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Abstract
Background: The investigation of gene regulatory networks is an important issue in molecular
systems biology and significant progress has been made by combining different types of biological
data. The purpose of this study was to characterize the transcriptional program induced by
etanercept therapy in patients with rheumatoid arthritis (RA). Etanercept is known to reduce
disease symptoms and progression in RA, but the underlying molecular mechanisms have not been
fully elucidated.

Results: Using a DNA microarray dataset providing genome-wide expression profiles of 19 RA
patients within the first week of therapy we identified significant transcriptional changes in 83 genes.
Most of these genes are known to control the human body's immune response. A novel algorithm
called TILAR was then applied to construct a linear network model of the genes' regulatory
interactions. The inference method derives a model from the data based on the Least Angle
Regression while incorporating DNA-binding site information. As a result we obtained a scale-free
network that exhibits a self-regulating and highly parallel architecture, and reflects the pleiotropic
immunological role of the therapeutic target TNF-alpha. Moreover, we could show that our
integrative modeling strategy performs much better than algorithms using gene expression data
alone.

Conclusion: We present TILAR, a method to deduce gene regulatory interactions from gene
expression data by integrating information on transcription factor binding sites. The inferred
network uncovers gene regulatory effects in response to etanercept and thus provides useful
hypotheses about the drug's mechanisms of action.

Background
The molecular interactions within a biological system give
rise to the function and behavior of that system. In sys-
tems biology, one aims to formulate the complex interac-

tions of biological processes by mathematical models. A
major focus of the field is the uncovering of the dynamic
and intertwined nature of gene regulation.
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Gene expression is mainly regulated at the level of mRNA
transcription by proteins called transcription factors
(TFs), that specifically bind the DNA at the regulatory
region of their target genes. A number of collections of
experimentally defined TF binding sites (TFBS) have been
assembled. The most commonly used is the Transfac data-
base, which catalogs eukaryotic TFs and their known
binding sites [1]. The expression level of a gene usually
depends on the occupancy states of multiple TFBS. How-
ever, gene regulation is much more complex and includes
different layers of post-transcriptional control. The
entirety of gene regulatory processes constitutes a network
of genes, regulators, and the regulatory connections
between them – namely a gene regulatory network
(GRN). In the past, various modeling approaches have
been proposed to (partially) reconstruct GRNs from
experimental data on the basis of different mathematical
concepts and learning strategies, and distinct degrees of
abstraction [2-4]. A graph is always the basic modeling
scheme for a GRN, with nodes symbolizing regulatory ele-
ments (e.g. genes and proteins) and edges representing
(activatory and inhibitory) relationships between them.
Common mathematical formalisms of such a graph are
Boolean networks, Bayesian networks, association net-
works and systems of equations. Boolean networks
assume that genes are simply on or off, and apply Boolean
logic to model dynamic regulatory effects. In contrast,
Bayesian networks model gene expression by random var-
iables and quantify interactions by conditional probabili-
ties. Interactions in association networks are typically
undirected and derived by analyzing pairs of genes for co-
expression e.g. using mutual information as a similarity
measure. Systems of equations describe each gene's
expression level as a function of the levels of its putative
predictors. For specific types of functions they could draw
on well developed statistical techniques to efficiently fit
their model parameters. However, GRN inference is
always a challenging task because of incomplete knowl-
edge of the molecules involved, the combinatorial nature
of the problem and the fact, that often available data are
limited and inaccurate. Microarray gene expression data
are typically used to derive rather phenomenological GRN
models of how the expression level of a gene is influenced
by the expression level of other genes, i.e. the model also
includes indirect regulatory mechanisms. Obviously, the
incorporation of other types of data in addition to gene
expression data (e.g. gene functional annotations,
genome sequence data, protein-protein and protein-DNA
interaction data) as well as the integration of prior biolog-
ical knowledge (e.g. from scientific literature) supports
the inference process. Moreover, it is necessary to utilize
biological plausible assumptions considering the network
topology (e.g. structural sparseness). The integration of
diverse types of biological information and modeling
constraints allows for more accurate GRN models and is a

current challenge in network reconstruction. Bayesian net-
works and systems of linear equations have been most
studied for such combined analyses [3-5].

Organizing biological data in network models may help
understanding complex diseases such as human autoim-
mune diseases [6]. Many studies implicate hundreds of
genes in the pathogenesis of autoimmune diseases, but we
still lack a comprehensive conception of how autoimmu-
nity arises. Understanding structure and dynamics of
molecular networks is critical to unravel such complex
diseases. Network analyses may not only support the
investigation of autoimmune diseases but also the optimi-
zation of their treatment. Here, we focus on rheumatoid
arthritis (RA), which is a multifactorial polygenic disease
and might be termed a systems biology disease. RA is a
chronic inflammatory disorder primarily afflicting the
synovial joints, and autoimmunity plays a pivotal role in
its chronicity and progression. The disease is characterized
by autoreactive behavior of immune cells and the induc-
tion of enzymes which lead to the destruction of cartilage
and bone [7]. The inflammatory processes are triggered by
cytokines and other immune system-related genes that
form a complex network of intra- and intercellular molec-
ular interactions. A number of cytokine proteins play a
critical role as mediators of immune regulation. In RA, the
two cytokines TNF-alpha and IL-1 are considered master
regulators that act in a complementary and synergistic
manner [8,9]. By blocking TNF-alpha, etanercept inter-
venes this molecular network and thus is thought to re-
balance the immune system's dysregulation [10-12].
Etanercept therapy in RA patients has been proven to slow
disease progression, but the precise molecular mecha-
nisms remained unclear. To investigate the therapeutic
effects on transcriptional regulation, GRN inference tech-
niques can be applied. This could lead to a better under-
standing of the modes of action of etanercept as well as
the pathogenesis underlying RA. We may also understand
why the drug fails to control the disease in about 30% of
the patients (non-responders).

We studied a group of 19 patients suffering from RA for
which DNA microarrays were used to obtain genome-
wide transcriptional profiles within the first week of
etanercept administration [13]. A set of etanercept respon-
sive genes was attained. The majority of these genes are
known to control the body's immune response. Several
TFBS were identified as overrepresented in the genes' reg-
ulatory regions and we used the corresponding informa-
tion on TF-gene interactions as a template for modeling
the underlying GRN. A system of linear equations was
chosen to mathematically describe the regulatory effects
between the genes and TFs (i.e. the network nodes). We
used a hybrid of the Least Angle Regression (LARS) and
the Ordinary Least Squares regression (OLS) to find the
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model structure and estimate the coefficients. In doing so,
the modeling is constrained to include only a subset of the
putative TF-gene interactions. That way, our approach
considers that genes usually regulate other genes indi-
rectly through the activity of one or more TFs, which
makes the model straightforward to interpret in terms of
true molecular interactions. The resulting GRN was fur-
ther analyzed using e.g. gene ontology (GO) and clinical
information (figure 1). We found that our integrative
modeling strategy, namely the TFBS-integrating LARS
(TILAR), is able to reconstruct GRNs more reliably than
other established methods. This is one of the first studies
that utilizes network analysis to investigate transcriptional
regulation in response to a therapeutic drug in humans
[14].

Results and discussion
Effects of etanercept therapy on gene expression
We used the Affymetrix microarray dataset from Koczan et
al. [13] which provided expression levels of peripheral
blood mononuclear cells (PBMC) measured in 19
patients suffering from RA. For each patient, blood sam-
ples were taken before treatment (baseline) as well as 72
(day 3) and 144 hours (day 6) after start of immuno-
therapy by etanercept. Clinical response was assessed over
3 months and revealed 7 patients with persistent disease
activity (non-responders).

