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Abstract

Background: Reverse engineering of gene regulatory networks presents one of the big challenges
in systems biology. Gene regulatory networks are usually inferred from a set of single-gene over-
expressions and/or knockout experiments. Functional relationships between genes are retrieved
either from the steady state gene expressions or from respective time series.

Results: We present a novel algorithm for gene network reconstruction on the basis of steady-
state gene-chip data from over-expression experiments. The algorithm is based on a straight
forward solution of a linear gene-dynamics equation, where experimental data is fed in as a first
predictor for the solution. We compare the algorithm's performance with the NIR algorithm, both
on the well known E. coli experimental data and on in-silico experiments.

Conclusion: We show superiority of the proposed algorithm in the number of correctly
reconstructed links and discuss computational time and robustness. The proposed algorithm is not
limited by combinatorial explosion problems and can be used in principle for large networks.

Background

Prediction of functional relationships between genes,
starting from actual gene expression data, is one of the pri-
mary goals of systems biology. Despite large efforts in this
direction [1,2], either based on transcription factor - pro-
moter interaction [3,4], or on inferring gene networks [5-
9], methods for reliable predictions of collective behavior
of gene-activity are yet to be found. Some general facts
about the topology of gene regulatory networks [10-12],
statistics of gene expressions [13] or the dynamics of gene
regulation [5] are becoming to be understood. This
knowledge is far from sufficient to successfully reconstruct
gene networks, but can be helpful in limiting the tremen-
dous number of parameters involved in reconstruction.
Even if the average degree of the gene regulatory network,

i.e. the number of genes regulated by some gene on aver-
age, was known, noisy and limited data will always lead
to severe problems. The degree k; of a node i in a network
is defined as the number of links that emerge from -or
point to- that node. The average degree is denoted by (k).

There are basically two types of reverse engineering
approaches depending on the experimental setup, infer-
ring the gene network from steady-state [8,9] or from
time-series [14,15] experiments. By using steady-state
experiments, one can not draw any conclusion about the
dynamics of gene regulation. Conducting time-series
experiments gives helpful insights into gene regulatory
dynamics, but often with the price of getting redundant
information. Further, due to costs full time-series data on
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gene expression are in general not available. As described
in [1], one can further divide the reverse engineering
methods into four categories: differential equation mod-
els [5,6], boolean network models [7], Bayesian network
models [8] and association networks [16]. The reverse
engineering methods based on differential equations fur-
ther may rely on linear [9] or nonlinear differential equa-
tions [17]. The latter models may possess potential in
alleviating the effects of insufficient information funda-
mental in reverse engineering of genetic networks by
obtaining information from combinatorial perturbations
measurements on the system. In linear systems such infor-
mation would be redundant.

How can gene regulatory network reconstruction methods
be validated and compared? Neither a standardized bio-
logical benchmark, nor a consensus on what class of mod-
els to use for in-silico testing exists [1]. The usual way is to
validate a method either by applying it on a given experi-
mental dataset or on in-silico datasets. In both cases one
has to deal with different problems. Applying a method to
an experimental dataset, poses the problem of comparing
the reconstruction result with a network which is always
just a consensus on how a biological network could look
like, but never the exact gene regulatory network. On the
other hand, when applying a reconstruction models to in-
silico data, one has a perfect reference network, however
the generated timeseries data is a result of a dynamical
model of gene interaction, which cannot be shown to
overlap with the real gene regulation dynamics.

