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Abstract

Background: The identification of essential genes is important for the understanding of the
minimal requirements for cellular life and for practical purposes, such as drug design. However, the
experimental techniques for essential genes discovery are labor-intensive and time-consuming.
Considering these experimental constraints, a computational approach capable of accurately
predicting essential genes would be of great value. We therefore present here a machine learning-
based computational approach relying on network topological features, cellular localization and
biological process information for prediction of essential genes.

Results: We constructed a decision tree-based meta-classifier and trained it on datasets with
individual and grouped attributes-network topological features, cellular compartments and
biological processes-to generate various predictors of essential genes. We showed that the
predictors with better performances are those generated by datasets with integrated attributes.
Using the predictor with all attributes, i.e., network topological features, cellular compartments and
biological processes, we obtained the best predictor of essential genes that was then used to
classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training
the J48 algorithm on datasets with all network topological features, cellular localization and
biological process information to discover cellular rules for essentiality. We found that the number
of protein physical interactions, the nuclear localization of proteins and the number of regulating
transcription factors are the most important factors determining gene essentiality.

Conclusion: We were able to demonstrate that network topological features, cellular localization
and biological process information are reliable predictors of essential genes. Moreover, by
constructing decision trees based on these data, we could discover cellular rules governing
essentiality.

Background organism regardless the presence of remaining genes.
Essential genes are those genes required for growth in a  Therefore, the functions encoded by essential genes are
rich medium, i.e., medium containing all nutrients crucial for survival and could be considered as a founda-
required for growth. The deletion of only one of these  tion oflife itself [1,2]. The identification of essential genes
genes is sufficient to confer a lethal phenotype on an  is important not only for the understanding of the mini-
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mal requirements for cellular life, but also for practical
purposes. For example, since most antibiotics target essen-
tial cellular processes, essential gene products of microbial
cells are promising new targets for such drugs [3]. The pre-
diction and discovery of essential genes have been per-
formed by experimental procedures such as single gene
knockouts [4], RNA interference [5] and conditional
knockouts [6], but these techniques require a large invest-
ment of time and resources and they are not always feasi-
ble. Considering these experimental constraints, a
computational approach capable of accurately predict
essential genes would be of great value.

For prediction of essential genes, some investigators have
implemented computational approaches in which most
are based on sequence features of genes and proteins with
or without homology comparison [7,8]. With the accu-
mulation of data derived from experimental small-scale
studies and high-throughput techniques, however, it is
now possible to construct networks of gene and proteins
interaction and then investigate whether the topological
properties of these networks would be useful for predict-
ing essential genes. Although many interaction networks
have been built to date [9-12], most of studies relating
essentiality with topological properties of these networks
have been limited to indicate what topological properties
are predictive of essentiality instead of using them as pre-
dictors of essential genes [9,13]. We have previously
shown the feasibility of using network topological fea-
tures for predicting essential genes in the bacterium
Escherichia coli [14]. We have chosen E. coli as starting
point for evaluating the prediction performance of essen-
tial genes by network topological features due to two rea-
sons: the completeness of the catalog of E. coli essential
genes [15] and the vast amount of interaction data availa-
ble for this organism. In this present work, we sought to
evaluate if network topological features can also be used
as predictors of essential genes in the yeast S. cerevisiae
since most of its genes have already been classified as
essential or non-essential [4] and there are copious
amounts of available interaction data for this organism.

For this purpose, we constructed a S. cerevisiae integrated
network of gene interactions containing simultaneously
protein physical, metabolic and transcriptional regulation
interactions and used the topological features of this net-
work as learning attributes in a machine learning-based
prediction system. We tested individual and grouped net-
work topological features as predictors of essential genes
and showed that essential genes are best predicted by inte-
grating the topological features in a single predictor.
Although the prediction performance of topological fea-
tures was shown to be acceptable, we added to this set of
learning attributes data on cellular localization and bio-
logical process of genes in order to increase the predicta-
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bility of essential genes. We found that the integration of
network topology, cellular localization and biological
process information in a single predictor increased the
predictability of essential genes in comparison with the
predictor containing only network topological features.
Moreover, we observed that the predictability of essential
genes by integration of cellular localization and biological
process data in a single predictor was comparable to that
of predictor containing network topological features.

Finally, in addition to study the predictability of essential
genes, we tried to define some general rules governing
essentiality in S. cerevisiae by analyzing decision trees gen-
erated by a machine learning-based technique. Using net-
work topology, cellular localization and biological
process information as training attributes, we discovered
that essentiality depends on the number of protein physi-
cal interactions, the nuclear localization of proteins and
the number of regulating transcription factors. Taken
together, all these findings show that the integration of
network analysis along with cellular localization and bio-
logical process information is a powerful tool for both
predicting biological characteristics of genes, such as
essentiality, and discovering the biological determinants
of phenotypes.

Results and Discussion

Integrated network of gene interactions in S. cerevisiae
and calculation of topological features

For obtaining the network topological features used as
training data for predicting essential genes, we first con-
structed an integrated network of gene interactions (INGI)
of Saccharomyces cerevisiae simultaneously containing
experimentally verified protein physical interactions, met-
abolic interactions and transcriptional regulation interac-
tions (definitions for each type of interaction are detailed
in "Methods"). This network is comprised by 5,667 genes
interacting with one another via 42,893 protein physical
interactions, 11,192 metabolic interactions and 18,721
transcriptional regulation interactions. Of 5,667 genes in
the network, 5,637 (99,5%) are protein-coding genes
(including transposable elements), 15 (0.26%) are trans-
fer RNA-coding genes, 13 (0.23%) are small nucleolar
RNA-coding genes and 2 (0.01%) are RNA-coding genes
of unknown function. Regarding protein-coding genes,
including transposable elements, our network contains
96% of the total 5,884 protein-coding genes of S. cerevisiae
according to the current status of the yeast genome pro-
vided by the Saccharomyces Genome Database (SGD) [16].

We calculated 12 different topological features for each
gene in the INGI, including degree centralities for each
type of interaction, clustering coefficient, betweenness
centralities for each type of interaction, closeness central-
ity and identicalness. The detailed description of these
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topological features and how they were calculated are
found in the Additional file 1 and "Methods".