We analyzed the DNA microarray data in respect to com-
mon gene expression changes observed in the whole
group of patients after therapy onset. First of all, we pre-
processed the data to correct for systematic effects. More
importantly, signal intensities were calculated by applying
a custom chip definition file by Ferrari et al. that is com-
posed of custom-probesets including only probes match-
ing a single gene [15]. As such, a one-to-one
correspondence between genes and custom-probesets is

preserved, which deeply improves gene-centered analysis
of human Affymetrix data [16]. Finally, the data pre-
processing yields expression levels of 11,174 different
genes for each of the 55 microarrays in the dataset (for
details see the methods section).

Afterwards, we identified a set of genes significantly up- or
down-regulated in response to etanercept. It is important
to note that the filtering of genes is a crucial step in GRN
inference as there is a tight relationship between model
complexity (i.e. network size and level of detail of the
model), the amount of data required for inference and the
quality of the results. On the one hand, a small and
detailed network model might better fit the given data,
but only a sufficiently large model can capture the funda-
mental properties that constitute a GRN including scale-
freeness, redundancy and self-regulation. In this study, we
utilized a t-statistic in conjunction with an MA-plot-based
signal intensity-dependent fold-change criterion (referred
to as MAID filtering) to select genes with expression
changes in the first week of therapy (see methods).
Through this filtering we identified 37 genes as differen-
tially expressed at day 3 versus baseline, and 57 genes at
day 6. Altogether, 48 genes were found down-regulated
and 35 genes up-regulated, comprising a set of 83 genes in
total (additional files 1 and 2).

We searched for overrepresented terms of the GO biolog-
ical process ontology in the list of 83 selected genes and
found that most of the genes are known to control the
body's immune response (additional file 3, see methods).
Remarkably, genes of the I-kappaB kinase/NF-kappaB cas-
cade (GO:0007249) are enriched in the gene set and rep-
resented by 5 genes (NFKBIA, TNFRSF1A, TLR8, NOD2,
HMOX1). NF-kappaB is a key factor in the transcription of
many inflammatory genes and has been implicated in the
pathological processes of RA. The NF-kappaB cascade is

Workflow used to study gene regulatory effects in response to etanercept therapyFigure 1
Workflow used to study gene regulatory effects in response to etanercept therapy. A network model of transcrip-
tional regulation is inferred by integrating transcription factor binding site information.
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mainly activated by the proinflammatory cytokines IL-1
and TNF-alpha. As was shown, TNF-blocking agents such
as etanercept prevent TNF-alpha from binding to its recep-
tors, induction of signal transduction cascades and activa-
tion of TFs including NF-kappaB [10]. Here, we found
NFKBIA, that inactivates NF-kappaB by trapping it in the
cytoplasm, up-regulated early after therapy initiation. On
the other hand, genes known to activate the NF-kappaB
protein, e.g. NOD2 and TNFRSF1A (a TNF receptor), were
down-regulated after therapy onset. Thus, the result of our
filtering indicates the expected suppression of NF-kappaB
activity by etanercept. In addition, we found evidence for
a modulation of B cell mediated immunity. The corre-
sponding GO category (GO:0019724) comprises the
genes C1QB, CLU and TLR8 whose mean expression was
significantly lower at day 3 and 6 compared to baseline,
respectively. Interestingly, TLR8 signaling is linked to the
control of CD4+ regulatory T (Treg) cells. Treg cells
actively suppress host immune responses and, as a conse-
quence, play an important role in preventing autoimmu-
nity [17]. TLR8 is thought to initiate immune processes by
reversing the suppressive function of Treg cells [18]. Its
down-regulation by etanercept might be an important fac-
tor to control the disease.

Genes responsive to etanercept administration are proba-
bly under control of certain TFs, whose activities are
(maybe indirectly) affected by this drug. Therefore, we
analyzed the regulatory regions around the respective
transcription start sites (TSS) of these genes for occurrence
of overrepresented TFBS (see methods). Identifying TFBS,
particularly in higher eukaryotic genomes, is an enormous
challenge and cross-species sequence conservation is
often used as an effective filter to improve the predictions.
We found evolutionarily conserved binding sites enriched
for 12 TFs (represented by 19 Transfac binding profiles).

These 12 TFs connect 52 out of the 83 genes through 96
TF-gene interactions, whereas each TF is linked to at least
4 genes (table 1). The list of TFs includes C/EBP-beta,
which is an important transcriptional activator in the reg-
ulation of genes involved in immune and inflammatory
responses, including the cytokines IL-6, IL-8 and TNF-
alpha [19]. Binding sites for the TATA binding protein
(TBP) were detected in 14 genes. TBP binds DNA at the
TATA-element, and as a subunit of the TFIID complex
coordinates the initiation of transcription by RNA
polymerase. Although TBP is always involved, its TATA-
binding activity is dispensable for the positioning of the
RNA polymerase. In fact, approximately 76% of human
core promoters lack TATA-like elements [20]. However, in
the set of 83 genes, those genes having the TATA box were
overrepresented. The two TFs ZIC1 and ZIC3 were consid-
ered as one TF entity, as they have highly similar DNA
binding properties. None of the 12 TFs showed significant
transcriptional changes in the data. Nevertheless, the
information on predicted TF-gene interactions can be
used as a GRN template during inference. Before describ-
ing how this is done by TILAR we will outline the general
principles of the modeling approach.

Linear network modeling
We chose a system of equations to model the regulatory
interactions among the genes affected by etanercept ther-
apy. The concept of modeling gene regulation by a system
of equations is to approximate gene expression levels as a
function of the expression of other genes and environ-
mental factors. Modeling GRNs by systems of equations
has several benefits as they can describe regulatory effects
in a flexible, quantitative, directed manner, and take into
account that gene regulators act in combination. With sys-
tems of equations one can easily model positive and neg-
ative feedback loops, and describe even non-linear and

Table 1: Evolutionarily conserved binding sites were found to be enriched for 12 TFs. 

TF Name Transfac ID Official Full Name P-value Expected Count Count

TBP, TFIID V$TBP_01, V$TATA_C, V$TATA_01 TATA box binding protein 0.0042 6.41 14
C/EBPbeta V$CEBPB_01, V$CEBPB_02 CCAAT/enhancer binding protein beta 0.0112 5.03 11
Zic1, Zic3 V$ZIC1_01, V$ZIC3_01 Zic family member 1/3 0.0183 6.13 12
AP-2rep V$AP2REP_01 Kruppel-like factor 12 0.0264 1.68 5
HNF-1, HNF-1A V$HNF1_01, V$HNF1_C HNF1 homeobox A 0.0274 2.30 6
Lmo2 V$LMO2COM_01, V$LMO2COM_02 LIM domain only 2 0.0352 5.98 11
SRY V$SRY_02 sex determining region Y 0.0374 1.85 5
ATF-2 V$CREBP1_01 activating transcription factor 2 0.0408 1.30 4
Cart-1 V$CART1_01 ALX homeobox 1 0.0415 1.30 4
COMP1 V$COMP1_01 cooperates with myogenic proteins 1 0.0422 3.23 7
Hlf V$HLF_01 hepatic leukemia factor 0.0470 1.97 5
NF-1, NF-1/L V$MYOGNF1_01, V$NF1_Q6 nuclear factor I 0.0492 7.10 12