In this paper we introduce a novel reverse engineering
algorithm and validate it against biological and in silico
data. The performance of the algorithm is compared
against Network identification by multiple Regression (NIR)
[9] for several reasons. i) NIR is considered a state of the
art algorithm which plays a role comparable to a bench-
mark. To our best knowledge NIR has not been outper-
formed by other algorithms with respect to predicting the
topology of genetic networks (real and in-silico) correctly
-on average- so far. However, NIR has two drawbacks. a)
The computation time increases quickly with the network
size. b) NIR can not identify hubs in networks. We will
briefly discuss this in a little more detail further below.
Recently a reconstruction algorithms has been proposed
by [18] which is clearly faster than NIR. Yet, its predictions
do not better or completely equal the ones made by NIR.
Another algorithm has been proposed recently [8], which
correctly identifies the recA-hub in the E. coli SOS
response network and reports a higher statistical signifi-
cance of the reconstructed SOS network. Yet, the algo-
rithm is restricted to a-cyclic networks. Both cases lack a
comprehensive comparison with NIR and do not chal-
lenge its role as benchmark. ii) We decided to selected an
E. coli dataset [9] for biological validation of our algo-
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rithm. This choice is satisfactory since the underlying SOS
response network has been subject to over 30 years of
research, which provides us with a well established con-
sensus about the actual gene regulations going on in that
particular sub-network. Moreover NIR has been applied to
the same SOS response network of E. coli which makes it
possible to compare the two algorithms. iii) Both, the pro-
posed algorithm and NIR, build on the assumption that
the dynamics of RNA concentrations defined by the
underlying network is governed by a linear differential
equation. For generating in silico data we therefore are
using a linear gene regulation model proposed by the
authors [19]. The only nonlinearity in the model is intro-
duced by the condition that RNA concentrations can not
become negative. This model simultaneously captures a
series of experimental facts, such as the distribution of
genome wide gene-expression levels, multi-stability and
periodicity. The proposed reconstruction algorithm does
not rely on the detailed knowledge of the data generation
model. The generated in silico data therefore is realistic
and allows for an unbiased comparison of the proposed
algorithm with NIR.

Although the proposed algorithm and NIR start from
identical assumptions on RNA concentration dynamics
and equally have to deal with insufficient information the
reconstruction approaches are in fact quite different. The
inference idea of the NIR algorithm is to reconstruct the
network by using a least-squares multiple regression
approach assuming the same fixed number of regulatory
links for every gene, i.e. the average degree (k) of the net-
work. Basically this means that promising ensembles of
links are put to the test and the ensemble which gives the
least squared error with the input data on basis of the
underlying linear model is selected as the optimal solu-

N
tion which is calculated for all the ( N ) possible combi-

(k
nations, where N is the size of the network. This
combinatorial factor is responsible for a polynomial time
characteristics of NIR, i.e. roughly T oc N{k), which limits its
applicability to relatively small networks with low average
degree. Gene-networks are expected to have average
degrees of about 4. For average degree (k) = 4 this implies
that computation time of NIR grows quickly with at least
a factor N*. Moreover, since NIR only considers networks
where all nodes have identical degree there is no way NIR
could detect hubs in networks. Clearly NIR will perform
best on networks with sharply peaked degree distributions
and perform bad on networks with broad degree distribu-
tions. The proposed algorithm however relies on the
observation that for very sparse networks with no loops
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the information provided by experiments (perturbations
and associated RNA concentrations) is sufficient to infer
the network. The proposed approach tries to extrapolate
the sparse network predictions to non sparse networks
guided by the exact solutions of the linear differential
equations. In contrast to NIR the number of regulatory
links per gene are not fixed a priory which intuitively is
much more realistic. While large networks of even thou-
sands of genes do not actually pose a problem for the pro-
posed algorithm in terms of computing time there are of
course limitations to the network size in terms of available

N
independent experimental information. Basically (2)

link weights have to be estimated from maximal N inde-
pendent over expression experiments. Any reverse engi-
neering algorithm relying on this limited information will
necessarily approach the results of pure gambling with
growing network size.

