. In practice, of course, doing such
pre-processing prior to performing the ANOVAs could
improve the effectiveness of the method when applied to
experimental data. Within-chip standardization, however,
has been carried out because it is in effect a general signal
processing calibration procedure which ensures that
probe amplitudes can be meaningfully compared across
chips. It removes global chip effects which could other-
wise be confounded with differential gene expression.

Given a condition we wish to check for differential expres-
sion, we first limit the data set to be processed to those
chips that are part of the condition. For each probe set we
then proceed from one probe position to the next. At each
probe position we perform analysis of variance (ANOVA)
on the all of the standardized probe values at that posi-
tion. We apply CRAN R's aov function and retain the p-
value obtained from it. (The R Im function produces the
same results, as would an independent two sample, equal
variance t-test when two treatments are being analyzed for
differential expression.) In Figure 1 we illustrate this con-
cept with an example from the HGU-133A Latin square
experiment [2]. In the left portion of the figure we display
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the standardized probe set replicates for the selected con-
ditions, in this case gene 205398_s_at hybridized at 256
and 512 pM. The table on the right in the figure lists, for
each probe position, the p-value resulting from perform-
ing analysis of variance on the probe values at that probe
position. (Since we are comparing only two conditions
here, we would have obtained the same p-value from
independent two-sample, equal variance t-tests.)

Several ways of combining the probe level ANOVA p-val-
ues were examined. Perhaps the most conceptually
appealing measure is the product of the p's. Under the
null hypothesis that the gene under consideration is not
differentially expressed for the specified conditions, it is
reasonable to assume that the ANOVA results are inde-
pendent from probe position to probe position. (Exami-
nation of the probe set plots for a small sample of non-
spiked-in genes supports this assumption, as well as the
assumption that probe amplitudes are IID across condi-
tions under the null hypothesis.) In that case, the product
of the p-values, referred to as "Total p" in Figure 1, is actu-
ally an over-all p-value for testing the null hypothesis.
However, because there are a number of different probe
set sizes on most arrays, it makes more sense to use the
per-probe p-value instead; i.e. the geometric mean of the
p-values (the nth root of the product of the p's, where n is
the number of probes in the probe set). This allows for
direct comparison of genes with different numbers of
probes in their probe sets.

In practice, however, as a tool for assessing differential
expression Total p can be overly influenced by a few large
(non-significant) probe level p-values, as can be the mean
of the p's. Other summary measures such as the trimmed
mean or trimmed geometric mean of the p's also do not
appear to be as effective as the median in ranking genes in
accordance with the known differences in concentration
for the conditions being examined. As shown in the table
in Figure 2, even after trimming the highest and lowest p-
values, Total p can, in some cases, produce a much lower
ranking of a condition than would have been expected.
The Total p ranking of the comparison of 64 versus 128
PM concentrations for gene 208010_s_at from the HGU-
133A Latin Square experiment was 279 out of the 22300
genes in the comparison. On the other hand, the rank
based on the median of the ANOVA (1-p)'s for the same
condition was 6, which is much more consistent with the
concentrations involved. While determining the "best"
way of combining the probe level p-values deserves a great
deal more study, from this point on we will base our
measure of differential expression on the median of the
probe level p-values. In order to make a larger measure
correspond to the condition of being more differentially
expressed, our measure of differential expression for the
gene will be the median of the probe level ANOVA (1-p)'s.
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within chip z-score
3
L

ANOVA p
probe

position

1 0.000134335

2 0.00037111

3 | 0.000842306

4 [ 0.002709515

5 6.13E-05

6 | 0.000235423

7 1.83E-05

8 | 0.001443397

9 [ 0.000674585

[V 10 0.006056549
11 0.000289724
"Total p" 5.12015E-38
Per-probe p 0.000407319
- , , , , I median (1-p) 0.99962889
2 4 6 8 10 P-value 3.82E-41
Trimmed “Total p” rank 12 out of 22300
probe number
median (1-p) rank 15 out of 22300
Figure |

An example of a standardized probe set plot, with probe-by-probe ANOVA results and summaries. The left por-
tion of this chart contains the probe set plot for the gene 205398_s_at from the HG-UI33A Latin Square experiment for a
large change in spike-in concentrations. Replicates are shown in cyan for 512 pM concentrations and in red for 256 pM. The
table on the right lists the p-values for the ANOVAs performed at each probe position. "Total p" is the product of the probe-
level ANOVA p's, and Per-probe p is the nth root of Total p, where n is the number of probes in the probe set. For this gene,
rankings (among all genes on the six chips and two concentrations involved in the comparison) based the median of the (I-p)'s
and on the trimmed Total p (i.e., the product of all but the highest and lowest of the probe-level p's) are comparable and con-
sistent with the experimental design. The (unadjusted) P-value of the median was obtained directly from a beta distribution

parameterized by the number of probes in a probe set.

This is a harmless change since the median of a set of (1-
p)'s is the same as (1 - the median of the p's).