 = 96

The column "Count" denotes the number of genes that possess a TFBS for the respective TF. All in all, 96 TF-gene interactions were predicted 
(GRN template).
Page 4 of 18
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:262 http://www.biomedcentral.com/1471-2105/10/262
dynamic phenomena of biological systems. However, as
more complex models require higher amounts of accurate
data to learn their parameters reliably, researchers often
utilize systems of linear equations (linear models). Linear
models have been successfully employed in many appli-
cations, e.g. to reconstruct GRNs relevant for development
of the central nervous system in rats [21], osteoblast dif-
ferentiation in mice [22,23], galactose regulation in yeast
[24] and immune response of human blood cells to bac-
terial infection [25]. Linear models assume that gene reg-
ulatory effects are limited to be linear and additive and a
simple one can be written as:

where vector xi contains the M expression levels measured
for gene i, N is the number of genes in the network, and
the weights wij define relationships between the genes.
When inferring a linear model we need to estimate the
weights wij (i.e. the model parameters) from the data. The
weights specify the existence of regulatory relationships
between genes, their nature (activation or inhibition) and
relative strength. If wij > 0 gene xj activates gene xi, if wij < 0
xj inhibits xi, and wij = 0 implies that xi is not under control
of xj. This simplicity makes linear models easy to interpret,
even if the encoded relationships have a wide range of
meanings: edges in the network might represent direct
physical interactions (e.g. when a gene encodes a TF regu-
lating another gene) or rather conceptual interactions
(e.g. when the expression levels of two genes merely cor-
relate).

Linear models can also be used to describe the dynamics
of the network. In this case, the model is a system of linear
difference equations that approximates the change of gene
expression in time. However, this approach is inappropri-
ate for our application as the time-series in the microarray
dataset consist of only 3 time-points and the time
between two subsequent measurements is rather long (3
days). Nevertheless, the modeling strategy illustrated here
can be easily adapted for the inference of dynamic mod-
els.

To fit the (static) linear model to the data, equation (1)
can be written in matrix form as follows:

These N systems can be coupled as:

Now, a GRN model can be inferred by estimating  (com-
prising all the model parameters in w) from input matrix
X (having M' = MN rows and N' = (N-1)N columns) and
output vector y using OLS regression.

However, despite the fact that linear models are a strong
simplification of the true GRN, equation (3) is already an
underdetermined system of linear equations in our partic-
ular study as the number of genes in the network (N = 83)
is greater than the number of measurements (M = 55).
That means, infinitely many solutions exist. Therefore,
biologically motivated constraints have to be included to
tackle this problem. The most commonly used modeling
constraint is the sparseness of GRNs. Sparseness reflects
the fact that genes are regulated only by a limited number
of regulators. The sparseness constraint minimizes the
number of edges, i.e. reduces the effective number of
model parameters. Sparse linear models can be recon-
structed via the Lasso (Least absolute shrinkage and selec-
tion operator) method [26], which effectively performs
simultaneous parameter estimation and variable selec-
tion. The Lasso is a version of OLS that constrains the sum
of the absolute regression coefficients :

The Lasso penalizes model complexity by shrinking the
coefficients j (and hence wij) toward 0, more so for small
values of s. A modification of the LARS algorithm imple-
ments the Lasso [27]. LARS builds up estimates for  in
successive steps, each step adding one covariate to the
model, so that gradually model parameters are set non-
zero. In simple terms, LARS is a less greedy version of tra-
ditional forward selection methods. LARS and its variants
are computationally efficient. The algorithm requires only
the same order of magnitude of computational effort as
OLS to calculate the full set of Lasso estimates (i.e. for all
s  0).

The Lasso approach was first introduced to infer regula-
tory interactions by van Someren et al. [28] and has since
been applied in several GRN studies [22,29]. However,
even if the network connectivity is constrained, there is a
limitation in inferring GRNs using gene expression data
only. Hence, there is a need to incorporate different types
of information during network reconstruction. Various
data and information from biomedical literature and
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databases can be utilized in combination with gene
expression levels to increase model accuracy.

An integrative learning strategy usually consists of two
steps. First, a template of the network is built, e.g. based
on known TF-DNA interactions or molecular interactions
automatically extracted from the literature by text mining.
This template represents a supposition of the true network
structure, that might be uncertain and incomplete. Sec-
ond, an inference algorithm is applied that fits the model
to the measured data while taking the template into
account, trading off data-fit and template-fit. When infer-
ring linear models, such template information can be
included by adapting the Lasso method. This is possible
by introducing additional weights  on the coefficients 
of the constraint in equation (4):

A relatively low weight j provokes that the edge corre-
sponding to j is preferred to be in the final model. Hence,
the modeler is able to incorporate partial prior knowledge
by setting the weights appropriately. Recently, this con-
cept was applied to integrate human microarray data with
regulatory relationships obtained by literature mining by
defining each j as a constant [23] and as weight function
of j [13], respectively.

TILAR – a TFBS-integrating linear modeling approach
Here, we propose TILAR – a TFBS-integrating inference
technique that differs from the adaptive Lasso approach,
and employs TF binding information as prior knowledge.
As we will show, it is even possible to combine the adap-
tive Lasso and TILAR. According to our modeling scheme,
we distinguish two types of network nodes: genes (that
were selected for inferring regulatory relationships
between them) and TFs (for which respective binding sites
are overrepresented in the gene set). Expression levels of
the gene set (that possibly includes genes encoding TFs)
are required for the modeling. The algorithm then aims to
assign (directed) TF-gene and gene-TF interactions (net-
work edges). A TF-gene interaction represents a physical
interaction, i.e. a TF binds the region that encompasses
the TSS of a certain gene and thus regulates its transcrip-
tion. In contrast, gene-TF interactions can have different
meanings: the gene itself might encode a transcriptional
regulator of the TF, or the gene product controls the activ-
ity of the TF at the proteomic level, or the gene triggers sig-
naling cascades that affect the TF, etc. Using both types of
interactions, the model reflects that genes regulate other
genes indirectly through a combination of TFs (figure 2).
As a reminder, the TFBS overrepresentation analysis

revealed 96 putative TF-gene interactions. Now, the idea is
to use this information as a GRN template by constraining
the modeling to include only a subset of these TF-gene
interactions. As the inference method not necessarily uses
all the given TF-gene interactions, we consider the fact that
they are computationally predicted and therefore not all
of them might refer to biologically functional binding
sites. In practice, the algorithm starts with the entire set of
TF-gene interactions and then iteratively removes avoida-
ble interactions through a backward stepwise selection
procedure (see methods). The information on (the cur-
rent set of included) TF-gene interactions is written in
matrix B, which is defined as:

ˆ arg min 


= − ⋅
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪=

′

=

′

∑∑ y xi ij j

j

M

i

N

1

2

1

 subject  to  j j

j

M

s≤
=

′

∑
1

.