Comparison of the classification performance among
balanced datasets

The performance of machine learning-based approaches
is known to be affected by imbalanced data [17]. As the
dataset containing yeast genes classified into essential and
non-essential genes intended to be used as training data
for our classifier is an imbalanced dataset, we used an
undersampling scheme to generate ten balanced datasets
from the original data (see "Methods"). Each balanced
dataset contains different subsets of non-essential genes as
a result of the sampling approach. Due to these different
subsets of non-essential genes, therefore, we statistically
compared the prediction performance of balanced data-
sets before assessing the predictability of essential genes
by the different features. We trained our classifier on each
of the balanced dataset with all available training data
(network topological features and cellular localization
and biological process information) and evaluated the
prediction performance of each balanced dataset. Com-
paring the Area Under the receiver operating characteristic
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(ROC) Curve (AUC) values among all the balanced data-
sets (Figure 1 and Additional file 2), we verified that their
prediction performances are not statistically different as
evaluated by a nonparametric statistical method based on
the Mann-Whitney U-statistic [18] (see more details in
"Methods"). Based on these results, we selected one of the
balanced datasets to perform the following analyses.

Prediction of essential genes by network topological
features

We started the analyzes by assessing the predictability of
essential genes by each of the 12 network topological fea-
tures (computed as described in " Methods") and by all 12
network topological features integrated in a single predic-
tor. For this purpose, we trained our classifier on a bal-
anced dataset with all network topological features as
training data and on a dataset containing only one of the
network topological features as training data (see "Meth-
ods" for detailed information on construction of the bal-
anced datasets). The ROC plot shown in Figure 2 indicates
that integration of all networks topological features in a
single predictor outperforms the predictability of essential
genes by the individual network topological features. By
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Figure |

ROC curves and AUC values for classifiers trained on the ten balanced datasets with all available learning
attributes. Balanced datasets |-10: datasets with all available learning attributes prepared by an undersampling scheme as

described in "Methods".
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comparing the AUC values of grouped and individual net-
work topological features, we verified that the AUC value
of grouped network topological features (AUC = 0.773) is
statistically significantly higher (P < 0.002) than AUC
value of any individual network topological feature (Fig-
ure 2 and Additional file 2).

We then verified if different combinations of grouped net-
work topological features could show prediction perform-
ances comparable to that of all grouped network
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topological features. We found that the combination of
protein physical interactions-related features with meta-
bolic interactions-related features has the same perform-
ance (AUC = 0.765, P = 0.302; see Additional file 2 and
Figure 2) seen for the predictor containing all grouped
network topological features (AUC = 0.773). Also, the
combination of protein physical interactions-related fea-
tures with clustering coefficient, identicalness and
betweenness and closeness centralities has the same pre-
diction performance (AUC = 0.763, P = 0.071; see Addi-

1.0

0.8

net (AUC = 0.773)
only_ppi_metabolic_features (AUC = 0.765)
only_ppi_other_features (AUC = 0.763)
only_ppi_reg_features (AUC = 0.757)

only ppi inbetppi (AUC = 0.748)

ppi (AUC = 0.747)

inbetppi (AUC = 0.701)

inbet (AUC = 0.628)

c (AUC = 0.615)

cent (AUC = 0.559)

regin (AUC = 0.547)

metin (AUC = 0.518)

regout (AUC = 0.514)

metout (AUC = 0.513)

inbetmet (AUC = 0.512)

ident (AUC = 0.508)

inbetreg (AUC = 0.502)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

o
o

True Positive Rate
=
N

0.2

Figure 2

ROC curves and AUC values for the classifiers trained on balanced datasets with individual or grouped net-
work topological features. ROC curves and AUC values of classifiers trained on balanced dataset 9 (see Figure 1) with one
or groups of network topological features as learning attributes as follows: "net": all network topological features as learning
attributes; "ppi", "inbetppi", "inbet", "c", "cent", "regin", "metin", "regout”. "metout", "inbetmet", "ident" and "inbetreg": datasets
with only one of the following network topological features as learning attribute: number of protein physical interactions (ppi),
betweenness centrality for the protein physical interactions (inbetppi), betweenness centrality for all types of interactions
(inbet), clustering coefficient (c), closeness centrality (cent, number of regulating transcription factor (regin), number of reac-
tants participating in a metabolic reaction catalyzed by the enzyme encoded by the gene (metin), number of genes regulated by
the transcription factor encoded by the gene (regout), number of products generated in a metabolic reaction catalyzed by the
enzyme encoded by the gene (metout), betweenness centrality for the metabolic interactions (inbetmet), number of genes with
identical topological features (ident) and betweenness centrality for the transcriptional regulation interactions (inbetreg). "only
_ppi_metabolic_features" and "only_ppi_reg features": datasets containing protein physical interactions-related features (ppi
and inbetppi) and, respectively, metabolic (met, metin, metout and inbetmet) and transcriptional regulatory interactions-related
features (reg, regin, regout and inbetreg). "only_ppi_other_features": dataset containing protein physical interactions-related fea-
tures (ppi and inbetppi) and ¢, ident, cent and inbet. "only_ppi_inbetppi": dataset containing only the indicated network topologi-
cal features as learning attributes. For more details on network topological features, see Additional file I.
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tional file 2 and Figure 2) observed for all grouped
network topological features (AUC = 0.773). Therefore,
smaller sets of network topological features can be used to
predict essential genes, thus making the calculation of all
topological features dispensable.

To verify if the predictive power of all grouped network
topological features could be improved by exclusion of
topological features with marginal AUC values, i.e., AUC
values ranging from 0.500 to 0.600, we compared the pre-
diction performance of all grouped network topological
features (AUC = 0.773) with those of the combinations of
features in which one feature or a small set of features was
excluded (see the correspondent ROC curves in the Addi-
tional file 3 and the pairwise comparison of predictors
with the p-values of AUC differences between each pair of
predictors in Additional file 2). We discovered that the
prediction performance of all grouped network topologi-
cal features is not improved by the removal of any individ-
ual or small sets of topological features (see Additional
files 2 and 3). As expected, the exclusion of grouped fea-
tures related to metabolic interactions or grouped features
related to protein physical interactions diminishes (AUC
= 0.764; P = 0.002 and for metabolic interaction-related
features and AUC = 0.749; P = 0.001 for protein physical
interaction-related features) the prediction performance
of all grouped network topological features (AUC =
0.773).