Even though we can perform ANOVA on any subset (of
size two or more) of the experimental conditions, in this
paper we will restrict our attention to looking for differen-
tial expression between two conditions. For clarity, let us
refer to the two conditions as A and B and suppose that we
specify the ANOVA model such that a positive ANOVA
coefficient, as provided by the aov function, corresponds
to the mean response under condition B being larger (by
the amount of the coefficient) than the mean under con-

dition A. Under these conditions we consider a refine-
ment of our procedure, in which each probe position's (1-
p) is given the sign of the coefficient obtained from the
across-replicates ANOVA for the probe. This additional
step has two advantages. First, for many non-expressed
genes, the ANOVA coefficient is positive at some probe
positions and negative at others. For these genes, the
median of the signed (1-p)'s will be closer in absolute
value to 0 than will the median of the unsigned (1-p)'s.
Thus, when we use the median of the signed (1-p)'s as the
measure of differential expression, any gene with a score
close to 0 is very likely not to be differentially expressed
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< 7 ANOVA p
probe position
o 1 0.5419286
2 0.7261594
| 3 8.16E-06
a\
o
S 4 5.44E-06
(8]
N
N 5 3.53E-05
2 -~ 7
S 6 0.4426463
£
= 7 0.2659185
= o
8 0.000588688
9 6.71E-05
' 10 1.74E-05
11 1.94E-05
o
! : : I I "Total p" 9.65741E-34
2 4 6 10 Per-probe p 0.000996836
median (1-p) 0.999932907
probe number
P-value of median 4.79E-36
Trimmed “Total p” rank 279 out of 22300
median (1-p) rank 6 out of 22300
Figure 2

An example of why the median of the (1-p)'s might be a better measure of differential expression than the
(trimmed) Total-p. This chart contains the probe set plot and ANOVA results for the gene 208010_s_at from the HGU-
I33A Latin Square experiment for concentrations of 128 pM (replicates in cyan) and 64 pM (replicates in red). The lack of a sig-
nificant difference between conditions at probe positions 1,2, 6 and 7 adversely affects even the trimmed Total-p, while the
median-based ranking of this gene (among all 22300 genes on the two chips involved in the comparison) is much more consist-
ent with the Latin Square design. This is one among many cases for which the median seems to be the most robust measure.

for the two conditions under consideration. Figure 3 pro-
vides an example of the improvement that can occur when
signed (1-p)'s are used. For the experimental condition
depicted, based on the median of the (1-p)'s the gene
217207_s_at, which is not spiked-in for the HGU-133A
Latin Square experiment, ranks 56t among the 22300
genes involved in this comparison. This is a higher rank-
ing than that of 8 the 64 spiked-in genes. On the other
hand, when we used the median of the signed (1-p)'s, the
gene's rank is 10923, well below any of the spiked-in
genes. Second, when a gene is differentially expressed
between conditions A and B, the sign of resulting signed
median tells us whether the gene is up-regulated or down-
regulated. While that is not an important consideration in
spike-in experiments, where the direction of the regula-

tion is known beforehand, it can be very useful in real-
world experiments.

In practice, when we work with signed (1-p)'s we take the
absolute value of the median of the signed (1-p)'s as the
measure of differential expression, retaining the median's
sign in case we need to know whether the gene is up-reg-
ulated or down-regulated. The reason for working with
the absolute value of the signed median is entirely prag-
matic. If we retain the sign of median of the signed (1-p's)
there could be two groups of differentially expressed genes
- those with median near -1 and those with median near
+1. There is no problem with that, but the two widely sep-
arated clusters of differentially expressed gene produce
very non-standard looking ROC curves. In order to pro-
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o
N (1- ANOVA p)
probe position | x Sign(coeff)
o 1| 0.1433169
2 | 0.8789487
‘C_’. - 3 | 0.98889881
4 | -0.5949498
[0]
g 9
.8 o 5 | 0.4154187
N
= 6 | 0.98817654
£ 2
£ ©° 7 | -0.97917369
2
8 | 0.992246183
[Te]
2 9 | 0.2709686
10 | -0.991021706
o | 11 | -0.97260371
median(1-p) = 0.9726
[
- median((1-p)*sign(p)) = 0.2710
T T T T
2 4 5 10 median(1-p) P-value = 1.74E-07
median((1-p)*sign(p)) P-value = 0.950
probe number
signed median (1-p) rank 10923 out of 22300
median (1-p) rank 56 out of 22300
Figure 3

An example of why the median of the signed (1-p)’'s is a better measure of differential expression than the
median of the unsigned (1-p)'s. This chart depicts a common situation for non-spiked-in genes, such as 217207_s_at from
the HGU-133A Latin Square experiment. The probe set plot and ANOVA results for the gene are shown for two of the
experimental conditions, which we will designate by A (replicates in red) and B (replicates in cyan). At some probe positions
the mean for condition A is larger than that for condition B, while the opposite is true at other probe positions. When we take
this into account by multiplying each (1-p) by the sign of the ANOVA coefficient at that probe position before taking the
median, we get a much better measure of differential expression for the gene.

duce the familiar-looking ROC curves, we work with the
absolute value of the median of the signed (1-p)'s. In this
case, all differentially expressed genes have a score near
+1.

The median ANOVA (1-p) approach described here read-
ily lends itself to determination of an (unadjusted) p-
value for the hypotheses test that a gene is not differen-
tially expressed for the conditions under consideration.
Under our assumptions for the non-differentially
expressed condition, viz. a) at each probe position probe
amplitudes are IID across the condition, and b) ANOVA
results are independent from one probe position to
another, it follows from a) that the ANOVA p-values at a
single probe have a uniform distribution on the interval
[0,1], and from a) and b) that the sample median of the
ANOVA p-values over the probes in a probe set has a beta
distribution whose two parameters depend on the
number of probes in the probe set [3]. (More accurately,

the median has a beta distribution only if there is an odd
number of probes in the probe set. It is the mean of two
beta distributions for probe sets with an even number of
probes.) Regarding the absolute value of the signed
median ANOVA (1-p)'s, under the null hypothesis the
signed median has a uniform distribution over the inter-
val [-1,1], so its absolute value also has a uniform distri-
bution on [0, 1]. Thus its distribution under the null
hypothesis is the same as that of the unsigned median.