Methods

A system of interacting genes can be seen as a complex net-
work, where every directed link represents a functional
relationship between two genes. For simplicity, let us
assume that this link will contain both transcriptional and
translation levels of gene interactions. In this oversimpli-
fied view one can assume that the gene expression level
changes in time as

dX

= = 1

= 8(X0) (1)
where g(X) is an a priori unknown function of a time
dependent vector of gene expression levels X. If there are
N genes in the (sub)network under study (e.g. N genes on
a custom chip), vector X has N components. If we assume,
as in [14], that g(X(t)) is a linear function (or after linear-
ization of a more complicated function) one can write
Equation (1) as

dXx
= AX+y, 2
dt K @

where g is a vector of gene over-expressions and A is a con-
stant adjacency matrix, containing the "strength" of gene-
gene interaction. The elements A;; can be positive or nega-
tive real numbers, indicating activating or inhibiting inter-
actions, respectively. By solving Equation (2) one
formally gets

XHt)=eMX° + A7 (eM - D, (3)
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Where superscript u indicates the system was perturbed
with the constant vector u. After M over-expressions, one
can write the above equation in matrix form

X=eMX,+ A - 1)p, (4)

where X is the collection of all gene expression levels
after the M over-expressions experiments, organized in a
N x M matrix, where one of the M columns is a time
dependent N-vector of gene expression levels for different
gene being over-expressed. In the following let us assume
that we are able to perform N over-expression experi-
ments, i.e. M = N. 4 is a N x N diagonal matrix of gene
over-expression levels. [ is diagonal, because in every
over-expression experiment just one gene is being over-
expressed (which is the experimentally feasible case). At
this point we emphasize that even though we know from
the way over-expression experiments are prepared that the
matrix £ is diagonal, one often has little to no experimen-
tal control about the exact amplitude of its entries. This
problem is mitigated for small times t << 1. To see this we
define

E%(X(t)—eAtXO)/,fl, (5)

Using this definition and abbreviating A = At Equation
(4) can be rewritten into Q = A-l(eA’ - I)/t and conse-
quently into

A =In(I + AQ). (6)

It is easy to check that in the short time limit

limQ=1I (7)

t—0

holds. For very short times t our lack of knowledge is thus
basically irrelevant and estimating A Q reduces to esti-

mating A . Yet, for 1 > t we have 1> | ;\ij | and Equation

(6) effectively reduces to the trivial identity A = A, i.e.
for short times Equation (6) is consistently fulfilled but

provides no constraining information on A . However,
when the matrix is so sparse that each node has at most
only one regulatory link and no loops are present in the
network the relative responses

xJ_x0
Yij =_1 1

, (8)
Xp
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will be one-to-one related with the network topology. X}
is the gene expression level of the ith gene when no per-
turbation has occurred (¢ = 0) and Xij the gene expres-

sion level of the ith gene, where the jth gene has been
over-expressed. It is also not hard to realize that for sparse

adjacency matrices A the relative response will in general

provide a good first estimate, i.e. A o Y. Moreover, line-
arity assures that relative responses for short times will be

small, |Y;[ << 1 and therefore AQn~ A NY.

However, for times in the order of a cell-cycle t ~1 and less
sparse matrices these estimates will not be sufficient, i.e.
the Y;; will notin general be small and Q need not be close

to I. The idea is to replace Y;; by some function f(Y;) and

estimate A Q with D; = f (Y;). The function f clearly
should have the properties that (i) f(Y;) ~Y;; for [V;| << 1
and (ii) f is a monotonously increasing function. Since in
practice Y;; can range over many decades in amplitude we
also presume that (iii) f should be a concave function.
Lastly, (iv) f has to be defined on [-1, o] since -1 <Y}, but
in principle could be arbitrary large for positive values and
map [-1, ] to [-o, ©]. Maybe the simplest function fulfill-
ing this requirements is the logarithm, i.e. f(x) = In(1 + x),
and D gets

xJ
D; =1In —6 : 9)
X;

This means that we effectively estimate A = In(I + D),
where I is the identity matrix. For the matrix logarithm to
provide unique solutions, I + D should not have any neg-
ative real eigenvalues. Since experimental results show
that this is not the case in general we use a cleaned version
(see below) of D, denoted by DO such that I + D° has no
negative real eigenvalues and the prediction of the adja-
cency matrix is given by

A=In(I+D°). (10)