Among all individual network topological features, the
number of protein physical interactions is that one that
best predicts essential genes (AUC = 0.747). As further dis-
cussed in "Cellular rules for essentiality", other investiga-
tors have shown that the number of physical interactions
is indicative of essentiality [9,19,20]. To our knowledge,
we are the first to compare the number of protein physical
interactions with other network topological features.
Despite the good performance of number of protein phys-
ical interactions on predicting essential genes among
other individual network topological features, the best
predictors are those integrating other groups of topologi-
cal features with the number of protein physical interac-
tions. This indicates that essentiality depends more or less
on each network topological feature and, therefore, the
gene location in the network seems to be important for
determining its essentiality.

Prediction of essential genes by cellular localization and
biological process data

Although the prediction performance of the integrated
network topological features in a single predictor can be
considered acceptable for predicting essential genes, we
decided to check if the addition of information on cellular
localization and biological process as training data would
increase the predictability of essential genes. Before inte-
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grating cellular localization and biological process data
with network topological data, we assessed the individual
performance of each cellular component and each biolog-
ical process, as well as the collective performance of all
cellular components and all biological processes on pre-
dicting essential genes, in order to verify if any individual
feature or grouped features related to cellular localization
or biological process are good predictors of essential
genes.

Regarding cellular localization, we trained our classifier
on balanced datasets with all cellular compartments as
training data (cytoplasm, endoplasmic reticulum, mito-
chondrion, nucleus or other localization) and on datasets
containing only one of the cellular compartments as train-
ing data. We can observe in the ROC plot shown in Figure
3 that the best predictor of essential genes seems to be the
integrated set of cellular compartments. This is confirmed
by the statistical comparison of the AUC value of the inte-
grated set of cellular compartments with those of individ-
ual cellular compartments: the AUC value of grouped
cellular compartments (AUC = 0.703) is significantly (P <
10-5) higher than AUC values of any individual cellular
compartment (Figure 3 and Additional file 2), although
such AUC value characterizes the set of all cellular compo-
nents as fair predictors of essential gene prediction. With
regard to biological processes, we trained our classifier on
balanced datasets with all biological processes as training
data (cell cycle, metabolic process, signal transduction,
transcription, transport or other process) and on datasets
containing only one of the biological processes as training
data. The ROC curves for biological processes (Figure 4)
show the same behavior observed for the prediction of
essential genes by both network topological features and
cellular compartment: the integration of attributes in a
single predictor increases the predictability of essential
genes in comparison with predictability by individual
attributes. The AUC value of the integrated set of biologi-
cal processes (AUC = 0.667) is statistically significantly (P
<0.001) higher than AUC values of any individual biolog-
ical process (Figure 4 and Additional file 2). With the AUC
value of 0.667, however, the set of biological processes
can be considered a poor predictor of essential genes.

The moderate and poor performances of cellular localiza-
tion and biological processes as predictors of essential
genes, respectively, suggest that essentiality, as further dis-
cussed in "Cellular rules for gene essentiality", is probably
a result of multiple factors, reinforcing what we found by
analyzing the prediction performance of network topo-
logical features. Therefore, we decided to evaluate the pre-
diction performance of the integration of cellular
localization and biological process information in a single
predictor. We then trained our classifier on balanced data-
sets with all cellular compartments and biological proc-
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ROC curves and AUC values for the classifiers trained on balanced datasets with individual or grouped cellular
compartments. ROC curves and AUC values of classifiers trained on balanced dataset 9 (see Figure |) with one or all cellu-
lar compartments as learning attributes. "all compartments"” is the dataset with all cellular compartments as learning attributes;

"nucleus”, "cytoplasm", "mitochondrion”,
tive cellular compartment as learning attribute.

other compartment” and "endoplasmic reticulum" are datasets with only the respec-

esses as training data. Figure 5 indicates that the
performance of integration of cellular localization and
biological process data on predicting essential genes is
better than other predictors. In fact, the AUC value of pre-
dictor containing all cellular localization and biological
processes data (AUC = 0.753) is statistically higher (P <
10-5) than AUC values of other predictors (see Additional
file 2).

Prediction of essential genes by integrating network
topological features, cellular localization and biological
process information

After determining the predictive power of individual and
grouped cellular localization and biological process data,
we sought to verify if integration of network topological
features with cellular localization and biological process
data in a single predictor would improve predictability of
essential genes. Moreover, we also sought to compare the
predictability of essential genes by all network topological

features integrated in a single predictor with that by all cel-
lular compartments and all biological processes inte-
grated in a single predictor. It is worth to mention that
although we choose the predictor containing all network
topological features to perform the following compari-
sons, the sets containing protein physical interactions-
related features with metabolic interactions-related fea-
tures or other features (see "Prediction of essential genes
by network topological features" for details) also could be
used since their prediction performances are comparable
to that of all grouped network topological features.

For evaluating the integration of all data in a single predic-
tor and comparing it with the predictor containing only
cellular localization and biological process information
and with the predictor containing only network topologi-
cal features, we trained our classifier on balanced datasets
with all available data as training data, all cellular com-
partments and biological processes as training data and all
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ROC curves and AUC values for the classifiers trained on balanced datasets with individual or grouped biolog-
ical processes. ROC curves and AUC values of classifiers trained on balanced dataset 9 (see Figure I) with one or all biolog-
ical processes as learning attributes. "all processes" is the dataset with all biological processes as learning attributes; "metabolic

process", "other process", "cell cycle", "transcription" and "transport” are datasets with only the respective biological process

as learning attribute.

network topological features, cellular components and
biological processes as training data. As expected, the
ROC curves in Figure 6 indicate that integration of all net-
work topological features with cellular compartments and
biological processes information in a single predictor
increases the predictability of essential genes in compari-
son with predictors containing only network topological
features or cellular compartments and biological proc-
esses information. Indeed, comparing the AUC value of
predictor containing all network topological features and
all cellular compartments and biological processes infor-
mation with that of predictor containing only network
topological features or cellular compartments and biolog-
ical processes information, we confirmed that predictabil-
ity of essential genes by the integrated predictor (AUC =
0.808) is statistically significantly (P < 10-4) higher than
that by others predictors (Figure 6 and Additional file 2).