Obtaining the p-value (unadjusted for multiple hypothe-
sis tests) for a median ANOVA (1-p) score, X, is straightfor-
ward. For an odd number, n, of probes, p-value = 1 -
pbeta(x, m, m) where pbeta is the beta cumulative distribu-
tion function in the CRAN R stats package and m = (n+1)/
2. (For an even number, n, of probes, p-value = 1-p(x),
where p is the cumulative distribution function of the
mean of two beta distributions, (B(mm+1) +
B(m+1,m))/2, and m = n/2. We can obtain p(x) from the
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tools for working with distributions of sums of random
variables found in the CRAN R distr package.) The unad-
justed p-values for the median ANOVA (1-p) scores are
shown in Figures 1, 2 and 3. Figure 4 shows the unad-
justed p-values for the hypothesis test as a function of the
median ANOVA (1-p) scores for the case of 11 probes per
probe set, which is the case for the HGU-133A chip. Figure
4(a) shows the entire curve, and 4(b) shows the portion
of the curve of greatest importance.

Results

To assess the effectiveness of the ANOVA-p approach, we
examined its performance on the three spike-in controlled
experiments that are commonly used as test beds for dif-
ferential expression procedures. These are the HGU-133A
and HGU-95A Latin Square experiments [2] and the
"Golden Spike" [4] experiment. For the two Latin Square
designs we processed each contiguous pair of spike-in
concentration conditions (referred to as the "d = 1" condi-
tion in McGee and Chen [5], and corresponding to a two-
fold increase in concentration for most spiked-in genes).

1.00

(unadjusted) P-value

0.00 0.10 020 030 040 050 060 0.70 0.80 0.90

L I I I I A
000 020 040 060 0.80 1.00

Median ANOVA (1-p)
(a)

Figure 4
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Since the Golden Spike experiment entails only two con-
ditions - Control versus Spiked-in - there is only one com-
parison to consider.

HGU-133A Latin Square experiment

As designed, the Affymetrix HGU-133A Latin Square
experiment [2] selected 42 transcripts and assigned them
to 14 groups with 3 transcripts each in each group. Each
group was spiked-in at each of 14 concentrations from 0
to 512 pM, with 3 replicates per concentration. Within-
chip and across-chip group concentrations were organ-
ized in a Latin Square design, i.e. within chips, concentra-
tions increase by a factor of two from group to group
(wrapping from 512 pM to 0), and for each group, con-
centrations similarly increase by a factor of two from one
experimental condition to the next. See Appendix A of [5]
for a complete description of the Latin Square design. The
CEL files from this experiment, together with needed
metadata, are available for download from the Affymetrix
web site.

(unadjusted) P-value
1e-09 1e-06 1e-03

1e-12

1e-15

T T T T T T T T T T T T T 1T T1
085 088 091 094 097 1.00

Median ANOVA (1-p)

(b)

P-values for testing the hypothesis of no differential expression as a function of the median ANOVA (1-p)
scores for the case of || probes per probe set. These charts show the unadjusted p-values corresponding to median
ANOVA (I-p) scores for a specific number of probes per probe set. Similar curves can be obtained for any number of probes
per probe set by means of the pbeta function in the R package stats, or the tools for working with sums of random variables in
the R package distr. Figure 4(a) shows the full curve, while Figure 4(b) zooms in on the portion of the curve most involved with

deciding on the question of differential expression.

Page 6 of 16

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:292

o
%
()
3
g 8]
o [}
< -
=
o
=)
2 o
g @
T 2
©
c
2
o
<
3
o
w0 | P
29 T T T T
1e-50 1e-40 1e-30 1e-20 1e-10
(unadjusted) Median ANOVA(1-p) P-value
Figure 5

A comparison of p-values obtained from median
ANOVA (1-p) and RMA processing of a chosen pair
of HGU-133A test conditions. This chart shows that,
based on their unadjusted p-values, median ANOVA (I-p)
and RMA are in rather good agreement for unexpressed
genes and genes with a factor of two difference in initial con-
centrations. There is quite a large difference in p-values for
genes whose concentration changes from 512 to 0 pM, but
that difference has no impact on whether the genes are
declared differentially expressed or not.

Researchers in the field have noted that several additional
probe sets should be considered as spiked-in and have
assigned those probe sets to groups with matching expres-
sion profiles [5]. We followed their recommendations and
expanded the number known spiked-in probe sets to 64.