(5)

Illustration of our proposed modeling conceptionFigure 2
Illustration of our proposed modeling conception. 
Here, we aim to reconstruct a gene regulatory network con-
sisting of 4 genes (dark blue) and 2 transcription factors (light 
gray). For simplicity, we assume that only one gene expres-
sion measurement was performed. The expression level of 
each gene is given in the gene nodes. (A) The GRN template: 
In this example, two genes possess at least one TF binding 
site in their regulatory region as indicated by 3 TF-gene inter-
actions (purple). (B) In that case, there are 5 possible gene-
TF interactions (i.e. model parameters ) in the network 
(dashed, orange). If available, we might consider prior knowl-
edge on gene-TF interactions during inference (adaptive 
TILAR). (C) A possible inference result including 3 gene-TF 
interactions (solid, orange). Here, the model perfectly fits the 
data (e.g. "8" = 2.0·"4") with two nominal model parameters 
set to zero. (D) We can use the inferred model to derive 
gene-gene relationships from the edges between genes and 
TFs (gray). The benchmarking was conducted on such gene-
gene interactions.
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In our particular study, 96 entries in B were set to 1 in the
first iteration. TILAR then assigns the parameters in the
model to gene-TF interactions, as follows:

where F is the number of TFs. For modeling the transcrip-
tional regulation in response to etanercept we have N = 83
genes, that showed significantly changed expression levels
after therapy onset, and F = 12 TFs, whose binding sites
are overrepresented in the regulatory regions of the
selected genes. In the model, each gene can exhibit a reg-
ulatory effect on each TF, except those TFs that hold a TF-
gene interaction to this gene (this restriction is dispensa-
ble when inferring a dynamic model). If wkj = 0, there is no
gene-TF interaction between gene j and TF k. Otherwise,
gene j controls the activity of TF k and thus regulates all
the genes that possess a TFBS for TF k. In this case, the
expression levels of gene j explain the expression of the
genes regulated by TF k. Again, to infer the GRN model, we
need to estimate the model parameters wkj from the gene
expression data while constraining the model to be sparse.
Similar to equation (3), we can couple the subsystems, as
follows:

where Nr is the number of genes possessing at least one
overrepresented TFBS, and #B is the number of TF-gene
interactions considered at the current iteration. The coef-
ficients  of this equation now correspond to gene-TF
interactions in the model. Finally, a sparse solution to
equation (8) can be found using the Lasso according to
equation (4).

The TILAR modeling approach proposed here is advanta-
geous for several reasons. First, TF expression levels are
not required, since the activity of TFs is modeled implic-
itly (like a hidden node). This is beneficial, as mRNA lev-
els of TFs are often low and do not necessarily correlate
with TF activity. In fact, TF proteins often need to be acti-
vated by phosphorylation. Second, the nominal number
of model parameters w in equation (7) is generally lower
than in equation (1). Therefore, our method tackles the
problem of having too many parameters in comparison to
limited amounts of experimental data. In our particular
application, equation (8) is an overdetermined system of
linear equations (as M·Nr = 55·52 = 2860 >F·N-#B =

12·83-#B = 996-#B, #B  96), i.e. we are able to infer a
complex network of 83 genes (and 12 TFs) without being
in conflict with the data requirements. Third, by using TF
binding predictions as prior knowledge we can recon-
struct GRNs more reliably. Besides, the inferred models
are relatively easy to interpret. Finally, the integration of
TFBS information is accomplished by simply specifying
the regression equation (i.e. input matrix X and output
vector y) adequately. Therefore, we can combine the
TILAR approach with the adaptive LARS, i.e. solve equa-
tion (8) according to equation (5) if prior knowledge on
gene-TF interactions is available (adaptive TILAR).

Modeling the gene regulatory response to etanercept
To examine the early transcriptional effects of etanercept
we applied the TILAR algorithm to construct a GRN model
on the basis of gene expression data and knowledge on
TF-gene interactions obtained by TFBS analysis. For this
purpose, the GRN inference problem was formulated
according to equation (8). The essential part of our mod-
eling approach is the LARS algorithm that is used to
obtain all possible Lasso solutions for this linear regres-
sion equation.

TILAR iteratively applies LARS in a backward stepwise
selection procedure in order to refuse TF-gene interactions
that do not fit the data well (see methods). Hence, the
learning strategy takes into account that the prediction of
TFBS might be error-prone. In this study, 12 out of 96 pre-
dicted TF-gene interactions were discarded. These 12
interactions may result from false positive TFBS predic-
tions, or the magnitude of the TF-gene interactions was
not enough for being confirmed based on the gene expres-
sion levels.

After we identified the subset of 84 TF-gene interactions,
we used LARS to define which gene-TF interactions have
to be included at different degrees of network connectiv-
ity. That means we used LARS only for variable selection,
but the actual coefficients were estimated by OLS (see
methods). This LARS/OLS hybrid technique usually
achieves sparser estimates and more accurate predictions,
and thus outperforms the ordinary Lasso [27,30]. Finally,
we selected the most parsimonious estimate with low 10-
fold cross-validation error (additional file 4). In this way,
the method avoids overfitting to the data and conse-
quently yields a sparse GRN model. The final model con-
sists of 22 inferred gene-TF interactions and 84 TF-gene
interactions, and was visualized using Cytoscape 2.6.0
(figure 3, additional file 5).

Model interpretation
Systems biological models need to be interpretable in
order to be useful. In general, the modeling goals of accu-
rate prediction and interpretation are contradictory since
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interpretable models should be simple, but more accurate
models might be quite complex. The model reconstructed
here seems to satisfy both requirements. On the one hand,
the network model is fairly complex as it consists of 95
nodes and 106 edges while using 22 model parameters wij
(specifying the strength of the gene-TF interactions). Yet
the model is readily interpretable due to the intuitive lin-
ear modeling scheme.

Apparently, the inferred model is sparse, i.e. each network
node is under control of only few regulators. The maxi-
mum in-degree in the GRN is 5 (on average 1.12). Never-
theless, some nodes (named hubs) are highly connected
in the network, e.g. TBP which has an out-degree of 12. A
further characteristic and biologically meaningful prop-
erty of the network is its scale-free structure. Scale-freeness
denotes the phenomenon that the degree distribution in
biological networks often follows a power law, i.e. the
fraction P(k) of nodes in the network having k connec-
tions goes as P(k)~k-, where  is a constant. This means

that in scale-free networks most of the nodes are lowly
connected, while a few are relatively highly connected.
Scale-freeness indicates a network's decentralization and
structural stability, and in consequence its robustness
against random fluctuations [31]. The scale-free design of
GRNs is well studied in literature [32,33], and the GRN
reconstructed here is scale-free with  = 2.22 (as calculated
according to Clauset et al. [34], see figure 4).

A closer look at the interactions in the network revealed
gene sets co-regulated by a common TF. For example, 6
TF-gene interactions were assigned to the transcriptional
activator HNF-1 in the GRN template (table 1). Two of
them were not considered in the final model as they were
eliminated during backward stepwise selection. However,
the 4 remaining genes that are predicted to be under con-
trol of HNF-1 (AQP9, TCN2, CREB5, C4orf18) are all
down-regulated in the patients during first week of ther-
apy (figure 5A). AQP9 is assumed to have some role in
immunological response [35]. Hence, we can hypothesize

Reconstructed gene regulatory network of genes up- or down-regulated during first week of therapyFigure 3
Reconstructed gene regulatory network of genes up- or down-regulated during first week of therapy. The 
TILAR algorithm used gene expression data and transcription factor binding predictions to infer a network of 84 TF-gene and 
22 gene-TF interactions. The size of the nodes corresponds to their degree of connectivity. Three parts of the network model 
are shown in detail in figure 5. The full model is available as a Cytoscape session file of (additional file 5).
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that the activity of HNF-1 is lowered under etanercept
therapy, which has (barely explored) effects on specific
immune processes.

We also found that the network model highlights TFs that
regulate functionally related genes (as annotated by GO).
For instance, the model reveals TF-gene interactions of the
transcription initiation factor TBP and the genes NFKBIA,
POU2AF1, CXCR4 and CLU (figure 5B). These 4 genes not
only share the TATA binding site in their regulatory
region, but also belong to the same functional category
(immune system process, GO:0002376). Nevertheless,
they play different roles in inflammatory control. NFKBIA
inhibits the activity of the NF-kappaB complex, which
controls many genes involved in inflammation and is
chronically active in RA [10]. Interestingly, the data show
significantly elevated expression levels of NFKBIA in
response to etanercept. POU2AF1 is a B cell-specific tran-
scriptional co-activator that is known to stimulate immu-
noglobulin promoter activity [36], and CXCR4 is a
chemokine (C-X-C motif) receptor that guides lym-
phocyte migration [37]. These findings suggest that the
therapy by etanercept modulates the maladjusted
immune system at multiple levels.

