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Abstract

Background: Joint analysis of transcriptomic and proteomic data taken from the same samples
has the potential to elucidate complex biological mechanisms. Most current methods that integrate
these datasets allow for the computation of the correlation between a gene and protein but only
after a one-to-one matching of genes and proteins is done. However, genes and proteins are
connected via biological pathways and their relationship is not necessarily one-to-one. In this paper,
we investigate the use of Correlated Factor Analysis (CFA) for modeling the correlation of
genome-scale gene and protein data. Unlike existing approaches, CFA considers all possible gene-
protein pairs and utilizes all gene and protein information in its modeling framework. The
Generalized Singular Value Decomposition (gSVD) is another method which takes into account all
available transcriptomic and proteomic data. Comparison is made between CFA and gSVD.

Results: Our simulation study indicates that the CFA estimates can consistently capture the
dominant patterns of correlation between two sets of measurements; in contrast, the gSVD
estimates cannot do that. Applied to real cancer data, the list of co-regulated genes and proteins
identified by CFA has biologically meaningful interpretation, where both the gene and protein
expressions are pointing to the same processes. Among the GO terms for which the genes and
proteins are most correlated, we observed blood vessel morphogenesis and development.

Conclusion: We demonstrate that CFA is a useful tool for gene-protein data integration and
modeling, where the main question is in finding which patterns of gene expression are most
correlated with protein expression.
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Background

Motivation

Recent advancements in technology have made it possible
to jointly analyze a genome-scale gene and protein expres-
sion from the same sample. The joint analysis of transcrip-
tomic and proteomic data has potential for shedding new
light on complex biological processes. However, the co-
analysis of the large datasets continues to present chal-
lenges. Some immediate questions are: how does one effi-
ciently characterize the patterns of correlation between
the large number of gene and protein expressions? There
are many different regulatory pathways within a cell, and
many genes and proteins are likely to be co-expressed in a
single biological process. How then, can we better identify
genes and proteins that are co-regulated, bearing in mind
their complex associations? The objective of this paper is
to address the above questions.

Although the central dogma of molecular biology suggests
a strong correlation between gene and protein expres-
sions, past empirical studies suggest only a modest corre-
lation [1]. Empirical correlations could be masked due to
various reasons: the analytical variability of the measure-
ment technologies, post-transcriptional mechanisms
affecting mRNA stability and protein degradation, as well
as timing differences between gene and protein expres-
sions. Furthermore, it is difficult to find a simple one-to-
one relationship for all genes and proteins empirically.
Waters et al. [2] found that 60% of proteins from liquid
chromatography-mass spectrometry (LCMS) analysis do
not match the sequence identifiers from two microarray
platforms, Affymetrix and Nimblegen. At least 29% and
46% of genes from Affymetrix and Nimblegen, respec-
tively, are not found to match with proteins.

Current methods for the joint analysis of transcriptomic
and proteomic datasets entail the matching of genes and
proteins through a common identifier from the DNA and
protein sequence databases, before computing their pair-
wise correlations [2,3]. Large amounts of informative data
are potentially lost when only genes and proteins with
matching sequences are taken into account.

The fact that the proteomic technology is not comprehen-
sive in its coverage also results in loss of informative data:
protein expressions corresponding to some genes may not
be measured. Various methods have been proposed to
deal with the problem. When these unmeasured values
are set to zero, Nie et al. [4] used the zero-inflated Poisson
regression model to account for the excess number of
zeros in protein expressions. Imputation, another
approach to handle unmeasured or missing value, uses
the available information in the proteomic dataset to esti-
mate the missing values. Imputation methods from the
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microarray literature could be applied to proteomics, for
example, weighted K-nearest neighbors [5] and the least-
squares principle [6]. To visualize gene and protein
expression data, the Co-Inertia Analysis (CIA) was pro-
posed [7]. Nonetheless, these unmeasured protein expres-
sions would result in fewer matched gene-protein pairs,
exacerbating the loss of information.

Instead of matching genes and proteins before computing
their pairwise correlations, we argue that all possible gene-
protein pairwise correlations should be considered. This
approach is better able to take into account the complex
relationships between genes and proteins. For example,
genes and proteins that are not matched by the databases
could very well be sharing the same pathways. Further-
more, the pooling of gene and protein expressions glo-
bally serves to amplify biological signals, thereby
improving the chances of discovering the interplay
between genes and proteins.

Tractability is an issue when we take into account all pos-
sible gene-protein pairwise correlations. We apply the
Correlated Factor Analysis (CFA) model, which allows us
to characterize succinctly the patterns of global covaria-
tion between genes and proteins. In the following subsec-
tion, we will show how the CFA framework can be used to
model pathways that are shared between genes and pro-
teins. We also applied the CFA to real data from the
National Cancer Institute (henceforth NCI data). The next
subsection is devoted to describing the analysis done on
NCI data. We summarize the contributions of this paper
in the final subsection.

Theoretical correlation model

The cross-covariation matrix of genes and proteins con-
tains information of correlation between all genes and
proteins. However, the cross-covariation matrix consists
of many parameters. To reduce the number of parameters
required to characterize the cross-covariation, we consider
a theoretical correlation model. We attempt to capture the
complex associations between genes and proteins, taking
into account multiple biological pathways. We start with
the simplest case of a single pathway.

Let x; € Rf be the column vector of the p gene expression
values and y; € Rd the column vector of the g protein

expression values, from sample j, forj=1,2,...,n.

To reflect a single pathway, we denote the common
expression pattern among the genes and proteins as a € R?
and b € Rdrespectively. If the pathway regulates the first
100 genes and the first 10 proteins, only the first 100
entries of a and the first 10 entries of b are non-zero. For
non-zero entries with high absolute values, their effect on
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the cross-covariation matrix is greater than those with low
absolute values.