Eigenvalue cleaning

In general, the logarithm of a matrix can have an infinite
number of real and complex solutions. In order to find a
unique solution of In(D + I), matrix D + I can not have
negative real eigenvalues. If we take a look at the
eigenspectrum of matrix D from various experiments,
both biological and in-silico, we notice that most of the
eigenvalues are complex, however a small number of
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eigenvalues are real, both positive and negative. Thus, we
first have to clean the matrix D + I, meaning to set all the
negative eigenvalues to small positive number . This is
done by first diagonalizing matrix D:

D =U"'DU = diag(d,,...,dy), (11)

where the eigenvalues are ordered in a way that first L
eigenvalues are real and less then -1, d; =d,<-1, Vi = L.

These L diagonal elements are set to - 1

o .. 0 .. o0

0 t 0 0
D' +1= ' ' , (12)

0 0 d; . 0

00 ... 0 .. dy

and are rotated to yield the cleaned matrix
D°=uD'u". (13)

Matrix DO + I no longer has negative real eigenvalues, and
a unique prediction of an adjacency matrix A-recon-
structed gene regulatory network - can be given

A=In(D° +1). (14)

Thresholding

Our solution A will in general represent a fully connected
network, with a certain distribution of link weights
around zero. The reason why we are always getting fully
connected network, e.g. network without zero entries in
adjacency matrix, is because of the noisy measurements.
Real gene regulatory networks are never fully connected,
but are characterized by an average degree (k}, which has
been estimated to be relatively small ~2 - 4 [12]. For sim-
plicity we assume (k) for the undirected unweighted case.
Knowledge of (k) allows to define a clear thresholding

scheme. All entries in A below a threshold « are set to

zero. « is chosen such, that matrix Ag has the average

degree (k), i.e.

Af = A0( Ay | -a), (15)
such that
1 o
EZZQUAijD_(k)l (16)
i
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A0 is the first approximation of the gene regulatory net-
work we want to reconstruct.

A note on fewer than N experiments

In the case where the number of over-expression experi-
ments M is lower than the size of the network N, matrix D
is not quadratic, thus we are unable to calculate the matrix
logarithm. Information about the influence of gene j (j >
M) on gene i is missing. A way around is that one can
introduce a measure of the distance between two genes in
the network. Although the correlation between gene
expressions in different over-expression measurements
can not lead to any conclusion about the functional rela-
tions among genes, it can provide a good measure for the
distance between the genes in the network, where strong
correlations means low functional distance. One can
therefore simply calculate a matrix of correlation coeffi-
cients and replace the missing terms in D:

B N2 DikD je =Xk Pik Xk D jk
ij 2 2
INSKD3 (54 Dit) JNZkka—(Zijk)
(17)

Here the first index in Dy, i runs in the domain M <i < N,
the second index, 1 <j < N.

D

Testing the method

We have run both, the proposed algorithm and NIR on a
usual PC (AMD Athlon XP 3000+, 1 GB RAM, SUSE-
LINUX 9.0, KDE 3.1 environment) using MATLAB 6.0. We
compare our results with the NIR algorithm both on an in-
silico dataset, as well as on the E. coli SOS response net-
work [20-24], in the same way as in [9]. We measure per-
formance in two ways, firstly, by counting the fraction of
correctly reconstructed positive, negative and zero links,
denoted by F,, F. and F,, respectively. For later use we
define F = F, + F. + F,. Secondly, by calculating the
extended Matthews correlation coefficient [25], a discrete
version of Pearson's correlation coefficient, extrapolated
onto K x K confusion matrices. Matthews correlation coef-
ficient is taking values in the interval [-1, 1], where O
stands for no correlation between predicted and real case,
and 1 and -1 stands for complete or negative correlation
respectively. The K-category correlation coefficient is
defined as

RK = Zkelm (CrekClm—CrICmk) ,
V2R (Z1Ck ) (21 e Ot WER (21 (St Cre)

(18)

where Cis a K x K confusion matrix, or more precisely the

element C,, is counting the number of cases where cate-

gory k is predicted, but category I was present. In our case,
K = 3 and the categories are: positive link, negative link
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and no link between any two genes. It is straight forward
to see that p-values for any value of RK can be computed
exactly in the same way as for the Pearson correlation
coefficient, provided sample size is given.