Regarding the comparison of the predictive power of inte-
grated topological network features with that of integrated
cellular localization and biological process data, we
observed that the difference between the AUC value of
predictor containing all cellular compartments and bio-
logical processes information (AUC = 0.753) and the AUC
value of predictor containing all network topological fea-
tures (AUC = 0.773) is not statistically significant (P =
0.269) (see Additional file 2). Considering that the func-
tion of a protein is intimately linked to its cellular locali-
zation [21] and that both the biological process in which
a protein is involved and the cellular localization in which
a protein acts are predictable by network topological fea-
tures [10,22], it is not surprising that the predictabilities of
essential genes by both the predictor containing all net-
work topological features and the predictor containing all
cellular localization and biological process data are simi-
lar.
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ROC curves and AUC values for the integrated predictors with cellular localization and biological process
information. ROC curves and AUC values of classifiers trained on balanced dataset 9 (see Figure |) with all biological proc-
esses ("all processes"), all cellular compartments ("all compartments") or all biological processes and cellular compartments

("all processes and compartments") as learning attributes.

Classification of yeast genes not known to be essential
We obtained the list of genes classified as essential and
non-essential used for training our classifier from Giaever
et al. [4] (see "Methods"). Giaever et al. have systemati-
cally constructed a nearly complete collection of yeast
gene-deletion mutants covering about 96% of all genes.
However, about 430 genes of this collection were
removed from the yeast genome after a comprehensive
reannotation process of the S. cerevisiae genome per-
formed in 2006 [23]. In addition, new genes were anno-
tated to yeast genome as a result of this reannotation
process. In order to classify these genes not analyzed by
Giaever et al., we used our best classifier, that is, the one
that containing all network topological features, cellular
components and biological processes information as
training attributes. For each gene, the predictor output the
probability of classifying it as essential and non-essential,
which we called, respectively, "essentiality score" and
"non-essentiality score".

To predict a gene as essential, we defined an essentiality
score of 0.654 as the cutoff value, i.e., genes with essenti-
ality score above 0.654 were considered to be essential.
This cutoff value was based on the optimal threshold,
which is the score value that leads to the maximal accu-
racy of classification, calculated by the software StAR [24]
for the predictor containing all features (network topolog-
ical, cellular component and biological process; see Figure
6 and Additional file 2). Among the 514 genes with the
essentiality status not defined by Giaever et al., 44 genes
were predicted as essential (Table 1). Analyzing these
genes, we found that 9 genes have been previously dem-
onstrated to be essential (YHRI65C, YHRO089C,
YHR052W, YCR042C, YDR320C-A, YHR169W, YKL138C-
A, YGL106W and YHR099W) and other 14 genes
(YGR252W, YHR027C, YOL012C, YNL147W, YGL100W,
YNL096C, YOL148C, YFLOO7W, YOL145C, YBR111W-A,
YNL0O55C, YHR216W, YBL0O71W-A and YHR039C-A) have
been previously demonstrated to be non-essential by
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ROC curves and AUC values for the integrated predictors with available data. ROC curves and AUC values of clas-
sifiers trained on balanced dataset 9 (see Figure 1) with all network topological features, cellular compartments and biological
processes ("all data"), all biological processes and cellular compartments ("all processes and compartments") or all network

topological features ("network") as learning attributes.

other investigators through small-scale gene deletion
experiments in functional characterization studies [25-36]
(Table 1). Among non-essential genes, 10 genes
(YGR252W, YHR027C, YOL012C, YNL147W, YNL096C,
YOL148C, YOL145C, YBR111W-A, YNL0O55C and
YHRO039C-A) have been shown to impair substantially the
growth of S. cerevisiae when they are completely deleted
[33,36-40], whereas the 4 remaining non-essential genes
(YGL100W, YFLOO7W, YHR216W and YBL071W-A) have
been shown not to affect the growth phenotype of yeast
when they are deleted [34,35,41,42]. Although roughly 1/
3 of the these genes predicted to be essential have been
previously classified as non-essential, the complete dele-
tions of most of them have been shown to severely reduce
the fitness of organisms [33,36-40], suggesting that our
predictor, even when directly contradicted by these exper-
imental findings, can nonetheless identify genes impor-
tant to cellular function. Regarding the 4 non-essential
genes whose deletion has been shown not to affect the
growth phenotype of yeast (YFLOO7W and YGL100W), we

hypothesize that our classifier assigned a high essentiality
score to these genes due to the following features: (i) their
encoded proteins interact with more than 12 other pro-
teins, (ii) they are regulated by less than 4 transcription
factors and (iii) their encoded proteins are located in the
nucleus. These characteristics are in accordance with two
cellular rules for essentiality discovered by our approach
as demonstrated in the section "Cellular rules for gene
essentiality": if proteins interact with more than 7 other
proteins and are located in the nucleus, genes encoding
them are likely to be essential and genes regulated by
more than 3 transcription factors tend to be non-essential.

Among the 44 genes predicted to be essential, 21 genes
have not yet been investigated for essentiality to date
(Table 1). One of these genes is the YER029C whose
encoded protein (Yer029cp) binds to other 6 proteins to
form the heteroheptameric complex that is required for
the biogenesis of the spliceosomal U1, U2, U4, and U5
snRNPs [43]. These spliceosomal snRNPs are involved in
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Table I: List of the 44 yeast genes predicted to be essential in S. cerevisiae
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Rank Gene Essentiality Score Essentiality Status Deletion phenotype Reference
| YHRI165C 0.940 essential lethality [32]
2 YGR252W 0.939 non-essential defective growth [33]
3 YHRO089C 0.937 essential lethality [25]
4 YHRO52W 0.065 essential lethality [26]
5 YER029C 0.930 not defined not defined -

6 YHRO027C 0.930 non-essential defective growth [37]
7 YHRO99W 0.929 essential lethality [27]
8 YOLOI2C 0.925 non-essential defective growth [33]
9 YHR169W 0.921 essential lethality [28]
10 YCRO042C 0.920 essential lethality [29]
Il YDR320C-A 0.897 essential lethality [30]
12 YNLI147W 0.885 non-essential defective growth [33]
13 YGLI0OW 0.866 non-essential not related to growth [41]
14 YNLO096C 0.865 non-essential defective growth [33]
15 YOLI48C 0.859 non-essential defective growth [38]
16 YORI145C 0.856 essential lethality [31]
17 YFLOO7W 0.839 non-essential not related to growth [42]
18 YKLI38C-A 0.837 essential lethality [30]
19 YOLI45C 0.824 non-essential defective growth [39]
20 YBRI I IW-A 0.822 non-essential defective growth [40]
21 YLL022C 0.816 not defined not defined -