Therefore, genes and proteins that are co-expressed and
play a greater role in the pathway are likely to have higher
absolute values.

From the common expression pattern of the genes and
proteins, we could obtain the gene and protein expression
values:

=g, X =h. Y
x;j=ga+ej, andy; =h;b+el,

where g; € R and h; € R? are random, and €; and €} are

independent error terms. The cross-covariance between x;

and y; is given by

acov(g; h)V,

so the covariation between x;and y; s fully captured by the
correlation between unobserved factors g; and hj, and by
the pattern-pair a and b.

With real data we certainly do not expect such a simple
representation, but in the same spirit as the principal com-
ponent analyses, we can expand the model to capture
most of the covariation between x; and y;. To allow 7 fac-
tors, we specify

r r
xj:Zgjkak+ef, andyj:Zhjkbk+e}', (1)
k=1 k=1

where a,s and b,s are gene and protein patterns respec-

tively. LetA, . ,=[a,..a,] and B, .= [b;...b,], &= (j1,---1;r)'
and h;= (hy;,...h;)"

Model (1), called the Correlated Factor Analysis (CFA), is
an extension of the standard factor analysis where now
the unobserved factors g; and h; are designed to be corre-
lated [8]. To avoid non-identifiability we assume orthog-
onality: A' A = [, and B' B = I, and cov(g; h) = A, , . is
diagonal with decreasing positive values [see Additional
file 1]. Now the cross-covariance between x;and y; is given

by

AAB, (2)

so the correlation between genes and proteins is character-
ized by A and and the pattern-pairs given by A and B (i.e.
r(p + g + 1) parameters). Therefore the number of param-
eters needed to characterize the cross-covariation matrix
can be smaller than pg.
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Empirical analysis of NCI data

We observe that there are outliers among the 'unmatched'
gene-protein pairs that have correlation values compara-
ble with 'matched' gene-protein pairs; see Figure 1. These
outliers could be co-regulated in some common pathway.
This supports our proposal to use all genes-proteins pairs
instead of limiting analysis to matched gene-protein pairs.

We applied the CFA model (see (1)) to NCI data. The
cross-covariance matrix from the CFA model has the same
structure as applying the Singular Value Decomposition
(SVD) to the cross-covariance matrix. Therefore, it would
be possible to obtain the estimates of pattern matrices A
and B quickly via SVD, and avoid using an iterative opti-
mization approach to maximize the likelihood of the CFA
model. We used simulated data to verify that SVD provide
good estimates for the parameters of the CFA model.

We also compared CFA with another closely related tech-
nique called the Generalized Singular Value Decomposi-
tion (gSVD). gSVD is used to jointly analyze gene
expression and copy number variation information from
the same samples [9]. However, the earlier application of
the gSVD on two genome-wide datasets were from two
independent samples [10]. From simulated and NCI data,
we showed that CFA and gSVD produced distinct results.

Summary contributions
In this paper, we propose a novel approach for jointly
analyzing transcriptomic and proteomic data by consider-

«Q
o
© | :
o |
c ‘
i) |
© :
[ 1
o Y 1
o o
e)
Qo
©
2 o
N«
° g
_ 8
o | |
°© T T
matched unmatched
Figure |

Boxplots of pairwise R2 between gene and protein
expressions. Boxplots of pairwise squared correlations (R2):
'matched' denotes matched gene-protein pairs, and
‘unmatched' denotes unmatched gene-protein pairs.
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ing all possible gene-protein pairs. We used a CFA model
to succinctly capture the covariation between genome-
scale genes and proteins. CFA avoids one-to-one matching
of genes and proteins, and utilizes all available informa-
tion in the analysis. More importantly, CFA considers the
global covariation between genes and proteins, and hence
pools signals across genes and proteins.

Our proposed approach was applied on real data. We
characterized the covariation between genes and proteins
using CFA via SVD. We were able to make biological infer-
ences on the selected pattern-pairs by performing an
enrichment analysis on the collection of genes.

We found that CFA yielded distinct results from gSVD, an
existing technique that is similar to CFA but has been
applied on two independent samples.

Data

NCI data

We illustrated the application of CFA and gSVD on real
data with the NCI data. Microarray and proteomic data-
sets from the same human cell line were downloaded
from the CellMiner program package developed by
National Cancer Institute http://discover.nci.nih.gov/
cellminer/. Fifty-nine of the 60 human cancer cell lines
were used in the analysis as one of the cell lines had miss-
ing microarray information. The cell lines consisted of a
variety of cancers and were used by the Developmental
Therapeutics Program of the U.S. National Cancer Insti-
tute to screen more than 100,000 compounds and natural
products. For the microarray dataset, we used the Affyme-
trix HG-U133A chip (Affy) that had been normalized by
the GCRMA method [11]. For the proteomic data, reverse-
phase protein lysate arrays (RPLA) were used to obtain 89
proteins expression values. These protein values were cal-
culated, with an adjustment for total protein, using the
25% 'dose interpolation' (DI125) algorithm [12]. The dose
interpolation for each sample was determined by fitting a
monotonic linear spline to the serial dilution curve. The
25% point was chosen because it minimized the measure-
ment variance and yielded more dose-response curves.
Each sample's protein DI25 value was normalized by its
mean total protein DI25 values.

For the microarray dataset, we excluded genes with vari-
ance in the lowest quantile from further analysis, leaving
us with 15918 genes. For the proteomic dataset, no filter-
ing was performed. Simple plots of the gene and protein
expression values are available [see Additional file 1].