Other important features of a GRN are feedback and
redundancy mechanisms. Regulatory feedback loops can
be positive (i.e. reinforcing) or negative (i.e. self-balanc-
ing). Redundant links in the GRN allow genes to maintain

their connection to other genes even if some genes are
malfunctioning. Redundancy and self-control provide
flexibility and adaptability to environmental changes, i.e.
robustness against noise and failures [31]. An exemplary
(positive) feedback loop in the inferred GRN model is the
regulatory chain "CREB5  C/EBP-beta  ASGR2 
HNF-1  CREB5". Notably, C/EBP-beta encodes a TF that
is important in the regulation of immune genes and has
been shown to bind the regulatory regions of several
cytokine and acute-phase genes. In RA, elevated levels of
acute-phase proteins have been associated with progres-
sive joint damage [38]. The feedback loop is finally
formed by the two gene nodes CREB5 (which encodes a
TF as well) and ASGR2. Both genes were down-regulated
after therapy onset. Therefore, we assume that etanercept
lowers the activity of C/EBP-beta while affecting a regula-
tory feedback mechanism.

The GRN model also contains a (positive) feedforward
loop composed of the two ways "NOD2  HNF-1" and
"NOD2  Lmo2  STAB1  HNF-1". NOD2 is a regula-
tor of NF-kappaB activity [39] and was found down-regu-
lated on days 3 and 6. The model predicts a gene-TF
interaction between NOD2 and HNF-1, while we pre-
sume a decreased activity for HNF-1 as described previ-
ously. Alternatively, NOD2 is linked to LMO2, which has
a crucial role in hematopoietic development and is con-
nected to STAB1 according to the model. In turn, STAB1,
a receptor which is supposed to function in angiogenesis
and lymphocyte homing [40], has a gene-TF interaction to
HNF-1, thereby closing the feedforward loop. Ultimately,
this demonstrates the cooperative action of genes in the
network.

As mentioned before, out of the 19 RA patients in the ana-
lyzed dataset 7 did not respond clinically to etanercept.
Considering the potential side effects and the high costs of
the therapy, the identification of patients who will most
likely respond would contribute to a more optimized
treatment of RA. To identify predictors (biomarkers) of
the therapeutic outcome one might seek for differences in
the gene expression of responder and non-responder
patients before or early in therapy. The work by Koczan et
al. is focused on this particular issue [13]. Here, we also
compared the transcriptional levels of both patient groups
using a two-sample t-test. At day 3, four network genes
were found to be differentially expressed at the signifi-
cance level  = 0.05 (additional file 1). Three of these
genes (NFKBIA, KLHL11, CLSTN3) were expressed lower
in the responder group and are regulated by a common TF
node (NF-1) in the GRN model (figure 5C). NF-1 (nuclear
factor I) constitutes a family of DNA-binding proteins
with similar binding specificity, that participate in both
cell type-specific transcription and replication [41]. Our
model suggests that NF-1 regulates genes that are possibly

Node degree distribution in log-log scaleFigure 4
Node degree distribution in log-log scale. The network 
is scale-free, while transcription factors are more connected 
than genes. The orthogonal linear regression line is shown in 
blue.
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relevant for the individual success of etanercept therapy,
while the prognostic value of NFKBIA mRNA levels is
already under discussion [13]. However, even if this
hypothesis still has to be verified, the analysis clearly dem-
onstrates the use of correlating clinical features with
molecular network structures [6,42].

The GRN model provides many testable hypotheses and
thus may be a starting point for new experiments. Those
could aim to study the expression changes of specific
genes in more detail, or to analyze their regulatory effects
thereby validating parts of the inferred network. Take for
instance the previously mentioned subnetwork of NF-1
and its target genes (figure 5C). The model suggests that
members of the NF-1 family bind the promoters of 10
etanercept-responsive genes. This might be tested by elec-
trophoretic mobility shift assays or chromatin immuno-
precipitation techniques. One could also investigate the
genes' transcriptional changes during therapy in a larger
cohort of RA patients by generating expression profiles
using real-time polymerase chain reaction. This would be
particularly useful for the three genes that were found sig-
nificantly lower expressed in the responder group. As a
next step, levels of the respective proteins and protein iso-
forms could be quantified using western plots and
enzyme-linked immunosorbent assays. For example, it

would be interesting to measure the amount of HNF-1
proteins as we postulate a lowered activity of this TF as a
molecular therapeutic effect. In the model all target genes
of HNF-1 are down-regulated in response to etanercept
administration (figure 5A). Similarly, other parts of the
network are worth to study, e.g. the inferred regulatory
feedback loop including C/EBP-beta and CREB5. Tran-
script and protein levels of in vitro cultures of PBMC cells
may also be analyzed in a time-dependent manner. This
allows for controlled perturbation experiments such as
siRNA mediated knock-down of NF-1 expression with or
without the presence of etanercept. Last but not least, one
could examine the cell type-specific expression of genes in
the network. Recent studies point out a functional impair-
ment of Treg cells in RA [17]. It would be attractive to fur-
ther elucidate the altered immunosuppressive capacity of
Treg cells, their role in the treatment of RA and the modu-
lation of Treg cells by Toll-like receptors such as TLR8 that
was down-regulated in the dataset.

Performance evaluation
To demonstrate the benefit of the TILAR modeling
approach, we tried to evaluate how reliable the structure
of the underlying GRN can be inferred. The assessment of
the GRN inference performance is a challenging task, as
evidently, true regulatory interactions are barely known

Detail views of the network model shown in figure 3Figure 5
Detail views of the network model shown in figure 3. (A) The modeling strategy takes into account that target genes of 
a transcription factor are often co-expressed. For example, all the genes that are regulated by HNF-1 are down-regulated after 
therapy onset. Outer parts are shown with lower opacity. (B) A set of genes associated with the GO category "immune sys-
tem process" is predicted to contain TATA-like elements in their regulatory regions. (C) Three genes were expressed lower in 
responders at day 3 and all of them are regulated by NF-1 according to the model.
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and curated datasets for benchmarking are missing,
though there are attempts to remedy this shortcoming
[43,44]. A further difficulty is that the knowledge used to
validate a GRN model must be different from the knowl-
edge integrated during modeling.

Here, we utilized gene-gene interaction information
obtained by text mining for performance evaluation (see
methods). By assessing the inference quality on literature-
derived (undirected) gene-gene links, we were also able to
compare our method with other inference techniques
which do not incorporate prior knowledge. It is important
to note that regulatory gene-gene interactions are implic-
itly defined in our network model by gene-TF and TF-gene
interactions, as genes are constrained to regulate other
genes via one or more TFs (figure 2D). For the inferred
network 158 gene-gene interactions can be deduced from
the 22 gene-TF and 84 TF-gene edges. However, literature
mining reports only 5 gene-gene relationships between
the 83 genes in the network, which is not nearly enough
for validation purposes. Since the biological role of many
selected genes remains to be investigated, we assume that
the lack of text mining information is mainly due to the
literature bias, by which genes that have been intensively
studied for many years (e.g. TNF-alpha) are cited more
often than less prominent genes.