22 YNL209W 0.816 not defined not defined -

23 YGLI06W 0.813 not defined not defined -

24 YPRO8OW 0.813 not defined not defined -

25 YERI05C 0.794 not defined not defined

26 YNLO55C 0.783 non-essential defective growth [33]
27 YOLI42W 0.781 not defined not defined -

28 YAL024C 0.770 not defined not defined

29 YHR216W 0.768 non-essential defective growth [34]
30 YHL004W 0.743 not defined not defined -

31 YHRO72W-A 0.741 not defined not defined -

32 YGLI190C 0.738 not defined not defined -

33 YDRO79C-A 0.731 not defined not defined -

34 YNLI186W 0.731 not defined not defined -

35 YJR132W 0.716 not defined not defined -

36 YDR26 IW-A 0.713 non-essential defective growth [33]
37 YHRI19W 0.696 not defined not defined -

38 YBLO7 IW-A 0.693 non-essential defective growth [35]
39 YDR261W-B 0.682 non-essential defective growth [34]
40 YHRO39C-A 0.680 non-essential defective growth [36]
41 YHR090C 0.680 not defined not defined -
42 YER026C 0.675 not defined not defined -

43 YHRO056C 0.665 not defined not defined -
44 YCLOI9W 0.659 not defined not defined -

splicing of nuclear pre-mRNAs [44], an essential biologi-
cal process for cell viability, and, interestingly, all proteins
forming the heteroheptameric complex along with
Yer029cp have been demonstrated to be essential [4].
Therefore, the presence of this gene among ones predicted
to be essential reinforces the fact that our predictor is able
to identify genes that are important to cellular function.

Finally, regarding the remaining 470 genes predicted as
non-essential, we verified that 129 of these genes have
been previously tested for essentiality by other studies (see
Additional file 4). Among them, 124 have been demon-

strated to be non-essential genes and only 5 have been
demonstrated to be essential genes. Thus, about 4% of
genes with known essentiality status and predicted as
non-essential are actually essential genes (Additional file
4). Providing that 38% (9 of 14; see Table 2) of the genes
with known essentiality status and predicted as essential
are actually essential genes, the predictor integrating all
available features (network topological, cellular compo-
nent and biological process; see Figure 6 and Additional
file 2) leads to an enrichment of actual essential genes in
the set of genes predicted as essential. This suggests that
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this predictor is committed to minimize the false negative
rate thus avoiding the loss of essential genes.

Cellular rules for gene essentiality

Beyond the prediction capability, machine learning tech-
niques can be used for knowledge acquisition in order to
describe patterns in datasets. The machine learning algo-
rithms most used for knowledge acquisition are those that
generate decision trees. Decision trees are decision sup-
port tools inferred from the training data that use a graph
of conditions and their possible consequences. The struc-
ture of a decision tree consists of a root node representing
the most important condition for discriminating classes,
internal nodes representing additional conditions for
class discrimination under the main condition, and leaf
nodes representing the final classification. So, one can
learn the conditions for classifying instances in a given
class by following the path from the root node to the leaf
node [45].

Therefore, in order to discover the rules for gene essential-
ity in S. cerevisiae, we analyzed decision trees generated by
training the J48 algorithm, a WEKA's implementation of
the C4.5 algorithm [46] (for more details, see "Methods"),
on the ten balanced datasets containing all network topo-
logical features, cellular components and biological proc-
esses as training data (the construction of balanced
datasets are detailed in "Methods"). As decision trees gen-
erated from the balanced datasets could be slightly differ-
ent from one another due to the undersampling scheme
used to balance the original set of classified genes--each
balanced dataset contains a different set of 1,024 non-
essential genes, 1/8 of the total amount in the original
imbalanced dataset--we generated one detailed (64
instances per leaf) and one simplified (128 instances per
leaf) decision tree for each balanced dataset (see "Meth-
ods" for details) and then we manually inspected them in
order to discover the general rules for gene essentiality.

From the 20 slightly different generated decision trees, we
were able to devise the general rules for gene essentiality
in S. cerevisiae. Figure 7 shows the decision tree that best
illustrates the general rules for gene essentiality (all deci-
sion trees are available in text format in the Additional file
5). As we can observe in Figure 7, the root node of deci-
sion tree is the number of protein physical interactions
(all generated decision trees exhibit this feature; see Addi-
tional file 5); so, this attribute can be considered the most
important feature among all network topological features
and cellular localization and biological process informa-
tion for gene essentiality. Accordingly, the predictor con-
taining only the number of protein physical interaction as
training feature is the one that best predicts (AUC =
0.747) essential genes among all other individual features
as we can observe in Figure 2. This is in concert with pre-
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vious studies that have demonstrated that the number of
protein physical interactions is indicative of essentiality
[9,19,20]. Several hypotheses about the connection
between gene essentiality and number of protein physical
interactions have been proposed. Coulomb et al. [47]
have suggested that the relationship between this network
feature and gene essentiality is partly due to biases in the
interaction data that are enriched in small-scale experi-
ments which are partial towards essential genes. On the
other hand, Zotenko et al. [48] have recently hypothesized
that the connection between gene essentiality and
number of protein physical interactions is likely due to
the involvement of proteins encoded by essential genes in
subnetworks of densely connected proteins with shared
biological functions that are enriched in proteins encoded
by essential genes.

Following the path from root node to first leaf node
through the right branch (Figure 7), we found the follow-
ing rule for gene essentiality: if proteins interact with more
than 7 other proteins (average of number of interactions
ranging from 6 to 12 in all decision trees) and are located
in the nucleus, genes encoding them are likely to be essen-
tial. This rule can be observed in 9 of 10 decision trees
with 128 instances per leaf and 8 of 10 decision trees with
64 instances per leaf (see Additional file 5). If these pro-
teins are located in cellular compartments other than the
nucleus, essentiality of their corresponding genes depends
on conditions particular to each decision tree (Figure 7
and Additional file 5). The path from root node to the leaf
nodes through the left branch (Figure 7) drove us to dis-
cover another rule for gene essentiality: if proteins interact
with 6 or fewer proteins and participate in a metabolic
process inside the nucleus, genes encoding these proteins
are likely to be essential. This rule can be observed in 7 of
10 decision trees with both 128 and 64 instances per leaf
(Additional file 5).