Figures 5 and 6 show the relationships between the unad-
justed p-values obtained from our median ANOVA (1-p)
methodology and those obtained from RMA and probe
level modeling (PLM) processing of Experimental Condi-
tions 1 and 2 of the HGU-133A Spike-in Experiment. (We
chose those conditions as an example because, as men-
tioned above, there is a considerably expanded set of
highly differentially expressed genes involved in the com-
parison.) RMA and PLM unadjusted p-values were
obtained using the Bioconductor [6]affylmGUI package.
As these plots indicate, the ANOVA-p approach produces
larger p-values in the extremely low p-value region (the
region associated with the genes whose concentrations
changes from 512 pM to 0), but this difference has no
meaningful impact - after adjustment for multiple
hypothesis testing all of these genes remain highly signif-
icant regardless of the methodology applied. As for the
other genes, ANOVA-p and RMA are in reasonably close
agreement, and ANOVA-p and PLM are in fair agreement

http://www.biomedcentral.com/1471-2105/10/292
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Figure 6

A comparison of p-values obtained from median
ANOVA (1-p) and PLM processing of a chosen pair of
HGU-133A test conditions. This chart shows that, based
on their unadjusted p-values, median ANOVA (I-p) and
probe level modeling (PLM) are in fair agreement for unex-
pressed genes and genes with a factor of two difference in
initial concentrations. The tendency for median ANOVA (-
p) to produce, on average, somewhat smaller p-values for
spiked-in genes and somewhat larger p-values for non-
expressed genes may be due to inaccuracies in chip construc-
tion and/or probe level models. There is an even larger dif-
ference in p-values for genes whose concentration changes
from 512 to 0 pM than for the RMA comparison, but again
that has no impact on whether the genes are declared differ-
entially expressed or not.

(median ANOVA (1-p)'s gives somewhat smaller p-values
for spiked-in genes with two-fold concentration differ-
ences, and PLM has on average somewhat smaller p-val-
ues for the non-spiked-in genes). Since the receiver
operating characteristic (ROC) curves shown in the fol-
lowing figures provide essentially the same information
about the relationships between processing methodolo-
gies in a more easily interpretable format, we have not
included any other scatterplots comparing p-values.

Figure 7 contains ROC curves comparing the performance
of median ANOVA (1-p), median signed ANOVA (1-p),
RMA and PLM over the full range of false positive rates for
all d = 1 comparisons. These are comparisons in which
experimental conditions increase by one (factor of 2) con-
centration step (plus those conditions in the Latin square
where concentrations drop from 512 to 0 pM). For each d
= 1 condition we obtained median ANOVA (1-p), median
signed ANOVA (1-p), RMA and PLM scores for each of the
22300 HGU-133A genes. RMA and PLM scores were
obtained using affylmGUI with default settings. Then, for
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True Positive Rate

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7

Median ANOVA (I-p), Median Signed ANOVA (I1-p),
RMA, PLM ROC curves for all HG-UI33A d = | con-
ditions. This chart shows the HG-U133A ROC curves for
all comparisons in which experimental conditions increase by
one (factor of 2) concentration step (plus those in the Latin
square whose concentrations drop from 512 to 0 pM). ROC
curves for each of the median of the probe level ANOVA (I-
p)'s (red), the median of the probe level signed ANOVA (-
p)'s (black) and affylmGUI's RMA (green) and Probe Level
Modeling (PLM) (cyan) were obtained after pooling the
results of the analyses of all d = | conditions.

True Positive Rate
0.4 .
I

False Positive Rate
0.00016 0.00032 0.00048
T T T

0 50 100 150

Number of False Positives

Figure 8

Median ANOVA (I-p), Median Signed ANOVA (I-p),
RMA, PLM ROC curves for all HG-UI33A d = | con-
ditions in the very low False Positive Rate region. This
is a close up view of Figure 7 in the region of highest real-
world interest. Since the ROC curves were obtained after
pooling the results of the analyses of all 14 d = | conditions
in the Latin Square design, there are 311304 false positives in
total. Median ANOVA (1-p)'s, median signed ANOVA (1-p)'s
and dffyimGUI's RMA and Probe Level Modeling (PLM) are
shown in red, black, green and cyan respectively.

http://www.biomedcentral.com/1471-2105/10/292

True Positive Rate

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 9

Median ANOVA (1-p), Median Signed ANOVA (I-p),
RMA, PLM ROC curves for all HG-U95A d = | condi-
tions. This chart shows the HG-U95A ROC curves for all
comparisons in which experimental conditions increase by
one (factor of 2) concentration step (plus those in the Latin
square whose concentrations drop from 1024 to 0 pM).
ROC curves for each of the median of the probe level
ANOVA (I-p)'s (red), the median of the probe level signed
ANOVA (1-p)'s (black) and affyimGUI's RMA (green) and
PLM (cyan) were obtained after pooling the results of the
analyses of all d = | conditions.

04

True Positive Rate

False Positive Rate
24 0.0006 0.0011 0.0017 0.0023

T T T T T
0 100 200 300 400

Number of False Positives

Figure 10

Median ANOVA (I-p), Median Signed ANOVA (1-p),
RMA, PLM ROC curves for all HG-U95A d = | condi-
tions in the very low False Positive Rate region. This is
a close up view of Figure 9 in the region of highest real-world
interest. Since the ROC curves were obtained after pooling
the results of the analyses of all 14 d = | conditions in the
Latin Square design, there are 176750 false positives in total.
Median ANOVA (1-p)'s, median signed ANOVA (I-p)'s and
affyimGUI's RMA and Probe Level Modeling (PLM) are shown
in red, black, green and cyan respectively.

Page 8 of 16

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:292

o 4 -
— e
/
o |
o
o)
£ 28
2 7
:‘ﬁ
o
a
o < |
3 :
\'_- o
o
o
o
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 11

Median ANOVA (I-p), Median Signed ANOVA (1-p),
RMA, PLM ROC curves for the Golden Spike experi-
ment. This chart shows the Golden Spike ROC curves,
where probe sets that were either "equal" or "empty" (in the
terminology of Choe [4]) under both Control and Spiked-in
conditions were considered to be false positives, while those
with increased concentrations in the Spiked-in chips were
taken to be true positives Median ANOVA (1-p)'s, median
signed ANOVA (1-p)'s and affyimGUI's RMA and Probe Level
Modeling (PLM) are shown in red, black, green and cyan
respectively.

each of the differential expression measures, we combined
its 14 d = 1 results into a single data structure from which
we calculated an ROC curve. Figure 8 shows the very short
initial portion of the ROC curves up to 150 false positives
(roughly an average of 10 false positives per d = 1 compar-
ison), the region of highest practical importance.