To overcome this issue, we sought for genes well described
in the literature. For them we could expect many known
gene regulatory interactions, so that a systematic evalua-
tion of the performance of network reconstructions
becomes feasible. We finally chose genes that are most fre-
quently co-mentioned in the context of RA in PubMed. A
respective list of genes was obtained from the Autoim-
mune Disease Database (version 1.2 as of August 19,
2008), which is a literature-based database that provides
gene-disease associations of all known or suspected
autoimmune diseases [45]. Out of the top 50 genes catal-
oged for the disease term "rheumatoid arthritis", 42 genes
were measured in the Affymetrix dataset (additional file
6). We will denote the network of these 42 genes as the
benchmarking GRN in the following.

Genes in the benchmarking network include several
matrix-metallo-proteinases and a vast number of
cytokines, in particular interleukins and the therapeutic
target TNF-alpha. Overall, 389 gene-gene interactions
between these genes could be retrieved through text min-
ing. These interactions constitute a text mining network in
which all but two genes are connected. The genes with the
most connections are IL-6 (37), TNF-alpha (37) and IL-1
(33). We analyzed the regulatory regions of all the 42
genes and found overrepresented DNA-binding sites of 10
TFs (additional file 7). Amongst others, TFBS of NF-kap-
paB and AP-1 are significantly enriched, which is not sur-

prising as both TF complexes play central roles in immune
regulation and are proven to be involved in the pathogen-
esis of RA [10,46]. In the resulting GRN template these 10
TFs are linked to 31 genes by means of 67 TF-gene interac-
tions. When constructing a linear model of the bench-
marking GRN using our novel inference algorithm TILAR,
13 TF-gene interactions were discarded during the back-
ward stepwise selection procedure, i.e. 54 TF-gene interac-
tions remained in the model. LARS then provided model
predictions for different degrees of network connectivity
(in successive LARS steps representing the dependency on
parameter s).

Next, we tested whether the inferred edges between genes
exist or not in the text mining network containing 389
gene-gene interactions. For this purpose, we calculated the
measures recall, precision and false positive rate (FPR) for
different network connectivities. A plot of the precision
versus the recall performance of a method (in case of LARS
as a function of s) and the ROC (receiver operating char-
acteristic) curve, where recall is plotted against FPR, are
two widely used visualizations for performance evalua-
tion [43,44]. The ROC analysis allows comparison of the
inference quality against a random prediction by calculat-
ing the area under the curve (AUC), while an AUC(ROC)
close to 0.5 corresponds to a random forecast.

We utilized both recall-precision and ROC curves to assess
and compare the performance of our algorithm and four
different popular GRN inference methods: the conven-
tional Lasso approach, CLR [47], ARACNE [48], and
GeneNet [49] (see methods). While CLR and ARACNE use
mutual information, GeneNet computes a partial correla-
tion network. The resulting performance curves show that
the proposed TILAR algorithm outperforms the other
modeling algorithms (figure 6, additional file 8). When
using AUC(ROC) as a single metric for benchmarking, the
applied methods score as follows: Lasso – 0.478, ARACNE
– 0.500, GeneNet – 0.503 and CLR – 0.504, whereas
TILAR achieves an AUC(ROC) of 0.581. Next, we checked
whether the algorithms performed significantly better
than a random GRN prediction (RAND, see methods). We
found, that the predictions of our approach were signifi-
cantly better than RAND at the level  = 0.05 (P-value =
1.674e-05), while this was not the case for CLR, ARACNE,
GeneNet and Lasso. Interestingly, gene-TF-RAND,
another random algorithm that predicts gene regulatory
interactions by including all 67 putative TF-gene interac-
tions (i.e. the prior knowledge) into the model without
considering the gene expression data (see methods), also
yields a relatively high AUC(ROC) of 0.549 (P-value =
0.006). This suggests that TILAR performs well because of
both the quality of TFBS predictions and data-fitting using
LARS (figure 7).
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Nevertheless, the AUC(ROC) of the TILAR method is still
rather low. In our opinion this is not a general weakness
of the modeling, but due to the fact that the information
we used for model validation was obtained by text min-
ing. This information is therefore incomplete and error-
prone. A drawback is that the text mining network was
constructed by searching through all biological literature
and not only RA specific literature. Besides, text mining is
obviously inappropriate to assess so far unknown regula-
tory interactions. In fact, the GRN model now provides
new hypotheses that may be tested experimentally. How-
ever, there are several other factors that impede an accu-
rate GRN reconstruction or an adequate performance

evaluation. First, regulatory networks can exhibit large
dynamic topological changes [50]. Thus, among the inter-
actions in our network we might only identify the most
robust ones or those that are most relevant in the specific
study, implying that some other could be missed, even if
they have been biologically demonstrated. Second, the
contribution of different cell types is lost in the study.
Third, the text mining network contains undirected gene-
gene interactions. In contrast, the proposed modeling
approach assigns directed interactions between genes and
TFs, i.e. gene-gene interactions are only implicitly defined
in the model. Fourth, the network model might be too
simple to reliably infer more complex interactions. Here,

ROC curves for the benchmarking gene regulatory networkFigure 6
ROC curves for the benchmarking gene regulatory network. The better a method performs, the closer its curve will 
be to the upper-left corner. The black curve represents the rating of our method when including 54 of 67 predicted TF-gene 
interactions. Remarkably, TILAR not only outperforms CLR, ARACNE, GeneNet and the conventional Lasso, but can also be 
combined with the adaptive LARS if adequate prior knowledge on gene-TF interactions is available. Using both techniques in 
combination we could infer gene-gene relationships more reliably.
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we assumed that gene regulatory effects are linear and
additive, and precluded auto-regulation, i.e. a gene is not
allowed to control a TF for which it possesses a TFBS. The
latter because the data were not well suited for inferring a
dynamic model. Moreover, the inference algorithm is
based on co-expression at the transcriptional level, even if
the amount of mRNA may not correspond to the level and
(regulatory) activity of the proteins. However, more data
would be required to infer more accurate models.

Adaptive TILAR – combined use of two techniques
Until now, we have shown that the proposed modeling
approach, which utilizes gene expression data as well as
TFBS predictions, performs fairly well in the reconstruc-
tion of GRNs. However, the method is not only an alter-
native to the adaptive LARS, but can also be used in
combination with it (adaptive TILAR). The adaptive LARS
[30] specified in equation (5) penalizes the coefficients 
of equation (8) with weights , dependent on whether the
coefficient receives prior knowledge. In this way, we are
able to integrate prior knowledge on gene-TF interactions
as well. The lower we set the weights j for the coefficients

j that represent putative gene-TF interactions, the more
these interactions are a priori preferred to be in the model.
The weights  thus allow to trade off data-fit and confi-
dence in prior knowledge. However, accurate knowledge
on gene-TF edges is difficult to obtain due to their variable
meanings. For instance, intermediary molecules may
account for such relationships. Here, we again applied text
mining to retrieve potential gene-TF links (see methods).
This way, we found 71 gene-TF relationships for the
benchmarking GRN (e.g. the well-known activation of
NF-kappaB by IL-1). We then evaluated the adaptive
TILAR algorithm with three different weights for the pre-
ferred coefficients. As a result, the inference quality
increased considerably (figure 6 and 7). When setting j =
0.4 for the 71 preferred coefficients we obtained an
AUC(ROC) of 0.615 (P-value = 1.768e-09), for j = 0.1 a
value of 0.639 (P-value = 4.839e-13), and for a very low j
= 0.05 a value of 0.675 (P-value<2.2e-16). An even lower
j did not improve the result much. Thus, we can use infor-
mation on TF-gene and gene-TF interactions to infer a
GRN model, that predicts regulatory interactions between
genes more reliably. Nevertheless, the true use of the com-