It is important to stress the difference in measuring recon-
struction performance in in-silico and biological experi-
ments. While in biological networks, self-regulation is a
part of the complete gene regulatory network, in numeri-
cally simulated gene regulation dynamics, self-regulation
is often screened by negative self-degradation rates, which
have to be imposed, in order to keep the dynamics suffi-
ciently stable, see e.g. [19]. To be as correct and conserva-
tive as possible, we therefore compare our reconstructed
adjacency matrix only with the off-diagonal elements in
the in-silico case. In the E. coli case we of course compare
with the complete adjacency matrix.

In-silico testing

We employ a recently proposed dynamical gene-gene
interaction model, which is able to capture a series of
experimental facts on gene-expression statistics [19]: (i)
distribution of gene-expression increments over time, (ii)
multiple equilibria, (iii) stability. The model is defined as

450 = TP 0+ 5000 =) e

(19)
with a positivity condition imposed for gene expression
levels (non negativity of concentrations):

x(H)=20 VY, (20)
Here, Amodel ig a real valued adjacency matrix of gene-gene
interactions. It is modeled as a particular random matrix,
mimicking experimentally known facts [19]. x(t) is a vec-
tor of gene-expression levels in time t, constant vector x°
indicates steady state gene-expression levels. £ and 7 are
multiplicative and additive noise terms, respectively,
which are a generic feature in chemical reactions. Using
the dynamics defined in Equation (19) we generate the
time series of gene expression levels x(t), and simulate the
effects of perturbation by adding a constant perturbation
vector to the Equation (19). For details, see [19]. We meas-
ure the gene expression levels as time averages over con-

centrations: x0=_1

P 0

jt“ x;(t)de and

j—_ 1
X;

ty .
= L x;(t)dt , where t, <t, <t, <t, <ty <t,. to is the

initial time point of the simulation (after discounting
transient behavior), ¢, is the time at which the perturba-
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Time series of model-gene activity. Time series of three
randomly selected trajectories (numerical solutions of Eq.
(19)), showing the measurements of gene expression levels in
in-silico over-expression experiment. Gene expression levels
were measured from time t, until t, for the steady state lev-
els, and from time t; until t, for the effect of perturbation. At
the time t, one gene was over-expressed.

tion vector (with the jth component being non zero) is
applied. The procedure is depicted in Figure 1.

Testing on the E. coli dataset

We use the wild-type E. coli strain MG1655 available at
[9]. The reason for testing our method on this particular
dataset is the fact that the SOS response of the E. coli is
well understood, and some consensus over the topology
of its gene regulatory network is reached. Moreover it is
possible to compare reconstruction success with other
groups [8,18,26]. We test the performance by counting
the fraction of the correctly reconstructed links of all three
classes (positive, negative and zero), and with the
extended Matthews correlation coefficient.

The pure-chance reconstruction threshold

A strong criterion of checking the performance of any
reconstruction method we consider, is to compare it with
a pure random-reconstruction. Several proposed gene net-
work reconstruction algorithms can be shown to perform
only slightly above pure-chance reconstruction. Random
reconstruction can be performed in the following way.
Suppose that (k) denotes the true average degree of the net-
work, which may or may not be known, and k, denotes a

guess on (k). Since we estimate that the directed network
has L = Nk, links we take a fully connected network and

assign a random order to all N(N - 1) links. Then we take
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a random number with three outcomes: + (positive
weight), - (negative weight), and 0 (no link), and assume
that there are as many positive as negative links. The dis-
tribution of these outcomes therefore is such that both +
and - occur with probability w, = k,/2N, while the 0
appears with probability wy = 1 - k,/N. The true probabili-
ties, i.e. the probability of +, -, 0 if the true average (k) was
known, however are, p, = (k)/2N and py = 1 - (k)/N. Now we
pick one link after another in the given random order, and
assign a random symbol, +, - or 0 and repeat this until L
links have been assigned either + or -. Since 'throwing the
dice' is an event independent of the network topology,

one can simply compute F[* (kg|<k>) = w, p, and

F§ (k|(k) = wopo.