HGU-95A Latin Square experiment

The HGU-95A Latin Square design consists of 14 spiked-
in human gene groups in 14 experimental groups [2]. The
concentration of the 14 gene groups in the first experi-
ment is 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
and 1024 pM. Each subsequent experiment rotates the
spike-in concentrations by one group; i.e. experiment 2
begins with 0.25 pM and ends at 0 pM, on up to experi-
ment 14, which begins with 1024 pM and ends with 512
PM. Each experiment contains at least 3 replicates. Repli-
cates within each group result in a total of 59 CEL files.
Most groups contain 1 gene, the exceptions being group 1,
which contains 2 genes, and group 12, which is empty.
(Specifically, transcript 407_at listed as present in group
12 is actually included in group 1.) See Table One of [7]
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Figure 12

Median ANOVA (1-p), Median Signed ANOVA (I-p),
RMA, PLM ROC curves for the Golden Spike experi-
ment in the very low False Positive Rate region. This
is a close up view of Figure || in the region of highest real-
world interest. Since probe sets which were designated as
either "equal" or "empty" were considered to be false posi-
tives, there are 12679 false positives in total. Median
ANOVA (I-p)'s, median signed ANOVA (l-p)'s and daffylm-
GUI's RMA and PLM are shown in red, black, green and cyan
respectively.

for a tabular summary of the HG-U95A Latin Square
design.

The ROC curves in Figure 9 compare the performance of
median ANOVA (1-p), median signed ANOVA (1-p),
RMA and PLM over the full range of false positive rates for
all d = 1 conditions, obtained in the same manner as for
the HG-U133A experiment. Figure 10 shows the initial
portion of the ROC curves up to 450 false positives
(roughly an average of 40 false positives per d = 1 compar-
ison), the region of highest practical importance.

"Golden Spike™" experiment

The Golden Spike [4] experiment involved 3 Control and
3 Spiked-in Affymetrix DrosGenomel GeneChip arrays,
each of which has a total of 14010 probe sets. As described
in [4], a total of 1331 probe sets had an increased concen-
tration between the control and spike-in samples, 2535
probe sets had equal concentration and the remaining
10144 probe sets were empty on both the control and
spike-in arrays. For the 1331 true positives, the log2 fold
changes range from 0.26 to 2. The additional data files ref-
erenced in [4] provide access to a complete description of
the experiment, as well as to the CEL files resulting from
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probe number

Median ANOVA(1-p): 0.999995134
Raw P-value: 6.13E-30
Adjusted P-value: 3.42E-26

Figure 13
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probe number

Median ANOVA(1-p): 0.999992051
Raw P-value: 1.17E-28
Adjusted P-value: 5. 20E-25

Plots of within-chip log amplitude z-scores for two HG-UI33A Spike-in Experiment "Unanticipated Positives™.
These two genes, 204890_s_at (shown on the left) and 204891 _s_at (on the right) are neither in the original list of spiked-in
genes for the Affymetrix HGU-133A Latin Square experiment, nor in the expanded list created by McGee and Chen [5]
(although they considered including them but chose not to). However, as shown in this comparison of experimental conditions
14 (replicates in red) and | (replicates in cyan) of the Latin Square design, these genes are obvious candidates for a category we
call "unanticipated positives". It is very difficult to image that these profiles could have come from probe sets with identical
probe-level distributions for the experimental conditions | and 14.

the experiment. Although the Golden Spike data set has
been called into question by several authors [8,9], its
value as tool for comparing differential expression meth-
ods is recognized even by its critics [8]. We thus included
the Golden Spike data set in our explication of the
ANOVA-p methods presented here.

The ROC curves in Figure 11 compare the performance of
median ANOVA (1-p), median signed ANOVA (1-p),
RMA and PLM over the full range of false positive rates for
the Golden Spike experiment as described in [4]. Probe
sets that were either equal or empty under both condi-
tions were considered to be false positives, while those
with increased concentrations in the spiked-in chips were
taken to be true positives. Figure 12 shows the initial por-
tion of the ROC curves up to 50 false positives, the region
of highest practical importance.

Discussion

Spike-in Experiments, Differential Expression and Truth
In order to accurately assess the capabilities of procedures
that decide which genes are differentially expressed, we

need some completely characterized test data on which to
base the assessments. There are special requirements for
such "truthed" data sets, which are intended to be used to
train or assess algorithms that will ultimately be applied
to experimental data. The first and foremost requirement
is that every probe set's condition and every comparison
of a probe set across conditions in such a test bed be
unambiguously assigned to some category, such as
"Expressed" or "Not Expressed" ("Present" or "Absent" in
Affymetrix MAS 5 terminology) in the case of a single con-
dition, and "Differentially Expressed" or "Not Differen-
tially Expressed" in the case of comparisons between
conditions. Secondarily, measures of the degree of expres-
sion or differential expression for every condition,
whether in the form of fold change or some other quanti-
tative measure, are highly desirable. The various spike-in
experiments were devised to provide that test data.
Indeed, the spike-in experiments provide truth at the
input stage of the experiment (i.e., accurate measures of
the amounts of a variety of labeled probes in the mixes to
be hybridized onto the chips).
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Figure 14