Simulated data

We performed a simulation study to investigate the con-
sistency of the SVD approach in estimating a;s and b;s in
the CFA model, as well as to compare estimates using SVD
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and gSVD. To simulate correlated gene and protein
expression data, we used model (1). In the simulation, we
set the sample size to be n = 500, with p = 1000 genes, ¢ =
89 proteins and r = 2 pattern-pairs. Results for a small
sample of n = 59 are also available [see Additional file 1].
To specify realistic gene and protein patterns, and variance
parameters, we sub-sampled 1000 genes from the NCI
data without replacement and performed a SVD on its
cross-covariance matrix. From the SVD of the cross-covar-
iance matrix, we obtained the gene and protein patterns
(A and B).

The factors ( g}, h},)'s are assumed to be iid multivariate

normal N,,(0, ¥,, . ,,) with

\P llerx7 Ar><r
2rx2r T 4
Arxr \P)’rxr
where ¥, ~and ¥, = areassumed to be diagonal matri-

ces. The error terms (€;,€}’)'s are independent of

(8% hy) and iid N, (0, @, ) . (p.q)), Where @ is a diago-

nal matrix. To obtain realistic variance parameters for \¥,,
and A and ‘¥, we computed the scores of the first two pat-
tern-pairs and their variances. We then computed the

residuals and their variances, giving us estimates of ®.
Using these estimates, we simulated 250 sets of correlated
gene and protein expression datasets.

Methods

Notation

Let X, , , be the gene expression data matrix from p genes
measured on n samples, and Yq x n the proteomic data
from ¢ proteins from the same n samples. We define linear
combinations of X and Y as u, = X'a and v, = Y'by.. A pat-
tern-pair refers to the vectors a, and by, which are the gene
and protein patterns of the k-th factor (i.e. k-th pattern-
pair) of model (1) respectively. The vectors u, and vy are
sample gene and protein scores associated with the k-th
pattern-pair. For the NCI data, the dimensions of vectors
3, and by are 15918 and 89 respectively; the dimensions
of both vectors u, and v, are 59.

Obtaining estimates of the pattern-pairs of CFA

To obtain the estimates of pattern matrices A and B
quickly, we performed a Singular Value Decomposition
(SVD) on the cross-covariance matrix %, , , = XY'/(n - 1),
where X and Y were centered across the rows. If X is of
rank r, then by the SVD theorem we have

prq = ApXrArXr(Bqu),’ (3)
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where A and is a diagonal matrix with positive diagonal
values arranged in decreasing order. A and B are orthogo-
nal matrices with the k-th column of A and B correspond-
ing to vector a, and b, respectively. Applying SVD on the

cross-covariance matrix provides empirical estimates of
the gene and protein patterns in the CFA, i.e. model (1).
The relative amount of covariances explained by the k-th

pattern-pair is 1; / 2::1 20

The sample covariance of the linear combinations of X
and Y with the first pattern-pair, i.e. 4, = cov(uy, v;) =
cov(X'a;, Y'b,), is maximum among all possible choices
of a, and b,, subject to the constraints a,'a; = 1 and b,'b,
= 1. For the k-th pattern-pair, 4, = cov(X'ay, Y'b,) is maxi-
mized with a;'a, = 1 and by'by = 1, subject to a;'a, = 0, Vi
<k. and b;'b, = 0, Vi <k. Therefore, by applying SVD on Z,
the sample covariance of the linear combinations of X and
Y is maximized. In the literature, this has been called the
Maximum Covariance Analysis (MCA) [13].

How many pattern-pairs should we use? To avoid com-
plex modeling, we used a permutation approach. To
obtain the null hypothesis situation of zero cross-covari-
ance (i.e. Z = 0), we randomly permuted the columns of Y
(Y*) P =1000 times. SVD was applied to the cross-covari-

ance of X and Y*, with singular values A, > 1, >..> A.,.
The number of pattern-pairs to use (k,) was such that the

p-value of 4, was less than 0.001 when k < k,, and greater
than or equal to 0.001 when k =k, + 1.

CFA estimates were computed using the functions cov
and svd in R statistical programming environment [14],
on a PC with 2.66 GHz and 1.95 GB RAM.

Making biological inferences on the pattern-pairs of CFA
After determining the number of pattern-pairs and
obtaining the estimates of the pattern-pairs, the interpre-
tation of these patterns with hundreds or thousands of
coefficients (i.e. genes) was non-trivial. Since pattern val-
ues with large absolute values had greater influence on the
scores, we simplified the interpretation of gene patterns
by classifying all 15918 genes into two groups: genes with
and without the top w% absolute gene pattern values. We
classified genes with the top w% absolute gene pattern val-
ues as interesting genes.

The optimal value for w was determined by observing its
relationship with the correlation between two scores: the
first score was computed using the full set of genes and the
other using the top w% absolute gene pattern values. In
Figure 2(a), we plotted the correlation values as a function
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of w for the NCI data. The optimal w value corresponded
to the 'shoulder' of the curve because genes with negligi-
ble contributions should have small absolute coefficients,
having minimal impact on the scores computed using the
full set of genes. For the NCI data, the optimal value for w
was five.

The classification of genes into 'interesting' and 'uninter-
esting' categories facilitated the use of gene ontology
(GO) enrichment analysis [15] for biological inferences
on each pattern-pair. We performed a GO analysis on the
biological processes of genes. The GO analysis tested
whether the set of interesting genes was enriched with a
particular GO term when compared against all other
genes on the microarray. Therefore a GO analysis could be
seen as a 2 x 2 table test of association and the Fisher Exact
test was used to compute the p-value. To account for mul-
tiple testing, GO terms with g-values less than 0.05 were
called enriched GO terms [16]. The GO analysis on the
molecular functions of genes are available [see Additional
file 1].