According to these rules, the ultimate condition for gene
essentiality is the localization of proteins in the nucleus,
suggesting that this cellular component is somehow
important for essentiality. The importance of nucleus for
essentiality has also been suggested by Seringhaus et al. [7]
that have shown that nuclear localization has the strong-
est positive correlation with essentiality among other cel-
lular components. The relationship between nucleus and
essentiality can be explained by the fact that roughly one
third of nuclear proteins are encoded by essential genes
and most of essential biological processes for cell viability
take place within the nucleus [49]. Therefore, the partici-
pation of proteins in these nuclear-localized essential
processes, such as DNA replication, transcription and
DNA repair, should be a pivotal condition for essentiality
in the rules defined by both the paths via the left and right
branches of decision tree. It is worth to mention that, as a
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Figure 7

Decision tree generated by training the J48 algorithm on the balanced dataset 8 with all available data. This
decision tree was generated by training the |48 algorithm on the balanced dataset 8 with all available data (see "Methods"). The
uppermost ellipse is the node root of tree that represents the most important condition for discriminating essential genes
from non-essential genes. In this case, such condition is the number of protein physical interactions (ppi). The remaining ellipses
are internal nodes that represent additional conditions for considering a gene as essential or non-essential. In the left branch of
tree, such conditions are involvement in a metabolic process (met. proc.) and nuclear localization (nucleus). In the right branch,
such conditions are nuclear localization (nucleus) and number of regulating transcription factors (regin). The rectangles are the
leaf nodes that represent the final classification. Red and green rectangles depict genes that, under certain conditions (repre-
sented by the root node and internal nodes), are respectively and predominantly classified as essential (E) and non-essential
(N). In the round brackets inside rectangles, the number before the slash indicates the total number of genes that are actually
essential or non-essential and the number after the slash indicates how many genes were incorrectly predicted.

result of the annotation method we used (see more details
in "Methods"), these nuclear-localized essential processes
are embedded in the biological process "metabolic proc-
ess", one of the conditions for essentiality along with
nuclear localization and number of protein physical inter-
actions equal or less than 6 in the rule defined by the path
via the left branch of decision tree (Figure 7). In the rule
defined by the path via the right branch, although essen-
tiality is apparently not dependent on the involvement of
proteins in metabolic processes inside the nucleus, the
nuclear proteins encoded by genes classified as essential
according to this rule may be actually involved in a
nuclear metabolic process. In this case, however, the
involvement in nuclear metabolic processes is over-
whelmed by the number of protein physical interactions.

We discovered an additional interesting rule for gene
essentiality in yeast: genes regulated by more than 3 tran-
scription factors tend to be non-essential (Figure 7). This
rule can be observed in 6 of 10 decision trees with 128
instances per leaf and in all decision trees when the

number of instances per leaf is set to 64 (see "Methods"
for details and Additional file 5). Our finding is corrobo-
rated by Yu et al. [50] that have found that genes regulated
by > 10 transcription factors are less likely to be essential
than those regulated by 2-9 transcription factors, whereas
these genes are less likely to be essential than those with
only one transcription factor. At first glimpse, the fact that
essential genes tend to be regulated by a few transcription
factors seems contradictory since one would expect that
gene essentiality is correlated with a high level of tran-
scriptional regulation. However, most essential genes
encode housekeeping proteins, i.e., proteins involved in
housekeeping functions, such as rRNA metabolic process
and transcription initiation [48]. As housekeeping func-
tions are the most basic and important functions within
cell, genes encoding housekeeping proteins are ubiqui-
tously expressed and, consequently, they tend to be regu-
lated by fewer transcription factors than genes encoding
non-housekeeping proteins. Therefore, this phenomenon
is likely due to the enrichment of genes encoding house-
keeping proteins in the set of essential genes.
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Conclusion

The identification of essential genes has largely been an
experimental effort mostly performed by time-consuming
whole-genome knockout experiments. In an effort to
accelerate the pace of discovery of essential genes, we
designed a machine learning-based computational
approach that relies on network topological features, cel-
lular localization and biological process information for
predicting essential genes and evaluated it in the yeast Sac-
charomyces cerevisiae.

We therefore constructed an integrated network of gene
interactions for S. cerevisiae containing protein physical,
metabolic and transcriptional regulation interactions and
computed 12 different network topological features (as
described in Additional file 1 and "Methods") that were
individually and collectively evaluated for their ability to
predict essential genes. We showed that the predictors
containing all 12 network topological features or different
combinations of protein physical interactions-related fea-
tures with other groups of topological features as training
data are reliable predictors (AUC = 0.763-0.773) of essen-
tial genes in S. cerevisiae, thus reinforcing the fact that an
integrated network of gene interactions can be an useful
tool for the prediction of essential genes.

Although the performance of predictors containing only
network topological features can be considered acceptable
for predicting essential genes, we decided to check if the
addition of cellular localization and biological process
information to these predictors would increase the pre-
dictability of essential genes. In fact, we verified that the
performance of the predictor containing all network top-
ological features, cellular localization and biological proc-
ess information as training data is better than those of the
predictors containing only network topological features
or only cellular localization and biological process infor-
mation. Interestingly, we also showed that the prediction
performances of the predictor containing only network
topological predictions and the predictor containing only
cellular localization and biological process information
are similar. To our knowledge, this is the first time that
Gene Ontology terms related to cellular localization and
biological process are shown to be useful predictors of
essential genes.

In addition to prediction of essential genes, we could also
devise some cellular rules for gene essentiality using all
network topological features, cellular localization and
biological process information as training data for gener-
ation of decision trees (see details in section "Cellular
rules for gene essentiality"). We discovered that the
number of protein physical interactions, the nuclear local-
ization and the number of regulating transcription factors
are important factors determining gene essentiality.
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Although these findings have previously been demon-
strated by other investigators [7,9,19,20,50], it is interest-
ing to notice that we were able to obtain these same results
by simply inspecting the decision tree generated as shown
in section "Cellular rules for gene essentiality". So, deci-
sion trees are useful tools for extracting knowledge from
complex biological data.