Plots of within-chip log amplitude z-scores for two more HG-U133ASpike-in Experiment "Unanticipated Posi-
tives". These are two more genes which are not in the Affymetrix original list of spiked-in genes, and which were considered
for inclusion by McGee and Chen but ultimately rejected. 203173_s_at (shown on the left) is similar in profile to 204890_s_at
and 204991 _s_at. The profiles are somewhat different for 203060_s_at (on the right), but still do not appear to be compatible
with the hypothesis that they come from probe sets with identical probe-level distributions for experimental conditions |
(cyan) and 14 (red). These genes are also obvious unanticipated positive candidates.

The differential expression procedures discussed here and
in a multitude of other publications do not however proc-
ess the truthed hybridizing mixtures, which we will refer
to as the "input truth" for the experiment. Instead these
algorithms can only access the end result of the experi-
ment, in the form of DAT or, more likely, CEL files. The
process undergone by labeled probes from hybridization
through scanning into DAT files to post-processing of the
results to create CEL files is highly non-linear and not
especially well characterized. Consequently "input truth"
does necessarily translate into truth at the experiment's
CEL or DAT file output stage, which we will refer to as the
"output truth" of the experiment. Putting it more simply,
knowing the difference between a probe set's initial con-
centrations across conditions does not guarantee that we
know what the net effect on the resulting CEL files will be.
There are many reasons why "input truth" might not
translate to "output truth". Cross hybridization, SNP
effects, incorrect sequencing of probe sets, probe set dupli-
cation and other types of erroneous probe set characteri-
zation have been identified as culprits. The use of BLAST

and other on-line metadata and annotation sources has
proved to be successful in making biologically-based cor-
rections to the collection of probe sets that are expected to
be differentially expressed in the CEL files. This situation
has been recognized by several authors. For example,
McGee and Chen [5] address the issue by adding in 22
new genes to the "truth set" for the HG-U133A spike-in
experiment. Similarly, Affymetrix [2] points out the need
to correct the list of HG-U95A spiked-in genes. Perhaps
more critical to the results of spike-in experiments are the
inaccuracies in the original probe set definitions that have
been uncovered by more modern genomic techniques
[10].

There is also a disturbing circularity with regard to truth
and differential expression procedures in the literature.
First, quite properly, analysis procedures are assessed
based on their ability to get the "right answers" from the
truthed data sets. On the other hand, what's considered
"true" is in part based on the results of the data processing
methods. For example in [5] McGee and Chen actually
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Median ANOVA(1-p): -0.995
Raw P-value: 2.17E-18
Adjusted P-value: 9.12E-15

Figure 15

probe number

Median ANOVA(1-p): 0.970
Raw P-value: 5.71E-16
Adjusted P-value: 3.20E-13

Plots of Unanticipated Positives from HG-U95A and Golden Spike Experiments. Unanticipated positives occur in
all three spike-in experiments. Here are examples from each of the HG-U95A (on the left) and the Golden Spike (on the right)
experiments. The non-spiked-in HG-U95A gene 32660_at ranks 2" out of 14010 genes (14 of which were spiked-in) in the
experimental conditions C (replicates in red) vs. D (cyan) comparison for RMA, PLM and both of the median ANOVA (1-p)
measures. For the Golden Spike plot, the non-spiked-in gene 142245_at ranked 23, 24, 177 and 66 according to median
ANOVA (I-p), median signed ANOVA (I-p), RMA and PLM respectively, out of a total of 14010 probe sets, of which 1331
were designated as spiked-in. Plots for control arrays are in red, those for spiked-in arrays in cyan. In both cases the plots and
p-values do not appear to be compatible with the hypothesis that they came from probe sets with identical probe-level distri-

butions across conditions.

found 30 candidate new genes, but eliminated 8 of those
for reasons that depend on which other genes were con-
sidered to be differentially expressed.

In this paper, in which we focus on first principles of sta-
tistical analysis and impose the fewest possible conditions
on the data, we take a corresponding approach to the
question of when a gene is differentially expressed. We
consider a gene to be differentially expressed with respect
to a specified test procedure if, for at least one pair of con-
ditions in the experiment, we can reject the null hypothe-
sis that the gene has the same distribution for the test
statistic at a predetermined significance level, taking into
account the multiple hypothesis testing environment in
which the decision is being made. The adjusted p-value
corresponding to the median ANOVA (1-p) score pro-
vides a quantitative indicator of whether the gene is
expressed or not. Plots of the within-chip z-scores of the
log amplitudes of the probes in a probe set provide an
invaluable visual tool for judging whether the adjusted p-
score, which is based up a summary measure of probe
amplitude distributions, provides an accurate assessment

of the behavior of the probe set. For example, consider the
probe sets from the HG-U133A spike-in experiment with
gene IDs 204890_s_at, 204891_s_at, 203173_s_at and
213060_s_at. These genes, along with four others, were
addressed in McGee and Chen [5], but were not included
in their new definition of the spiked-in data set. In the
comparison of experimental condition 14 with experi-
ment condition 1 (hereafter referred to as E14 vs. E1) of
the HGU-133A Latin Square design, these four genes
ranked 4, 5, 6 and 7 for differential expression, respec-
tively, according to each of the unsigned and signed
median ANOVA (1-p) approaches, RMA and PLM. The
only genes that had higher scores were the three that
belong to Group 1 -- the group for which there is a 512 to
0 pM change from condition 14 to condition 1. When we
consider the combined results of all HGU-133A d = 1
comparisons (which involves a total of 896 spiked-in con-
ditions), we find that these same four genes are among the
top 100 genes for the ANOVA (1-p) approaches, RMA and
PLM. Furthermore they are the only such putatively non-
spiked-in genes in the top 200 results for any of the meth-
ods.
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Median Signed ANOVA(1-p): 0.135
Raw P-value: 0.457
Adjusted P-value: 0.596