We also investigated whether gene and protein patterns of
the same pattern-pair were extracting biologically coher-
ent signals. The GO terms of proteins from the top w abso-
lute protein pattern values were more likely to match the
GO terms of gene patterns with the smallest 100 p-values,
rather than the bottom w absolute protein pattern values.
The optimal value for w was determined using a similar
method used for gene patterns as described earlier. (For
protein patterns, w was the number of proteins and not the
percentage of proteins.) For NCI data, the optimal value
for w was 10; see Figure 2(b). The cut-off for the gene pat-
terns (i.e. smallest 100) was a convenient number that
ensured we have sufficient GO terms for matching.

To test whether the gene and protein patterns were giving
coherent signals, we ranked the 100 most significant GO
terms in descending order of their p-values (i.e. the largest
p-value had the lowest rank, while the smallest p-value
had the highest rank). For each GO term of a protein, we
computed the average rank M of p-values from the GO
analysis for genes that matched with the protein's GO
term. A match between a GO term of a gene and a protein
was defined to occur when their GO terms, or the GO
terms of their parents, or the GO terms of their children
overlap. The Wilcoxon test was used to test whether the
median of M for the top 10 proteins was significantly dif-
ferent from the bottom 10.

Comparing CFA with Generalized Singular Value
Decomposition (gSVYD)

The Generalized Singular Value Decomposition (gSVD) is
another method of integrating two datasets. The gSVD
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Plots for determining the optimal value for w that classify genes and proteins into interesting or uninteresting
sets. (a) Correlation between the gene scores from SVD based on all pattern values and scores based on the top w¥% absolute
gene pattern values at various w values. The black vertical line corresponds to 5%. (b) Similar to (a) but for protein scores. The
black vertical line corresponds to 0.

simultaneously reduces X and Y to an s x s metagene-array A and B are the expression values of the j-th meta-array
space: across the genes and proteins respectively. Each of the
metagene-array pair may represent independent biologi-
cal processes. Similar to CFA, the significance of the i-th

xn = Apxp[DX ' Opx(n—s)]G;in . : .
pxs metagene and its corresponding meta-array for dataset j =

Y =Bgxg[Dy, .0 x(n-)|Grnens X, Y is quantified by
where s is the rank of [X', Y'|". A and B are orthogonal s
matrices. Dy and Dy are matrices with (i,j)-entries having p;=d ]21 / Zd ]2[, (4)
zero values when i # j, and (i, j)-entries having non-nega- t=1
tive values when i = j. Also, Dy'Dy + Dy'Dy = I, [17].  where dy; and dy; are the (i, i)-entries of Dy and Dy respec-
Although A and B are also the gene and protein patterns  tively, and they carry the expression information of the i-
for gSVD, they are not the same as their CFA counterparts.  th metagene and its corresponding meta-array in X and Y.
The gSVD has a matrix G in the expressions of X and Y,  P;is also called the generalized variance explained for the

and G may be viewed as a link between the two datasets;  j-th dataset [9].

the columns of G are called the generalized singular vec-

tors. Hence G potentially captures the correlation between  The relative significance of the i-th metagene was assessed
gene and protein expressions. To facilitate a direct com-  through the ratio of the expression information from the
parison of the matrices A and B between CFA and gSVD,  datasets [10]:

we did not use the iterative gSVD by Berger et al. [9] in this

paper. 0; = arctan(dy_ /dy)-n /4.
The i-th row of G'! contains the expression values of the i- ~ When the angular distance, 6, is 0, the i-th metagene may

th metagene across the n arrays, while the j-th column of  be equally significant in both datasets.

Page 6 of 13

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:272

However, when the angular distance is 7/4, the i-th meta-
gene may have no significance in Y relative to X. And
when the angular distance is -7/4, the i-th metagene may
have no significance in X relative to Y. Hence metagenes
with the smallest angles best captured the gene-protein
correlation. To identify the genes that may have parallel
contribution for X and Y in a metagene, we used the meta-
gene's corresponding meta-array expression values (i.e.
pattern-pairs), and declared genes with the top 5% abso-
lute gene pattern values as the main contributors to the
metagene.

We also made biological inferences on gSVD pattern-pairs
using the same approach described in the previous subsec-
tion 'Making biological inferences on the pattern-pairs of
CFA'. To compare how well CFA and gSVD extracted
coherent signals from the genes and proteins, we con-
structed a measure for determining the similarity between
the GO terms from genes and proteins. Using the top and
bottom 10 absolute protein pattern values respectively,
we obtained two lists of GO terms. Similarly, we gener-
ated two lists of GO terms from genes which had the same
number of GO terms as the proteins and had the lowest p-
values from the GO analysis. The GO terms of each list
were building blocks for each induced GO graph. Besides
the list of GO terms, each induced graph also consisted of
all the ancestors of the GO terms back to the root node.
Although each induced graph was built upon the same
number of GO terms, the number of nodes from the pro-
tein's induced GO graph was on average three times more
than the genes. One possible explanation was that the
protein data are far less comprehensive than the gene
data, so there was less overlap among the protein nodes.
Therefore, we used the proportion of nodes from the
gene's induced graph that overlapped the nodes from the
protein's induced graph as a measure of similarity
between the GO terms from genes and proteins.

The gSVD estimates were computed using the Lapack for-
tran package in R, but for the NCI data, we ran the gSVD
analysis on a supercomputer.

Results

Applying CFA to simulated data

Figure 3 shows the true pattern-pairs versus the pattern-
pairs from CFA obtained by SVD for n = 500, summarized
from 250 replications. (The signs of the pattern-pairs from
CFA were reversed when their correlation coefficients with
the true pattern-pairs were negative for both genes and
proteins.) Figure 3(a) and 3(b) are the gene and protein
patterns of the first pattern-pair respectively; Figure 3(c)
and 3(d) are the gene and protein patterns of the second
pattern-pair respectively. The results suggest that SVD pro-
duced consistent estimates of the gene and protein pat-
terns. In small samples (n = 59), however, we observed a
slight bias [see Additional file 1].
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Figure 3

Plots of true pattern-pairs versus estimated pattern-
pairs from CFA by using SVD. True pattern-pairs versus
estimated pattern-pairs from CFA by using SVD (250 simula-
tions with n = 500 samples). (a) and (b) are the gene and pro-
tein patterns of the first pattern-pair respectively, while (c)
and (d) are the gene and protein patterns of the second pat-
tern-pair respectively. The solid line is the line-of-identity,
the broken line is the interpolated 5th and 95th percentile of
the estimated patterns from 250 simulations, while the cir-
cles are their interpolated means.