Besides confirming previous findings, the exploration of
decision trees can also lead to new discoveries. This can be
exemplified by an additional analysis that we performed
due to a referee' s suggestion regarding the nuclear locali-
zation of essential proteins. The referee has suggested us
to analyze the influence of some children terms of GO
term "nucleus" on the nuclear localization-related gene
essentiality. For this purpose, we generated a decision tree
by training the J48 algorithm on one of the ten balanced
datasets (see "Methods" for details) with all features plus
the GO terms "nucleolus”, "nucleoplasm”, "nuclear chro-
mosome" and "nuclear envelope" and, as can be observed
in the Additional file 5, an entirely new rule can be
devised from the generated decision tree: the nucleolar
localization of proteins is the most important factor for
gene essentiality. We did not mention this potential and
interesting rule for gene essentiality in the section "Cellu-
lar rules for gene essentiality" since this rule per se is inter-
esting enough to deserve a more exhaustive analysis that
can be reported in a future paper.

Albeit the good prediction performance and the ability to
discover cellular rules for essentiality, our approach suf-
fers from two limitations. First, it depends on existing
Gene Ontology annotation and protein physical interac-
tion data which are likely to be enriched in small-scale
experiments involving essential genes. Second, the con-
struction of an integrated network of gene interactions
requires a large amount of experimental interaction data
that are currently available only to a limited number of
organisms.

Therefore, the prediction of essential genes in newly
sequenced organisms, for example, is impractical by our
approach. However, the integration of our approach with
(i) computational-based methods for gene annotation
and (ii) computational-based methods for the construc-
tion of integrated networks of predicted gene interactions
in which each type of interaction (protein physical, meta-
bolic and transcriptional regulation interactions) can be
distinguished from one another could give rise to a purely
in silico network topology, cellular localization and bio-
logical process information-based methodology for pre-
diction of essential genes. Such a methodology would be
totally independent on experimental interaction data and,
accordingly, unbiased in essential genes-driven experi-
ments.
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In summary, despite the limitations discussed above, we
could demonstrate that the integration of network topo-
logical features, cellular localization and biological proc-
ess information is capable to predict essential genes. In
this work, we tested the predictive performance of this
integration in S. cerevisiae, but we envisage that it might be
useful to predict essential genes in any other organism if a
purely computational-based prediction approach, as sug-
gested above, is used.

Methods

Generation of the set of training features

Network topological features

In order to compute the network topological features used
as training features for predicting essential genes, we first
constructed an integrated network of gene interactions of
S. cerevisiae based on assumption that two genes, g, and g,,
coding respectively for proteins p, and p,, are interacting
genes if (i) p, and p, interact physically (protein physical
interaction), (ii) the transcription factor p, directly regu-
lates the transcription of gene g,, i.e., p; binds to the pro-
moter region of g, (transcriptional regulation interaction),
or (iii) the enzymes p; and p, share metabolites, i.e., a
product generated by a reaction catalyzed by enzyme p;, is
used as reactant by a reaction catalyzed by enzyme p,
(metabolic interaction).

Yeast protein physical interactions data were obtained
from The Biological General Repository for Interaction
Datasets (BioGRID) database, a repository of literature-
curated protein physical and genetic interactions [51]. We
downloaded the database release 2.0.42 of July 2008 and
removed the entries related to genetic interactions. Yeast
transcriptional regulation interactions were obtained
from the Yeast Search for Transcriptional Regulators And
Consensus Tracking (YEASTRACT) database, a curated
repository of regulatory associations between transcrip-
tion factors and target genes in Saccharomyces cerevisiae
[52]. By using the utility "Generate Matrix Regulation” in
the YEASTRACT website, we generated and downloaded a
regulation matrix containing only documented transcrip-
tional regulation interactions determined by direct exper-
imental evidence.

Yeast metabolic interactions were extracted from the met-
abolic model iND750 of Saccharomyces cerevisiae [11] by a
code implemented in Mathematica® 6.0 (Wolfram
Research, Inc.). We excluded those metabolic interactions
generated by the so-called "currency metabolites", abun-
dant molecular species present throughout the cell most
of the time and, therefore, unlikely to impose any con-
straints on the dynamics of metabolic reactions. Due to
this feature of currency metabolites, the functionality of
the network would be better represented without them
[53]. We considered currency metabolites the eight most
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connected metabolites (ADP, ATP, H+*, H,0, NADP+,
NADPH, orthophosphate and pyrophosphate) in the
original metabolic model iND750.

The final integrated network of gene interactions (INGI)
of yeast is the result of integration of the protein physical,
metabolic and transcriptional regulation interactions
datasets through genes common to these datasets. Before
performing the integration, we converted all yeast gene
names to their systematic names--as provided by the Sac-
charomyces Genome Database (SGD) Nomenclature
Conventions [23]--to avoid the creation of false interac-
tions due to gene name ambiguity. Genes classified as
dubious, i.e., genes unlikely to encode an expressed pro-
tein and not considered biologically significant by SGD,
were removed from the final INGI.

For each gene g in the yeast INGI, we computed twelve
network topological features as listed in Additional file 1.
Briefly, degree centrality is defined as the number of links
to node (in our case, gene). We considered each type of
interaction as a distinct measure of degree as described in
Additional file 1. Clustering coefficient (¢) of a node (in
our case, a gene) quantifies how close the node and its
neighbors are to being a clique, i.e., all nodes connected
to all nodes. For yeast INGI, ¢ is defined as the proportion
of links between the genes within the neighborhood of g
divided by the number of links that could possibly exist
between them. Betweenness centrality reflects the role
played by a node (in our case, a gene) in the global net-
work architecture and, for the yeast INGI, is defined as the
fraction of shortest paths between g; and g passing
through g. We computed the betweenness centrality based
on shortest paths via all types of interaction (inbet) as well
as based on shortest paths via each type of interaction
(inbetppi, inbetmet and inbetreg). Closeness centrality (cent)
measures how close a node (in our case, a gene) is to all
others in the network and, for the yeast ING], is defined as
the mean shortest path between g and all other genes
reachable from it. Identicalness is the number of genes
with identical network topological characteristics. All
these network topological features, except for the
betweenness centrality-related features, were calculated by
a program written in a Mathematica® 6.0 notebook. The
betweenness centrality-related features were calculated by
the Python package NetworkX [54].