Figure 16

Plot of a Golden Spike "Unanticipated Negative"
with Fold Change = 3. We also find some "unanticipated
negatives" - genes which should be differentially expressed
based on a large initial fold change, but which in practice do
not appear to be. In the Golden Spike experiment 153553 _at
has a log 2 fold change of 3, yet it ranks 7246, 10007, 6034
and 6049 (out of 14010 genes in the comparison) using
median ANOVA (I-p), median signed ANOVA (1-p), RMA
and PLM measures, respectively. This plot of the within-chip
z-scores (control arrays are in red, spiked-in arrays in cyan)
and the corresponding p-values for the gene support the
conclusion that 153553 _at is a not differentially expressed
and therefore an unanticipated negative.

Figures 13 show the with-in chip z-scores for the probes in
the 204890_s_at and 204891 _s_at probe sets for the E14
vs. E1 condition. Figure 14 contains the E14 vs. E1 profiles
for 203173_s_at and 213060_s_at. Although the separa-
tion between E1 and E14 conditions is not as great for
213060_s_at as it is for the other three genes, it is still
extremely difficult to believe that these profiles arose from
a gene with identical probe amplitudes distributions at
each probe position for conditions 1 and 14 (and that all
four quantitative measures examined in this paper are
wrong in ranking these among the very highest of genes).
We believe that from the perspective of an algorithm
developer or assessor, these should not be considered
false positives. Instead, since their differential expression
was not predicted at the time the spike-in mixtures were
prepared, we should call these "unanticipated positives”,
and not penalize any procedure that calls them differen-
tially expressed. From an examination of these genes' pro-
files and quantitative scores over the various experimental
conditions, it appears that they belong to Group 1 in the
HGU-133A spike-in design.

http://www.biomedcentral.com/1471-2105/10/292

Unanticipated positives are found in all three of the spike-
in data sets. Figure 15 contains examples from the HG-
U95A and Golden Spike experiments.

The introduction of "unanticipated positives" underscores
the conundrum we face with the use of these spike-in data
sets as truthed test beds. On the one hand we would like
to avoid subjective statements we have made, such as "it
is still extremely difficult to believe that these profiles
arose from a gene with identical probe amplitudes distri-
butions at each probe position ...". In fact, if we had an
unambiguously truthed data set to work with, we would
not have to make any such statements. The problem is
that there has been no established method for defining
the truth in the very data sets that are used to assess the
various algorithms applied to microarray data. If we use,
say PLIER, to decide which genes "are" expressed or differ-
entially expressed, then we should not be surprised if
PLIER outperforms other methodologies on the resulting
"truthed" data sets. Similarly using PLM, RMA, GCRMA,
MBE]I, etc to declare which are the truly expressed/differ-
entially expressed genes, we should expect results to favor
the procedure used to determine the "truth". Two ways of
dealing with this problem come to mind. The first is to
continue to use spike-in data sets in the current manner of
use. They will still be very valuable tools in algorithm
analysis, design and training, but they will never achieve
their intended status as definitive test beds. The second is
to make a community-wide effort to decide, even if some-
what arbitrarily in some cases, on the status of each com-
parative condition (or at least each d = 1 comparison) for
each gene in the data sets. (It might be necessary to define
an "Ambiguous" status to comparative conditions that do
not achieve community-wide consensus, akin to Affyme-
trix "Marginal" status for probe sets on chips.) This might
be an effort too large and/or contentious to undertake in
practice, but something along those lines is needed if all
algorithms are to have a level playing field on which to be
compared.

When it comes to dealing with what would be considered
false negatives from the perspective of the spike-in con-
centrations, the situation is a bit more complicated. First,
there are some genes with high spike-in concentrations
that should have manifested differential expression in the
CEL files, but for some reason did not. For example,
153553 _at is a gene in the Golden Spike experiment with
a log 2 fold change of 3. Yet it ranks 7246, 10007, 6034,
and 6049 (out of 14010) according to the median
ANOVA (1-p), signed median ANOVA (1-p), RMA and
PLM measures of differential expression, respectively. Its
profile in Figure 16 and its p-values are that of a non-
expressed gene. In this case we have what might be called
an "unanticipated negative". Second, very low concentra-
tions might have been included in the spike-in experi-
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Plots of comparisons involving lowest concentrations -- One differentially expressed, the other not. These two
genes, AFFX-r2-TagE_at (on the left) and 205790_at (on the right) are each spiked in at the lowest concentration (0.125 pM) in
the Affymetrix HGU-133A Latin Square experiment. When this condition (in cyan) is compared with the non-spiked-in condi-
tion (in red), AFFX-r2-TagE appears to be differentially expressed while 205790_at does not. Using genes at low concentra-
tions for assessing the effectiveness of differential expression algorithms presents some unique challenges. Sometimes, as for
AFFX-r2-TagE, the gene is differentially expressed in the CEL files, in which case it is a suitable candidate for evaluating data
analysis procedures. Frequently, however, as illustrated by 205790_at, the effect of the small initial difference in concentrations
is wiped out by the many processing steps that occur on the way to creating CEL files. What results is a gene that is not differ-
entially expressed at the CEL file level. It may be no easy task to identify which genes fall into which category.