If reconstruction is based on pure chance the expected K-
category correlation will be RK = 0. This can be seen by
inserting the confusion matrix C;;= wp; i and j indexing +,
- or 0, into Equation (18).

Results
Reconstruction on in-silico data

We generated networks (N = 10) with three different con-

nectivities (k) € {1, 3, 5}), for purposes of in-silico test-
ing of our reconstruction algorithm. Using the generated
adjacency matrices Amodel of these networks we, simulated
time series of gene expression levels (see Figure 1) accord-
ing to Equation (19), with noise levels c= ¢ = 0.1, where
& e N (0, ) and 7,€ N (0, o). For details, see [19]. As
described in the previous section, we measured the steady
state gene expression levels before and after the perturba-

tion of each gene in the network, denoted by X and X 1] ,

respectively. The so generated data was taken as an input
for both reconstruction methods. In this case the exact
value of the over-expression vector 1 was used as an extra
input parameter for the NIR reconstruction. In reality this
exact value remains unknown. Results were produced for
20 statistically identical realizations of networks for every

connectivity (k) e {1, 3, 5}. All the networks provided
very similar results, only one for every connectivity is
shown in Figure 2. Here we compare the results of our
reconstruction method with the NIR algorithm for in-sil-
ico experiments. The left panel of the figure shows the
fraction of correctly reconstructed links, for every link type
(F,, F.and F;) as well as their sum F. The colors blue and
green represent the NIR and the proposed method, respec-
tively. The pure-chance threshold is shown to emphasize
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Network reconstruction and comparison: in silico. Results of network reconstruction for the proposed algorithm (green
lines) and NIR (blue lines) for in-silico experiments. Results for the fraction of correctly reconstructed links ((2)-(c)), and
extended Matthews correlation coefficient ((d)-(f)) are shown. Three in-silico networks with different average degree were

constructed, for <}; > equals 1((2),(b)), 3((b),(e)) and 5((c),(f)). In the plots where the fraction of correctly reconstructed links are
shown, circles denote the fraction of positive links F, , squares the fraction of negative links F_and triangles no links F. The red

line represents the gambling threshold Frand,

the significance of the result. The right panel shows the
extended Matthews correlation coefficient. For the Mat-
thews correlation coefficient the pure-chance threshold is
constant at zero.

Reconstruction of the E. coli SOS network

Although our reconstruction method showed better
results tested on in-silico networks than NIR, the true
value of any reconstruction potential can be shown just
on the real biological data. When testing both methods on
E. coli data, as shown in Figure 3, our reconstruction
method outperforms NIR more visibly, in both perform-
ance measures. To stress the difference in the quality of
reconstruction we present p-values of given correlation
coefficients between the real and reconstructed networks.

Given the sample size K = 81, i.e. the number of links to
be reconstructed, and a (k) = 4 (known experimental
value), the p-value of correlation coefficient R = 0.14
for NIR is pyr = 0.2126, while the p-value of correlation
coefficient R3 = 0.4 for our method is p = 0.002. For R3val-
ues see Figure 3, at (k) = 4. Our reconstruction leads to a
network which significantly correlates better with the
experimentally known biological network. This is demon-

strated in Figure 4 where mean and standard deviation of

SR3= R

prop.alg. — Rz is plotted for 20 realizations of net-

works of size N = 10 and connectivity (k) = 3.
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Network reconstruction and comparison: E. coli. Reconstruction results for the proposed algorithm (green lines) and
NIR (blue lines) for E. coli. The results for the fraction of correctly reconstructed links (a), and the extended Matthews corre-
lation coefficient (b) are shown. In (a) circles denote the fraction of positive links F,, squares the fraction of negative links F_and
triangles no links Fy. The red line represents the gambling threshold Frand,