Applying gSVD to simulated data

We investigated whether gSVD can estimate the true pat-
terns by considering gene and protein patterns which had
the highest absolute correlation with the corresponding
true patterns. The results for n = 500 given in Figure 4 indi-
cates that gSVD captured some correlation patterns in the
data, particularly the protein patterns. However, the esti-
mates were not consistent. Furthermore, among the gene
and protein patterns with the highest absolute correlation,
only 11% of them were of the same pattern-pair.

We investigated if the angular distance improved the
strength of the correlation between the pattern estimates
from gSVD and the true patterns. There was no evidence
of improvement [see Additional file 1].

Applying CFA to NCI data

We first determined the number of pattern-pairs through
the permutation approach. Figure 5 shows the singular
value and cumulative variance profile for the 1st to 12th
pattern-pairs. The first three consecutive singular values
from the data (solid lines with circles) were larger than the
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Plots of true pattern-pairs versus estimated pattern-
pairs from gSVD having the highest absolute correla-
tion with the true patterns. True pattern-pairs versus
estimated patterns from gSVD having the highest absolute
correlation with the true patterns (250 simulations with n =
500 samples). (a) and (b) are the gene and protein patterns of
the first pattern-pair respectively, while (c) and (d) are the
gene and protein patterns of the second pattern-pair respec-
tively. The solid line is the line-of-identity, the broken line is
the interpolated 5th and 95th percentile of the estimated
patterns from 250 simulations, while the circles are their
interpolated means.

maximum singular value from the permutations (dashed
lines), i.e. these singular values have p-values < 0.001. The
R2between the gene and protein patterns within each pat-
tern-pair were 0.81, 0.88, 0.75, respectively, substantially
larger than the median R? in Figure 1. From the cumula-
tive profile (dotted lines with squares), we observed that
the first three pattern-pairs explained 74.8% of the covari-
ation, and the curve started to plateau off to 100% for sub-
sequent pattern-pairs. Hence, the first three pattern-pairs
were adequate in capturing the structure of the cross-cov-
ariance matrix between genes and proteins.

After determining the number of pattern-pairs, we
selected the genes that were interesting within each pat-
tern-pair, by identifying the top 5% of absolute gene pat-
tern values within each pair. Among the chosen genes
from the first three pattern-pairs (1655 genes), about a
third of them (566 genes) were also selected in another
pattern-pair. This was reasonable as proteins and genes
could be involved in a few different pathways.
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Plots to determine the number of pattern-pairs of
the NCI data analysis using CFA. The observed singular
values from the NCI data (solid line with circles), maximum
singular values from 1000 permutations (broken line) and
cumulative covariance (dotted line with squares) profiles of
the |-th to |2-th pattern-pairs.

To gain biological insights into the sets of interesting
genes from each pattern-pair, we performed a GO analysis
on the biological processes. The g-value cut-off was set at
0.05 for evaluating over-representation of biological proc-
esses (i.e. enriched GO terms). The number of GO terms
and the corresponding number of enriched GO terms for
the genes were 1827 and 106 for the first gene patterns,
1681 and 127 for the second gene patterns, and 1999 and
141 for the third gene patterns. There were altogether 240
enriched GO terms and about a third of them (89 GO
terms) were also interesting in another pattern-pair.

Table 1 shows the top 10 most enriched GO terms from
the genes for each pattern-pair. The unique GO terms of
the first pattern-pair from CFA were blood vessel morpho-
genesis and development, which are processes associated
in the growth of primary solid tumors and the invasive
property of the tumor [18]. The unique GO terms of the
second pattern-pair from CFA were cell motility and local-
ization of cell, which are processes related to the malig-
nant potential of a tumor in prostate cancer [19]. The
unique GO terms of the third pattern-pair from CFA were
mainly melanin biosynthetic processes, which are associ-
ated with the risk of skin cancer [20].
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Table I: Enriched biological process GO terms from genes.
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GO ID GO Term Q-value(l) Q-value(2) Q-value(3)
GO:0048514 blood vessel morphogenesis 3:50e - 09

GO:0001568 blood vessel development 6:19¢ - 08

GO:0006928 cell motility 3:57e- 10

GO:0051674 localization of cell 3:57e- 10

GO:0009653 anatomical structure morphogenesis 4:08e - 06
GO:0006582 melanin metabolic process 6:6le - 04
GO:0006583 melanin biosynthetic process from tyrosine 6:6le - 04
GO:0042438 melanin biosynthetic process 6:6le - 04
GO:0030154 cell differentiation 9:97e - 04
GO:0048731 system development 9:62e - 12 4:87e - 14

GO:0007275 multicellular organismal development 1:03e- 11 1:00e - 12

GO:0048513 organ development 9:60e - 10 88le- Il

GO:0048856 anatomical structure development 3:12e- 13 I:14e - 17 1:79e - 05
GO:0032501 multicellular organismal process 3:12e-13 4:99¢ - 14 6:39¢ - 05
G0:0032502 developmental process 6:42e - 13 9:34e- 16 6:34e - 04
GO:0007155 cell adhesion 32le- 10 1:00e - 12 9:3le - 06
GO:0022610 biological adhesion 32le- 10 1:00e - 12 9:3le - 06

The top 10 most enriched biological process GO terms from genes for the first three pattern-pairs from CFA.