Performance gain using integrative modelingFigure 7
Performance gain using integrative modeling. The expected AUC(ROC) of a random prediction is normally distributed 
around 0.5 as calculated by 1,000 repeated runs of RAND. The gene-TF-RAND algorithm considers the GRN template infor-
mation, but assigns gene-TF interactions randomly. In contrast, the TILAR algorithm utilizes gene expression data to infer gene-
TF interactions, while only a subset of the predicted TF-gene interactions is included into the final model. This significantly 
increases the inference quality. However, the method could be further improved by considering text mining information on 
which genes possibly regulate TF activity (adaptive TILAR). The combined inference method allows to strike a balance between 
data-fit and confidence in such putative gene-TF interactions by means of the parameters in .
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bination of adaptive and TFBS-integrating LARS requires
more investigation. For instance, the determination of the
weights  is not straightforward, as we might set different
weights for each gene-TF interaction and even relatively
high weights (i.e. j>1.0) if certain gene-TF relationships
can be excluded a priori. However, this is beyond the scope
of this paper.

Conclusion
We developed TILAR – a method for deriving transcrip-
tional regulatory networks from gene expression data by
integrating TF binding predictions. The algorithm is also
able to incorporate prior knowledge on the putative regu-
lators of TF activity (adaptive TILAR). Our linear, additive
modeling approach distinguishes genes and TFs in the
network, and identifies the connections between them
based on the fast LARS regression algorithm and specific
constraints on the network structure. The major advantage
of this modeling strategy is that only few model parame-
ters are sufficient for a complex network, which is still easy
to interpret. When applied on short-term gene expression
profiles of RA patients treated with etanercept, the
method uncovers molecular immunotherapeutic effects
and thus provides testable hypotheses about the drugs'
mechanisms of action. A closer look on the model
revealed genes co-regulated by a common TF and TFs that
regulate functionally related genes. Moreover, the recon-
structed GRN exhibits a scale-free, self-regulating and
massively parallel architecture.

We evaluated the inference quality using a text mining
network and found that our modeling method outper-
forms all other algorithms tested. Notably, TILAR allows
for a higher prediction accuracy than using just gene
expression data or TF binding information alone. More
efforts are needed to study different configurations of
TILAR, e.g. we could analyze a larger DNA region for over-
represented TFBS, and to assess the benefit of combining
this method with the adaptive LARS. Besides, further
experiments need to be performed to verify specific inter-
actions that were predicted by the model. However, even
if significant theoretical and experimental challenges
remain, we could demonstrate that organizing heteroge-
neous data and prior biological knowledge in systems
biological models can strongly support the investigation
of autoimmune diseases and their therapies. Supplemen-
tary materials including R codes are available at http://
www.hki-jena.de/index.php/0/2/490.

Methods
DNA microarray data pre-processing
We used the human DNA microarray dataset from Koczan
et al. [13] including expression profiles of 19 etanercept-
treated RA patients. Blood samples were taken for each
patient before treatment as well as 72 and 144 hours after

first application of etanercept. Transcriptional levels of
PBMC were then measured using Affymetrix Human
Genome U133A arrays. As for 2 patients the third time-
point is missing, the dataset consists of 55 microarray
experiments. In the applied Affymetrix microarrays most
probesets include probes matching transcripts from more
than one gene and probes which do not match any tran-
scribed sequence. Therefore, we utilized a custom chip
definition file (CDF), that is based on the information
contained in the GeneAnnot database [15,51]. GeneAn-
not-based CDFs are composed of probesets including
only probes matching a single gene and thus allow for a
more reliable determination of expression levels. We used
version 1.4.0 of the custom CDF and the MAS5.0 algo-
rithm to pre-process the raw probe intensities. Data nor-
malization was performed by a loess fit to the whole data
with span = 0.05 (using R package affy). Finally, the data
processing yields mRNA abundances of 11,174 different
genes.

Filtering differentially expressed genes
The filtering aims to identify a subset of genes significantly
up- or down-regulated within the first week of therapy. A
widely used filter criterion is the (logarithmized) fold-
change from baseline. However, a fixed fold-change
threshold ignores the inherent structure of DNA microar-
ray data. Therefore, we applied an MA-plot-based signal
intensity-dependent fold-change criterion (MAID filter-
ing) to select genes. The MAID filtering takes into account
that the variability in the log fold-changes increases as the
measured signal intensity decreases [52]. First, the filter-
ing procedure calculates for each gene the values A and M,
which are commonly used for visualizing microarray data
in an MA-plot. A is the log signal intensity of a gene aver-
aged over all patients, while M is the mean intensity log-
ratio between the baseline levels and the expression levels
at day 3 and 6, respectively. Then, the intensity-dependent
variability in the data is estimated by computing the inter-
quartile range (IQR) of the M values in a sliding window.
Afterwards, an exponential function f(x) = a·e-bx+c is fitted
to the IQR's by a non-linear robust regression, which in
turn is used to calculate so-called MAID-scores by dividing
each M value by f(A). As a consequence, the absolute
value of a gene's MAID-score is higher, the more its
expression level is altered after start of therapy. Further-
more, we assessed which genes are differentially expressed
according to a paired t-test comparing the expression lev-
els at day 3 and 6 versus baseline, respectively. Finally, we
selected the genes having |MAID-score|>2.5 and t-test P-
value < 0.05.

GO analysis
Overrepresented GO terms were found using GOstats, a
Bioconductor package written in R. Each GO term is tested
whether it is significantly associated to the list of filtered
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genes out of the 11,174 measured genes. The analysis was
performed for gene functional annotations of the biolog-
ical process GO category.

Identification of TF-gene interactions (GRN template)
TFBS were derived from the UCSC database build hg18
[53]. The database provides a TFBS conserved (tfbsCons-
Sites) track, that contains the location and score of TFBS
conserved in the human/mouse/rat alignment. The data
are purely computational and were generated using posi-
tion weight matrices (PWMs) for TFBS contained in the
public Transfac Matrix and Factor databases created by
Biobase. For the whole human genome 3,837,187 TFBS
predictions associated to 258 different PWMs (184
unique TF identifiers) can be found in the tfbsConsSites
track. We defined the regulatory region of each gene as the
1,000 bp up- and downstream of the TSS (as stated in
GeneCards database 2.38). This specification is in agree-
ment with current findings by the ENCODE pilot project
which revealed that regulatory sequences are symmetri-
cally distributed around the TSS with no bias towards
upstream regions [54]. Then, we scanned the regulatory
regions of the selected genes for overrepresented TFBS. In
doing so, each TF is tested whether its binding site occurs
in this region for more genes than would be expected by
chance. To take into account the inherent redundancy of
the Transfac database, a TF is supposed to regulate a gene
(TF-gene interaction) if any PWM for this TF matches the
DNA sequence at the gene's regulatory region. Using a
hypergeometric test analyzing the TF binding predictions
for all the 11,174 genes measured, we can identify a subset
of TFs associated to the genes in the network at the signif-
icance level  = 0.05. This leads to a list of predicted TF-
gene interactions that can serve as a template for GRN
modeling.