The computational time needed to perform the NIR algo-
rithm on this particular 9 node network is of order of mag-
nitude of 1 minute, while our approach takes less than a
second, both performed on a standard personal compu-
ter. The NIR algorithm is unable to cope with reconstruc-
tion of significantly larger gene regulatory networks, both
from the time or memory consumption, while our
method can easily deal with larger network sizes. Because
of typically high levels of noise and uncertainty in biolog-
ical data collected throughout actual experiments, the
robustness of a method is of crucial importance. We tested
both the NIR and our algorithm in the following way: We
took the E. coli data and added Gaussian noise (the noise
amplitude, i.e. the standard deviation of the noise, was
chosen to be 1.5 percent of the average amplitude of the
input data). We produced 100 perturbed datasets, recon-
structed the network with both, the proposed algorithm
and NIR, and counted the number of links that have
changed with respect to the network reconstructed from
the unperturbed data, i.e. links where either - - +, 0 or +
— -, 0 or 0 — +. While for NIR 32.7 percent of the links
changed on average for the proposed algorithm only 21.3
percent of the links were classified differently. In absolute
numbers: for NIR 26.59 links and for the proposed algo-
rithm 17.25 links were classified differently.

Discussion

From the right panel of Figure 2, showing the Mathews
correlation coefficient for the in-silico experiments, it can
clearly be seen that for the fraction of correctly recon-
structed links our method performs about equally well
than NIR for very sparse networks ({k)ode! = 1) and outper-
forms it for more densely connected networks. Looking at
the fractions of correctly reconstructed links, one notices a
slightly better performance of our algorithm, while for the
extended Matthews correlation coefficient the difference
is much more notable. To understand this difference, one
has to take a closer look at the type I and type II errors of
both methods. While the NIR algorithm makes almost the
same number of reconstruction errors of all types, there is
a clear distinction in errors made by our reconstruction
algorithm. The vast majority of errors are made by assum-
ing that there is a link (positive or negative) between two
genes, while in the real case there is none, and vice versa.
Only a few mistakes are made where the real positive link
is reconstructed as negative, or vice versa. This is an addi-
tional asset of the proposed reconstruction algorithm.

In Figure 3 one can easily notice that both reconstruction
methods, the proposed one and NIR, applied to in-silico
data have their maxima in performance when the input
average degree equals to the true one, (k) = (kmodel, which
can be seen as an additional consistency check of the algo-
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Figure 4

Matthews correlation coefficients versus average con-
nectivity. The degree of reliability of how the proposed
algorithm outperforms NIR is demonstrated by how much
the extended Matthews correlation coefficient R3 for the pro-
posed algorithm exceeds the one for NIR. For AR3 =

R;'mp'alg — Rz » (AR3) £ o(R3) is plotted, where cis the

standard deviation of AR3. Mean and standard deviation have
been computed from 20 realizations of networks of size N =
10 and connectivity (k) = 3.

rithm. On the other hand, after applying both reconstruc-
tion methods on E. coli data, just the proposed
reconstruction algorithm shows its performance maxi-
mum at the (k) = (k)E-<li point, while the NIR method shows
similarities in behavior to the pure-chance reconstruction.

Although the proposed algorithm is fast and can in prin-
ciple handle very large networks it is of course unrealistic
to assume that the algorithm in its present form can
reconstruct networks of realistic genome sizes any better

N
than pure chance. This is due to the fact that basically ( ) )

link weights have to be estimated. Theoretically N inde-
pendent over-expression experiments could in principle
suffice to provide a sufficient number of equations to
solve the purely linear problem exactly. However, contri-
butions of noise and deviations of the real dynamics from
a purely linear dynamics will enter the equations propor-
tionally to the degrees of freedom and corrupt the solu-
tion. Any measure that adequately reflects the number of
correctly reconstructed links, e.g. R3, therefore should not
decay faster with the network size than with a power of N-

http://www.biomedcentral.com/1471-2105/10/253
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Figure 5