The top corresponding proteins are given in Table 2. A
number of proteins were unique for each pattern, and
CFA suggested that there was a strong association between
these proteins and the corresponding processes in Table 1.
Focusing on the first pattern-pair, its enriched GO terms,
blood vessel morphogenesis and development, had
descendants with annotations that overlap with
NP_001895.1, which is an adherens junction protein.
This protein regulates normal cell growth and behavior,
but when down-regulated it causes increased invasiveness

Table 2: The top 10 proteins from the NCI data analysis using CFA.

and metastatic potential of tumors, which is associated
with blood vessel morphogenesis and development. This
was consistent with the NCI data, which consisted of can-
cer cell lines. This suggests that CFA has the potential to
extract biologically meaningful pairs of genes and pro-
teins in the same pathway.

Next, we tested whether the pattern-pairs from CFA pro-
duce coherent signals. If they did, it would indicate that
CFA was able to extract true biological signals. Each GO

Ref Seq Name Rank(1) Rank(2) Rank(3)
NP_005547.3 keratin 7 4
NP_003370.2 ezrin 9
NP_061883.1 keratin 20 10
NP_057011.2 transforming growth factor beta | induced transcript | isoform 2 |
NP_001783.2 cadherin 2, type | preproprotein 3
NP_002378.1 mutated in colorectal cancers isoform 2 6
NP_001 144.1 annexin IV 7
NP_478104.2 cyclin-dependent kinase inhibitor 2A isoform 3 8
NP_005222.2 cortactin isoform a 9
NP_002435.1 moesin 2
NP_002728.1 protein kinase C, alpha 4
NP_000606.3 neural cell adhesion molecule | isoform | 5
NP_004351.1 cadherin |, type | preproprotein 6
NP_000691.1 annexin | 8
NP_954657.1 keratin 18 | 2
NP_001002858.1 annexin A2 isoform 3 4
NP_002267.2 keratin 19 2 |
NP_001895.1 catenin (cadherin-associated protein), beta |, 88 kDa 6 7
NP_002764.1 prostasin preproprotein 7 10
NP_002264.1 keratin 8 5 10 3
NP_997700.1 protein kinase C, beta isoform | 8 5 9
The 10 proteins with the largest absolute protein pattern values from the NCI data analysis using CFA.
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term of a protein from the top or bottom 10 absolute pro-
tein patterns was matched with the GO terms from the
genes with the lowest 100 p-values.

For each protein's GO term, we computed the average
rank M of p-values from the GO enrichment analysis for
genes that matched with the protein's GO term. Figure 6
shows that the protein GO terms associated with the top
10 proteins were more highly significant than those from
the bottom 10 proteins (p = 0.009 using the Wilcoxon
test), suggesting a concordance between the gene and pro-
tein patterns. In other words, the gene and protein pat-
tern-pairs from CFA were extracting similar biological
signals.

Applying gSVD to NCI data

We attempted to determine the interesting metagene-
array or pattern-pairs using the angular distance. From
Figure 7, we obtained the profile of the angular distance
(solid line), the generalized-variance explained corre-
sponding to the microarray (dashed line) and proteomic
data (dotted line). All 59 angular distances were positive
and ranged from 0.485 to 0.778. The generalized variance
explained for the microarray data was quite uniform
across metagene-array pairs, while the generalized vari-

100
I

80

60

Mean rank (M)

40

Figure 6

Boxplot of the average rank of p-values from the GO
analysis of the NCI data analysis using CFA. The box-
plot of the average rank M of p-values, which are from the
GO analysis on the biological process of genes, for protein
GO terms that are from the top 10 and bottom 10 absolute
protein patterns.
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ance explained for the proteomic data was high when the
angular distance was low. In view of the generalized vari-
ance explained, we further investigated the pattern-pairs
with the lowest three angular distances (0.485, 0.548 and
0.556).

Similar to the CFA, we chose genes from the top 5% abso-
lute gene pattern values. Among the 1952 selected genes
from the three pattern-pairs with low angular distances,
about 20% of them (393 genes) were also chosen in
another pattern-pair. Similar to the CFA, we performed a
GO analysis [see Additional file 1]. One of the unique GO
terms of the first pattern-pair was transmembrane recep-
tor protein tyrosine kinase signaling pathway, which is
upstream of the PI3K pathway; a pathway associated with
cancer [21]. Some of the unique GO terms of the first pat-
tern-pair were similar to the unique GO terms of the first
pattern-pair of CFA. The second pattern-pair did not con-
tain GO terms that are unique to itself. The unique GO
terms of the third pattern-pair were response to external
stimulus and descendants of anatomical structure devel-
opment.

We analyzed the concordance between the gene and pro-
tein patterns as detailed in the previous subsection. The
median of the average p-value rankings of the GO terms
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Figure 7

Ranked angular distance and generalized variance of
the NCI data analysis using gSVD. The ranked angular
distance profile (solid line) together with their generalized
variance explained by the metagene-array pairs for the
microarray (dashed line) and proteomic data (dotted line).
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(M) from the top 10 proteins was lower than the bottom
10 but insignificant (p = 0.130 using the Wilcoxon test).
Although there is insufficient evidence that gSVD gene
and protein pairs were internally incoherent, the genes
and proteins could be referring to different processes.

Comparing CFA and gSVD with NCI data

We tried to match CFA and gSVD results as much as pos-
sible by identifying pattern-pairs from gSVD that had the
highest absolute correlation with the first three pattern-
pairs from CFA. Interestingly, for the first pattern-pair
from CFA, the identified gene and protein patterns from
gSVD were not from the same pair: they were from the 7th
and 3rd pairs respectively. However, the gene and protein
patterns from gSVD having the second highest absolute
correlation were from the 3rd and 7th pairs respectively.
This suggests a mis-pairing. Only the 3rd pattern-pair
from gSVD was investigated here, as the 7th pattern-pair
had the smallest angular distance. For the second and
third pattern-pairs from CFA, the identified gene and pro-
tein patterns from gSVD with the highest absolute correla-
tion were from the same pairs.