TFBS-integrating GRN inference (TILAR algorithm)
First, the expression levels of each gene were standardized
so that they have variance 1 and mean 0. Given these data,
we then defined a regression equation according to equa-
tion (8), while considering the full set of putative TF-gene
interactions. Afterwards, we calculated all LARS estimates
(steps) for this equation using the R package lars with
default settings. Each LARS estimate specifies a subset of
covariates, i.e. states which gene-TF interactions are
present in the model and which are not (in the latter case
the corresponding model parameter is set to zero). To
select a single estimate, we chose the model that mini-
mizes Mallows' Cp statistic [55], thereby preventing over-
fitting and ensuring sparseness. The whole procedure was
then repeated in a backward stepwise selection scheme in
which TF-gene interactions were iteratively eliminated (or
reinserted) if this allowed for a model that exhibits a
smaller residual sum of squares (RSS). In this way, a sub-
set of TF-gene interactions was found. For the regression

equation including this subset all possible Lasso estimates
(see equation (4)) are provided by LARS. We then calcu-
lated for each LARS step the OLS fit using only the respec-
tive covariates (LARS/OLS hybrid [27]). Hence, we used
LARS for variable selection, but not to estimate the model
coefficients. Moreover, we evaluated the 10-fold cross-val-
idation error (CVerror) for each LARS/OLS solution and
finally selected the most parsimonious model within 1
standard deviation from the CVerror minimum (additional
file 4). It should be noted that we used the Cp statistic as
a crude selection criterion during the backward stepwise
selection procedure, because the Cp is much faster to com-
pute than the CVerror.

To integrate prior knowledge on gene-TF interactions (as
we did for the benchmarking GRN) we strictly followed
the above learning strategy, except that we employed the
adaptive variant of the LARS algorithm according to Zou
[30]. The adaptive LARS assigns weights to each coeffi-
cient as written in equation (5). We penalized coefficients
j for which we have no prior knowledge with a neutral
weight j = 1.0. If literature mining suggested a gene-TF
interaction we penalized the corresponding coefficient
with a smaller j (0.4, 0.1 and 0.05, respectively) to
improve variable selection.

The learning strategy of the (adaptive) TILAR is summa-
rized as follows:

1. Define D as the given (standardized) gene expres-
sion data

2. Define P as the given set of putative TF-gene interac-
tions (GRN template)

3. Use D to specify regression equation L subject to P
according to equation (8)

4. Solve L using (adaptive) LARS and calculate
RSS(Cpmin), i.e. the RSS of the LARS estimate that min-
imizes Cp

5. Optional: Perform a backward stepwise selection on
P, i.e. iteratively and exhaustively remove or reinsert
elements in P and repeat 3. and 4., and stop when a
local minimum for RSS(Cpmin) is found

6. Recompute the regression coefficients to L in terms
of a LARS/OLS hybrid and return the most parsimoni-
ous estimate within 1 standard deviation of the 10-
fold CVerror minimum

Performance evaluation
We used gene-gene interaction information for bench-
marking. The software PathwayArchitect 2.0.1 was
Page 15 of 18
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employed to automatically extract such gene-gene links
from the literature. We retrieved only gene-gene interac-
tions of context type "expression" and "regulation" as
labeled by PathwayArchitect. To obtain putative gene-TF
links (which were used for the adaptive TILAR) we also
considered interactions of type "protein modification".
The gene-gene information was applied to assess the infer-
ence quality of our and a total of four other easy-to-apply
GRN inference methods, namely CLR, ARACNE,
GeneNet, and the conventional Lasso, while we did not
take into account the directions of the relationships. CLR,
ARACNE and GeneNet are thought to build (undirected)
gene association networks and have been implemented by
use of the R packages minet and GeneNet. To compute the
entire set of Lasso solutions to equation (3) we used the
LARS modification (R package lars). All methods were run
on standardized gene expression levels with default set-
tings. Moreover, a random inference algorithm called
RAND was implemented, which randomly assigns con-
nections between genes until a fully connected network is
formed. The RAND method was further adapted to infer
networks of TF-gene and gene-TF interactions similar to
the proposed modeling scheme (gene-TF-RAND). More
specifically, gene-TF-RAND utilizes all the TF-gene inter-
actions predicted by the TFBS overrepresentation analysis
and randomly adds gene-TF edges to the network. As for
TILAR, gene-TF interactions were not allowed when gene
and TF were already connected by a TF-gene interaction,
and gene-gene links result implicitly. The AUC(ROC)
value of gene-TF-RAND was obtained by the mean of
1,000 repeated runs. Apart from that, we tested whether
any inference technique performed significantly better
than a random prediction. For this purpose, we calculated
P-values which specify the probability that an AUC(ROC)
value computed by RAND will be higher than the
AUC(ROC) value of the particular inference algorithm.
The P-values are calculated by 1 minus the cumulative
probabilities, which are evaluated at the AUC(ROC) value
of the respective method, of the normal distribution hav-
ing the mean and standard deviation of 1,000 RAND-cal-
culated AUC(ROC) values.
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Additional material

Additional file 1
List of 83 genes with significant expression changes during first week of 
therapy. The table provides diverse types of information for each gene, e.g. 
Entrez ID, official full name and the calculated MAID-scores.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S1.xls]

Additional file 2
Filtering of genes regulated in response to etanercept therapy. (A) Super-
imposed MA-plot visualizing the applied gene filtering method. Here, gene 
expression levels measured 3 days after therapy onset are compared with 
baseline levels. The MAID filtering takes into account that the variability 
in the mean log-fold changes (M) depends on the mean log signal inten-
sity (A). 37 genes showed an up- or down-regulation at day 3 (green). 
(B) In a similar manner, 57 genes were found higher or lower expressed 
at day 6 in comparison to baseline. In this way, 83 different genes were 
selected in total. (C) Mean time-courses of these 83 genes. 25 genes were 
found up- or down-regulated at day 3 (left), 45 at day 6 (middle) and 13 
at day 3 and 6 (right).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S2.png]

Additional file 3
Overrepresented terms of the GO biological process ontology. P-values 
were computed for each GO term based on the hypergeometric distribu-
tion. Only functional categories with P-value < 0.01 and where at least 3 
out of 83 genes are associated ("Count") are shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S3.xls]

Additional file 4
Model selection using cross-validation. Training error (scaled by 10) and 
10-fold CVerror (RSS mean of 10 subsets) are shown for the LARS/OLS 
solutions of the first 300 LARS steps. The blue area represents the stand-
ard deviation of CVerror. The red line shows the LARS step selected for the 
final model, i.e. the most parsimonious model within 1 standard deviation 
from the CVerror curve minimum, for which 22 model parameters are non-
zero.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S4.png]
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Additional file 5
Zip-archived Cytoscape session file of the reconstructed GRN. The net-
work model contains predicted regulatory interactions of genes responsive 
to etanercept therapy in RA. A simplified visualization of the network is 
shown in figure 3, while detail views are shown in figure 5.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S5.zip]

Additional file 6
List of the 50 most frequently mentioned genes in the context of RA. 42 
of these genes were measured in the dataset and used to evaluate the per-
formance of our modeling approach.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S6.xls]

Additional file 7
Overrepresented binding sites for the benchmarking gene regulatory net-
work. 10 transcription factors represented by 20 Transfac binding profiles 
were found to be enriched, providing 67 predicted TF-gene interactions in 
total.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S7.xls]

Additional file 8
Recall-precision curves for the benchmarking GRN. We evaluated the per-
formance of different modeling strategies based on gene-gene relationships 
found by text mining. The black curve represents the rating of our method 
when including 54 of 67 predicted TF-gene interactions. The TILAR 
approach outperforms CLR, ARACNE, GeneNet and the conventional 
Lasso. When used in combination with the adaptive LARS we could fur-
ther increase the inference quality.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-262-S8.png]
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