Correlation coefficients versus network size. The aver-
ages and standard deviation of the associated R3 correlation
coefficients have been computed and are plotted double loga-
rithmically versus N. The straight line is the function AN-2 with
A = 135 and demonstrates that a decay of R3 can be explained
by power -2 of the network size, which agrees well with the

N
fact that ( ) ) links have to be estimated from maximal N

independent experiments. Networks of size N = 25 with
average connectivity (k) = 5, N = 50 with (k) = 10, and N = 100
with (k) = 30 have been sampled and reconstructed for the
assumed values of k = 1,..., N.

2. In Figure 5 and 6 we demonstrate this fact for the pro-
posed algorithm and the R3 correlation coefficient. Figure
6 also demonstrates that while the maximum of R3 is still
pronounced for N = 25 and only misses the correct value
of (k) by Ak = 1, the pronounced maximum of R3 around
the true value of (k) is almost lost for N = 50. N = 50 there-
fore represents a rough estimate of the upper limit of the
network size for the proposed algorithm performs better
than pure gambling.

Conclusion

We introduced a reverse engineering procedure for gene
regulatory networks, applicable on an experimental setup
where all the genes belonging to a genetic (sub)network
are being over-expressed one after the other, after which
gene-chip measurements in the steady state are taken. We
showed the reconstruction performance on both in-silico
and biological data. The method is applicable to large net-
works, both from the computational memory or compu-
tational time point of view, which might be a problem for
algorithms limited by combinatorial explosions. However
the increasing lack of independent experimental informa-
tion with growing network size practically limits networks
to sizes N < 50. However, due to the superior time charac-
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Size dependence of correlations versus average con-
nectivity. As in Figure 6 networks of size N = 25 and an
average connectivity (k) = 5, N = 50 with (k) = 10 and N = 100
with (k) = 30 have been sampled and reconstructed for the
assumed values of k = I,..., N. For N = 25 R3still shows a pro-
nounced peak around the true value <k> =5 (only missed by
one). For N = 50 this peak is almost washed out though there
is still a residual peak at the correct position. N ~50 there-
fore poses a realistic upper limit for the proposed algorithm
to reliably outperform pure gambling.

teristics, large networks could in principle be decomposed
into overlapping subnetworks. These subnetworks can be
inferred by the proposed algorithm and then merged
together in an adequately chosen post processing step.

Except from technical benefits, the philosophy of our
reconstruction method complies perfectly with the bio-
logical goals of conducting over-expression experiments.
In contrary to the NIR algorithm or similar reconstruction
methods, where the final solution is a network, where
every link has the same significance, our method ranks the
reconstructed links by their influence, which might be a
very important issue in experimental gene interaction-
detection Instead of randomly picking the links out of a
given reconstructed topology, here one can select interac-
tion-links with the highest weights. This again ameliorates
the consequences of not knowing the real network con-

nectivity ( k ) a priori. While selecting a good value for (k) is
crucial for getting reliable networks, it will not influence
the ordering of the links by importance in the proposed
algorithm. In other words, no matter which (k) is taken,
the set of ranking of reliable links will not change.

http://www.biomedcentral.com/1471-2105/10/253

Another shortcoming of the NIR algorithm is the fact that
the resulting network has a trivial, unrealistic degree dis-
tribution, a delta function, §(k - k*). Thus, detecting
genetic hubs, peripheral genes, or any other topologically
important genes in the network is practically impossible.
The proposed method does not a priori restrict the topol-
ogy of the reconstructed network except for the average
degree (k) which is important for the thresholding only.

For successful reconstruction the NIR algorithm needs as
an external input information on external perturbation,
which is in most realistic cases at best only approximately
known. In our in-silico experiments we have provided the
exact information for NIR; even then the NIR algorithm
was outperformed.
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