Similar to the previous subsections, we chose genes from
the top 5% absolute gene pattern values. Among the 1877
genes from the three pattern-pairs, about a quarter of
them (454 genes) were also interesting in another pattern-
pair. Similar to the previous subsections, we performed a
GO analysis [see Additional file 1]. We also analyzed the
concordance between the gene and protein patterns. The
median of the average p-value rankings of the GO terms
(M) from the top 10 proteins was significantly different
from the bottom 10 proteins (p = 0.019). This indicates
that these gSVD gene and protein pairs were potentially
internally coherent when correlated with CFA.

Figure 8 plots the similarity measure of the GO terms from
genes, and GO terms from proteins with the top and bot-
tom 10 absolute protein patterns. The points are similarity
measures of the different pattern-pairs (square = first, dia-
mond = second, triangle = third) and different approaches
(solid line = CFA, dashed line = gSVD with the smallest
angular distances, dotted line = gSVD having the highest
correlation with the first three pattern-pairs from CFA).
Because the top 10 absolute protein patterns should
match the more highly significant GO terms from genes
than the bottom 10, most of the points should ideally be
above the line of identity. Only all the points from CFA
(connected by the bold line) were above the diagonal line,
indicating consistent concordance between the gene and
protein GO terms in all three pattern-pairs. However, the
gSVD approaches had pattern-pairs with a higher similar-
ity measure than CFA.
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Comparing the similarity measure of CFA and gSVD.
The proportion of nodes from the gene's induced graph
overlapping with the nodes from the protein's induced graph
(similarity measure) for the top and bottom 10 proteins of
CFA and gSVD. The diagonal line is where the values from
the x-axis and y-axis are equal. gS§VD(MinAD): gSVD with the
smallest angular distances, gSVD(MaxCor): gSVD having the
highest correlation with the first three pattern-pairs from
CFA.

Discussion

The CFA model was used to capture the complex associa-
tions between genes and proteins, taking into account
multiple biological pathways. We were able to obtain con-
sistent estimates of the pattern-pairs of CFA, as indicated
in the results of our simulation study. NCI data were made
up of cancer cell lines and our results showed that the
unique GO terms of each pattern-pair were indeed cancer
related.

Furthermore, there was biological coherence in the pat-
tern-pairs, i.e. the genes and proteins in a pair were point-
ing to the same biological processes (as defined by the
Gene Ontology).

On the other hand, our simulation study indicated that
gSVD did not capture the specified pattern-pairs.
Although the results from applying gSVD to NCI data sug-
gested that gSVD was able to capture biological signals,
there seemed to be no biological coherence in the pattern-
pairs of gSVD.
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Some of the GO terms from gSVD were different from
CFA, indicating differences between pattern-pairs of CFA
and gSVD. This is because gSVD is a generalization of
principal component analysis (e.g. maximizing the varia-
bility of linear combinations of expression values, or
looking for the direction with maximum variability),
while in contrast, CFA looks for linear combinations that
have maximal covariance. gSVD is connected to the gener-
alized eigenvalue problem and therefore, if Y is of rank n,
which is usually the case in most applications, then the
eigenvectors of X'X - AY'Y are the same as the eigenvectors
of X'X(Y'Y)L. This indicates that gSVD is not designed to
search for correlation between two sets of measurements.
From gSVD, we could get the following equation:

XGGY' = AD4DYB (5)

From (5), we see that gSVD does not decompose the cross-
covariance matrix of genes and proteins. This explains
why the pattern-pairs were different for the two methods.
gSVD is decomposing an expression similar to a cross-cov-
ariance matrix estimate of the modified gene and protein
expressions matrices (i.e. XG and YG). Therefore, gSVD
could capture some portion of the correlation between
genes and proteins. However, if capturing the correlation
between gene and protein expressions is the main pur-
pose, then CFA may be more effective as it is designed to
do so.

Both the simulation study and real data analyses showed
that CFA revealed the underlying correlation between
gene and protein expressions, while gSVD did not. None-
theless, relating CFA and gSVD by extending gSVD to
model the cross-covariation is a research area worth
exploring.

The SVD is commonly used to characterize variation in a
single phenotype, such as gene expression [22]. In this
paper, we extend the use of SVD to characterize correla-
tion between two phenotypes (i.e. gene and protein
expressions). Interestingly, the cross-covariance matrix
from the CFA model has the same structure as applying
the SVD to the cross-covariance matrix. Therefore, we can
adapt CFA immediately to empirical data via SVD, and
this provides another characterization of the SVD analysis.
To understand the correlation between genes and proteins
in terms of some underlying factors, we need measure-
ments from the same samples. If the SVD technique is
applied to genes and proteins from different samples, it is
addressing questions other than correlation.

Analysis of more than two datasets is an interesting exten-
sion. In principle we can expand CFA model in the same
spirit as the multiple factor analysis [23], but the compu-
tation using SVD is no longer obvious.

http://www.biomedcentral.com/1471-2105/10/272

Conclusion

For correlating transcriptomic and proteomic data, we
found that CFA was more appealing than the current inte-
grative approach. This is because it allowed proteins to
correlate throughout the genome, reflecting the biological
phenomenon of genes being connected in various path-
ways. Furthermore, CFA circumvented the step to match
genes and proteins, and exploited all information in the
analysis, so increasing the chances of uncovering biologi-
cally novel relationship between genes and proteins. We
compared CFA and gSVD using simulated and real data,
and showed that CFA captured the underlying correlation
between gene and protein expressions, while gSVD did
not.