mental design in order to assess the lower limits of
sensitivity of the various differential expression algo-
rithms, but they also serve to establish the lower limits at
which differential expression actually occurs. Those genes
for which differential expression does occur at the lowest
concentrations do indeed provide the test bed for the sen-
sitivity floor for any procedure. However, for many genes
the numerous steps that take place after the preparation of
the hybridizing mixture result in the gene not being char-
acterized as differentially expressed in the CEL files.
Because they are not actually expressed in the CEL files,
these are not really "false negatives". Because it is no sur-
prise that genes with very low concentrations wind up
being non-expressed, they really aren't "unexpected nega-
tives" either. For such genes one should not penalize an
algorithm for not being able to distinguish a difference
that existed at the start of the experiment but did not make
it through to the final CEL file product. Figure 17 provides
an example of each of these types of genes. The problem
is how to tell one type of gene from the other in an effi-

cient manner. Notice that in these cases, for which the
probe set profiles for the conditions overlap or cross each
other, we needed to use the median of the signed ANOVA
(1-p)'s as the measure of differential expression. (When
there is no overlap or crossing of profiles for the condi-
tions, except for the sign of the median ANOVA (1-p), it
does not matter whether we use the signed or unsigned
methodology).

Conclusion

Our first conclusion is that the median ANOVA (1-p)
approach and its median signed ANOVA (1-p) variant
presented here provide conceptually and computationally
simple but effective measures of differential expression.
Even though these methods do not clearly outperform
existing methods, they perform reasonably well (as evi-
denced by Figures 4, 5, 6, 7, 8 and 9), and the associated
probe set plots provide invaluable tools for those who
want to look beyond summary measures in assessing dif-
ferential expression. Furthermore, since the median is a
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Median Signed ANOVA(1-p): -0.99993872
Raw P-value: 4.85E-21
Adjusted P-value: 8.74E-18

Figure 18

Plot of gene with a possibly ambiguous differential
expression status. In this paper we point out the need to
establish truth at the probe set/CEL file level as well as at the
spike-in level. Achieving that goal will require community-
wide consensus as to what constitutes differential expres-
sion, based on the contents of the probe sets involved in the
comparison. For some genes consensus might not be an easy
thing to achieve, as this plot of 1552_i_at from the HG-U95A
experiment suggests. HG-U95A experimental condition Q is
plotted in red, and condition A in cyan. Even though all sum-
mary measures considered in this paper declare this gene to
be highly differentially expressed, it would not be at all sur-
prising to find many opinions as to whether this gene is really
expressed or not. Just as "Marginal" is an acceptable condi-
tion when making MAS 5 calls, so "Ambiguous" may have to
be an acceptable state for some comparisons.

very robust statistic it might be less sensitive than other
methods to the redefinition of GeneChip probe sets that
have been suggested and even implemented [10] by sev-
eral authors.

The second conclusion is that if we wish to have effective
test beds for assessing (or training) differential expression
algorithms we cannot be satisfied with truths that have
been established at the input side of the controlled exper-
iments. If the spike-in data sets are to be critical tools in
differential expression research then we must establish
truth at the point in the processing chain at which the
algorithms begin. To penalize a differential expression
methodology for not finding a gene which is differentially
spiked-in but not differentially expressed in the arrays, or
vice versa, diminished the value of the spike-in experi-
ments. The additions or deletions of spiked-in genes pro-
posed by a few authors is a step in the right direction, but
the real need it to have community-wide agreement on

http://www.biomedcentral.com/1471-2105/10/292

which genes are differentially expressed for which condi-
tions, based on the contents of the CEL files rather than on
the designs of the experiments. Biological resources will
no doubt have a large role in predicting and explaining
differences between the concentration-based "input
truths" and the image-based "output truths" that differen-
tial expression tools work with. Nonetheless, the ultimate
resolution of what is expressed and what is not expressed
has to come from the CEL files themselves (if not the DAT
that produced them).

Determining truth at the CEL file level for all pairs of con-
ditions will take a lot of work, but that is a requirement for
a test bed that can be trusted to assess the effectiveness of
the various differential expression paradigms. However,
in practice there will probably be "only" several hundred
comparative gene conditions that will require close exam-
ination of probe set profiles, and initially it makes sense
to focus on the d = 1 conditions. It may well be that for
some genes there will not be community-wide agreement
as to whether they are differentially expressed or not for
some pairs of conditions. Figure 18 presents a possible
example of such a gene from the Q versus A conditions of
the HGU-95A Latin Square design. Although the adjusted
p-values for median signed ANOVA (1-p), RMA and PLM
(8.7 x 1018, 6.9 x 10-12, and 4.6 x 101, respectively) all
strongly indicate differential expression, a biologist look-
ing at the profile plots might well have second thoughts
(either about differential expression or about the validity
of the probe set itself). If researchers cannot agree if a col-
lection of probe sets is differentially expressed or not, we
cannot expect mechanized procedures to be in agreement
either. In such cases, there may need to be a label in the
CEL file truth metadata indicating the ambiguous status of
the condition.
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