Cellular localization and biological process annotation of yeast genes
We determined the cellular component in which a yeast
gene product acts and the biological process in which a
yeast gene is involved by using the Saccharomyces
Genome Database (SGD) Gene Ontology (GO) Slim
Mapper [55]. The SGD GO-Slim Mapper maps annota-
tions of a group of genes to more general GO terms.
Among GO Slim sets available at SGD, we selected cellular
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component and biological process terms from the Super
GO-Slim set, a collection of high-level GO terms. For cel-
lular localization annotation, genes annotated to terms
rather than ‘cytoplasm", "endoplasmic reticulum",
"mitochondrion" and "nucleus" were reannotated to one
of these terms or to a new term named "other localiza-
tion". For biological process annotation, genes annotated
to terms rather than "cell cycle", "metabolic process", "sig-
nal transduction", "transcription" and "transport" were
reannotated to one of these terms or to a new term named
"other process".

Classifier design, training and evaluation

Construction of datasets for classifier training and evaluation

We defined "essential genes" as those genes whose dele-
tion leads to an inviable yeast organism cultured on rich
glucose medium. We obtained the dataset containing the
classification of yeast genes in essential or non-essential
from Giaever et al. [4]. After downloading the dataset, we
removed from it genes classified as dubious in SGD and
converted the name of remaining genes to their systematic
names as provided by the SGD Nomenclature Conven-
tions [23].

As this dataset of classified genes is an imbalanced dataset,
i.e., the number of non-essential genes is much larger than
the number of essential genes, and it has been known that
data imbalance degrades the performance of machine
learning algorithms [17], we built balanced datasets from
the original imbalanced dataset by using an undersam-
pling scheme as follows: (1) first, we split the dataset of
classified genes into two subsets: "essential genes set",
containing 1,024 essential gene entries, and "non-essen-
tial genes set", containing 4,097 non-essential gene
entries; (2) second, we selected all entries from the essen-
tial genes set (1,024 entries) and randomly selected 1,024
entries from the non-essential genes set; (3) we then cre-
ated the balanced dataset containing the 2,048 selected
entries with random distribution of the essential gene and
non-essential gene entries. This procedure was repeated
10 times in order to generate 10 different balanced data-
sets containing different sets of non-essential gene entries.

To compare the predictability of essential genes by indi-
vidual training features with that of different groups of
training features, we generated, from the balanced data-
sets, different subsets containing different combinations
of training features as detailed in Additional file 2.

Classifier design

We used WEKA (Waikato Environment for Knowledge
Analysis) software package, a collection of machine learn-
ing algorithms for data mining tasks [56], for designing,
training and evaluating the classifiers applied to predic-
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tion of essential genes. Among classifiers that we evalu-
ated, the one that provided the best performance was an
ensemble of eight decision tree algorithms using the
meta-classifier "Vote", a WEKA's implementation of the
voting algorithm that combines the output predictions of
each classifier by different rules [57]. We combined the
classifiers by the average rule, where the output predic-
tions computed by the individual classifiers for each class
are averaged and this average is used in its decision [57].
The classifiers composing our model were: (1) REPtree
[56], (2) naive bayes tree [58], (3) random tree [56], (4)
random forest [59], (5) J48, a WEKA's implementation of
the C4.5 decision tree [46], with minimum number of 32
instances per leaf, (6) best-first decision tree with mini-
mum number of 32 instances at the terminal nodes [60],
(7) logistic model tree [61] and (8) alternating decision
tree with 25 boost iterations [62]. In addition, we applied
the bootstrap aggregating (bagging) approach [63] to each
classifier. Parameters values for each classifier are pro-
vided in the Additional file 6.

Classifier training and evaluation

For each of the 10 balanced datasets, we trained our clas-
sifier on half of entries and the other half was used to eval-
uate the classifier performance, totaling 10 runs of
training and evaluation. For these runs, we generated a
receiver operating characteristic (ROC) curve and calcu-
lated the area under the ROC curve (AUC). The ROC curve
is a plot of the true positive rate versus false positive rate
and indicates the probability of a true positive prediction
as a function of the probability of a false positive predic-
tion for all possible threshold values [64]. AUC is a widely
used summary measure of the ROC curve and is equiva-
lent to the probability that a randomly chosen negative
example (in our case, a non-essential gene) will have a
smaller estimated probability of belonging to the positive
class than a randomly chosen positive example (in our
case, an essential gene) [65].

We used the web server version of the StAR (Statistical
Analysis of ROC curves) software [24] for calculating the
true and false positive rates and the AUC values and for
generating the ROC curves. The statistical comparison of
AUC values derived from the different datasets was also
performed by StAR by means of a nonparametric statisti-
cal method based on the Mann-Whitney U-statistic for
comparing distributions of values from two samples [18]
with a significance level (P) of 0.01.

Determination of rules for gene essentiality

The determination of rules for gene essentiality was per-
formed by analyzing decision trees generated through the
training of J48 algorithm on balanced datasets containing
all training data. We used two different values of the
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parameter "number of objects per leaf" of J48 algorithm
for generating two different types of decision trees: 64 for
more detailed trees and 128 for more simplified trees
[56]. For each balanced dataset, then, we obtained two
decision trees (detailed and simplified) and manually
inspected all the 20 generated decision trees for determin-
ing the general rules for gene essentiality. The remaining
parameters values for producing decision trees by J48
algorithm training are provided in the Additional file 6
and all decision trees are provided in text format in the
Additional file 5.
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Additional material

Additional file 1

Network topological features. This file includes a table showing the func-
tions and descriptions of the twelve network topological features used as
learning attributes for training the classifier algorithm

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-290-S1.PDF]

Additional file 2

Statistical pairwise comparison of predictors. This file includes tables
showing the pairwise comparison of predictors with the p-values of AUC
differences between each pair of predictors.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-290-52.XLS]

Additional file 3

ROC curves and AUC values demonstrating the effect of removal of
individual or small sets of network topological features. File containing
ROC curves for classifiers trained on datasets whose learning attributes
were different sets of network topological features in which each set lacks
one of the topological features or a small group of 2-4 topological features.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-290-S3.PDF]

Additional file 4

List of the 470 yeast genes predicted to be non-essential. Tab-limited
text file containing the 470 genes classified as non-essential with their
essentiality scores, actual essentiality statuses and, if applicable, the
Pubmed references showing their essentiality statuses.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-290-S4.TXT]
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Additional file 5

J48 decision trees. This file contains all 10 decision trees generated by
training the J48 algorithm on the 10 balanced datasets with all available
data as learning attributes. Decision trees are represented in text format
(raw output generated by WEKA).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-290-S5.PDF]
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