Authors' contributions

All authors contributed to the approach of the analysis.
CST performed the analysis and drafted the manuscript.
AS, AP, JF and KSC revised the manuscript. YP supervised
the analysis, provided oversight and revised the manu-
script. All authors have read and approved the manu-
script.

Additional material

Additional file 1

Additional material to the paper

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-272-S1.pdf]

References

I. Niel, Wu G, Culley DE, Scholten JCM, Zhang W: Integrative anal-
ysis of transcriptomic and proteomic data: challenges, solu-
tions and applications. Crit Rev Biotechnol 2007, 27(2):63-75.

2. Waters KM, Pounds ]G, Thrall BD: Data merging for integrated
microarray and proteomic analysis. Brief Funct Genomic Pro-
teomic 2006, 5(4):261-272.

3. Cox B, Kislinger T, Emili A: Integrating gene and protein expres-
sion data: pattern analysis and profile mining. Methods 2005,
35(3):303-314.

4. Niel, Wu G, Brockman FJ, Zhang W: Integrated analysis of tran-
scriptomic and proteomic data of Desulfovibrio vulgaris:
zero-inflated Poisson regression models to predict abun-
dance of undetected proteins. Bioinformatics 2006,
22(13):1641-1647.

5.  Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman RB: Missing value estimation methods for
DNA microarrays. Bioinformatics 2001, 17(6):520-525.

6. Bo TH, Dysvik B, Jonassen I: LSimpute: accurate estimation of
missing values in microarray data with least squares meth-
ods. Nucleic Acids Res 2004, 32(3):e34.

7. Fagan A, Culhane AC, Higgins DG: A multivariate analysis
approach to the integration of proteomic and gene expres-
sion data. Proteomics 2007, 7(13):2162-2171.

8. Salim A, Pawitan Y: Model-based maximum covariance analysis
for irregularly observed climatological data. | Agric Biol Environ
Stat 2007, 12:1-24.

9. Berger JA, Hautaniemi S, Mitra SK, Astola J: Jointly analyzing gene
expression and copy number data in breast cancer using data

Page 12 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-10-272-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16675466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16675466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16675466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17549791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17549791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17549791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17048389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17048389

BMC Bioinformatics 2009, 10:272

20.
21.

22.

23.

reduction models. [EEE/ACM Trans Comput Biol Bioinform 2006,
3:2-16.

Alter O, Brown PO, Botstein D: Generalized singular value
decomposition for comparative analysis of genome-scale
expression data sets of two different organisms. Proc Natl Acad
Sci USA 2003, 100(6):3351-3356.

Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D,
Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D, Cossman J,
Kaldjian EP, Scudiero DA, Petricoin E, Liotta L, Lee JK, Weinstein JN:
Transcript and protein expression profiles of the NCI-60
cancer cell panel: an integromic microarray study. Mol Cancer
Ther 2007, 6(3):820-832.

Nishizuka S, Charboneau L, Young L, Major S, Reinhold WC,
Waltham M, Kouros-Mehr H, Bussey K], Lee JK, Espina V, Munson P,
Petricoin E, Liotta LA, Weinstein JN: Proteomic profiling of the
NCI-60 cancer cell lines using new high-density reverse-
phase lysate microarrays. Proc Natl Acad Sci USA 2003,
100(24):14229-14234.

von Storch H, Zwiers FW: Statistical Analysis in Climate Research Cam-
bridge University Press; Cambridge; 1999.

R Development Core Team: R: A Language and Environment for Statis-
tical Computing 2008 [http://www.r-project.org]. R Foundation for Sta-
tistical Computing

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry |M,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese |C, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet 2000,
25:25-29.

Storey J, Tibshirani R: Statistical significance for genome-wide
studies. PNAS 2003, 100:9440-5.

Paige C, Saunders M: Towards a Generalized Singular Value
Decomposition. SIAM | Numer Anal 1981, 18(3):398-405.
Cavallaro U, Christofori G: Molecular mechanisms of tumor
angiogenesis and tumor progression. | Neurooncol 2000, 50(1-
2):63-70.

Banyard |, Zetter BR: The role of cell motility in prostate can-
cer. Cancer Metastasis Rev 1998, 17(4):449-458.

Nouri K, Patel SS, Singh A: Etiology of skin cancer. In Skin Cancer
I'st edition. Edited by: Nouri K. McGraw-Hill; 2007:39-45.

Katso R, Okkenhaug K, Ahmadi K, White S, Timms ], Waterfield MD:
Cellular function of phosphoinositide 3-kinases: implications
for development, homeostasis, and cancer. Annu Rev Cell Dev
Biol 2001, 17:615-675.

Alter O, Brown PO, Botstein D: Singular value decomposition
for genome-wide expression data processing and modeling.
Proc Natl Acad Sci USA 2000, 97(18):10101-10106.

Escofier B, Pages J: Multiple Factor Analysis (AFMULT pack-
age). Comput Stat Data Anal 1994, 18:121-140.

http://www.biomedcentral.com/1471-2105/10/272

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17048389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17339364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17339364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17339364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623978
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11245282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11245282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10453290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10453290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11687500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963673
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Motivation
	Theoretical correlation model
	Empirical analysis of NCI data
	Summary contributions
	Data
	NCI data

	Simulated data

	Methods
	Notation
	Obtaining estimates of the pattern-pairs of CFA
	Making biological inferences on the pattern-pairs of CFA
	Comparing CFA with Generalized Singular Value Decomposition (gSVD)

	Results
	Applying CFA to simulated data
	Applying gSVD to simulated data
	Applying CFA to NCI data
	Applying gSVD to NCI data
	Comparing CFA and gSVD with NCI data

	Discussion
	Conclusion
	Authors' contributions
	Additional material
	References

