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Abstract
Background: Data integration is currently one of the main challenges in the biomedical sciences.
Often different pieces of information are gathered on the same set of entities (e.g., tissues, culture
samples, biomolecules) with the different pieces stemming, for example, from different
measurement techniques. This implies that more and more data appear that consist of two or more
data arrays that have a shared mode. An integrative analysis of such coupled data should be based
on a simultaneous analysis of all data arrays. In this respect, the family of simultaneous component
methods (e.g., SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-P) is a natural choice. Yet,
different simultaneous component methods may lead to quite different results.

Results: We offer a structured overview of simultaneous component methods that frames them
in a principal components setting such that both the common core of the methods and the specific
elements with regard to which they differ are highlighted. An overview of principles is given that
may guide the data analyst in choosing an appropriate simultaneous component method. Several
theoretical and practical issues are illustrated with an empirical example on metabolomics data for
Escherichia coli as obtained with different analytical chemical measurement methods.

Conclusion: Of the aspects in which the simultaneous component methods differ, pre-processing
and weighting are consequential. Especially, the type of weighting of the different matrices is
essential for simultaneous component analysis. These types are shown to be linked to different
specifications of the idea of a fair integration of the different coupled arrays.

Background
Recently, technological developments have led to a situa-
tion where data analysts in different domains face data
that are more and more complex. A special case of com-
plex data are coupled data that consist of different data
matrices for the same set of variables or experimental

units. In systems biology, an example of matrices sharing
the same set of variables is the study of the expression pro-
file of a certain organism (e.g., Saccharomyces cerevisae) on
the basis of on the one hand different microarray com-
pendia that can be downloaded from public repositories,
and on the basis of, on the other hand, ChIP-chip or motif
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data [1,2]. An example of data matrices with shared exper-
imental units are metabolomics data (e.g., the metabo-
lome of Escherichia coli) gathered from different
fermentations using mass spectrometry (MS) with differ-
ent MS data sets being available from different separation
methods (e.g., gas chromatography and liquid chroma-
tography [3]). In the first example each of the data matri-
ces provides information on the same transcriptome and
in the second example on the same set of metabolites,
with some parts of the information being common for the
different data matrices and some parts being specific: For
example, gas chromatography mass spectrometry (GC/
MS) and liquid chromatography MS (LC/MS) in general
measure both a few classes of common compounds and
many classes of compounds that are measured by one of
the two methods only [3,4].

A major challenge for researchers dealing with such cou-
pled data, is to represent them in such a way that both
shared and specific information as contained in the differ-
ent data matrices is captured (with all information in
question pertaining to variance within each of the matri-
ces under study). For example, in the case of coupled gene
expression and ChIP-chip data one may wish to retrieve
modules of genes that have the same transcription factors
and that are co-regulated under the same conditions,
which is common information as contained in the tran-
scriptome and ChIP-chip data matrices; in the metabo-
lomics example, a coupled data analysis of gas and liquid
chromatography MS data should allow to highlight the
classes of compounds that are measured by both separa-
tion methods, as well as those that are measured by only
one of them.

Several tools are available that can be used for the analysis
of coupled data. Here we will focus on methods that
simultaneously extract components from all data blocks.
Examples of such methods include SUM-PCA [5], unre-
stricted PCovR (Gurden: Multiway covariates regression,
unpublished), SCA-P [6], multiple factor analysis [7], and
STATIS [8]. Whereas all these methods are based on the
idea of a simultaneous component extraction they have
been developed independently in different disciplines
(including chemometrics and psychometrics) and rely on
different terminologies and mathematical frameworks. As
a consequence, comparing them is not straightforward.
The primary objective of this paper is to provide a struc-
tured overview in which all the methods fit, and to high-
light their common core and particularities.

The paper starts by introducing some terminology to
delineate the types of data to which the methods are
applicable; then, a general framework is introduced that
encompasses all the different simultaneous component
methods and that frames them mathematically into a

principal components setting. Then, each of the methods
is discussed with respect to this framework. An applica-
tion is presented on simultaneous components analyses
of gas and liquid chromatography MS data; in this appli-
cation we compare the results obtained by applying the
different methods and discuss how to interpret the results
obtained by one of the methods (multiple factor analy-
sis).

Methods
Some terminology
In this paper, we are interested in multiblock (or multiset)
data consisting of at least two two-way two-mode data
blocks that have one mode in common. Two-way two-
mode data denote rectangular data matrices where the
term mode is used to indicate one of the sets of units that
underlie the data, namely the set of row elements or the
set of column elements. For example, a condition and a
gene mode may underlie gene expression data while a
condition and a metabolite mode may underlie mass
spectrometry data. Often the mode containing the experi-
mental units (e.g., conditions), is called the object mode
while the mode containing the variables (e.g., genes,
metabolites) is called the variable mode. Usually the data
are organized such that the rows of the data matrix corre-
spond to the different objects and the columns to the dif-
ferent variables. Here, we will consider collections of
coupled data matrices for which the shared, or linked,
mode is the same for all couples of data matrices. Figure 1
gives a graphical representation of two cases of such data:
In the left panel, three data matrices that share the row
mode are represented and in the right panel two data
matrices that are linked by the column mode. It might
seem a trivial issue to distinguish between these two cases
as by transposing the data matrices one may move from
one case to the other, but in the next section it will
become clear that the results obtained from a method for
data with a coupled object (row) mode may be different
from those obtained with a method for coupled variable
(column) data.

A structural overview of Simultaneous component 
methods
In this section, first a general framework is presented that
encompasses all simultaneous component methods; then
each of the methods is discussed with respect to the gen-
eral framework.

The general framework
The aspects that constitute the general framework are 1)
the data to which the methods apply, 2) pre-processing
steps included in the methods, 3) a general mathematical
model for the data, 4) the objective function that is
needed to estimate the model parameters, 5) identifica-
tion constraints to obtain a unique solution for the
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parameters, and 6) the algorithmic strategy used to derive
the model parameters (on the basis of the objective func-
tion, subject to the identification constraints).

We will follow the notation introduced in [9], denoting
vectors and matrices by bold upper and lower case letters
respectively and using indexes for which the cardinality is
indicated by the capital of the letter used to run the index.
For example, the different data matrices will be indexed by
k, with k running from 1 to K.

The data
As discussed in section 2, simultaneous component meth-
ods are applicable to data consisting of at least two two-
way two-mode data matrices that have one mode in com-
mon. The common mode can be either the object or the
variable mode.

Pre-processing
The data might be pre-processed in order to correct for
irrelevant differences between variables or matrices. For
example, when different measurement units are used to
measure the variables the resulting differences in offset
and scale might be accounted for by centering each varia-
ble (such that the resulting variable has mean zero) and
by scaling to sum of squares or to range one [3] (the com-
bined operation of centering and scaling to sum of
squares one is usually named autoscaling or standardiz-
ing); see also [10]. Coupled matrices may also differ in
size such that the results of a particular statistical analysis
may be dominated by the largest matrices; to correct for

this effect, a possible strategy is to scale each data matrix
to sum of squares one.

The model
Assume K data matrices Xk containing the scores of Ik
objects on Jk variables. Modeling each of these by a princi-
pal components structure with R components gives,

with wk (wk  0) denoting a prespecified block weight, Tk
an Ik × R matrix of component scores, Pk the Jk × R matrix
of loadings, and Ek the Ik × Jk matrix of residuals. In the
general model, the fact that the K matrices are coupled is
taken explicitly into account by subjecting (1) to the con-
straint that the model matrix that relates to the common
mode is the same for all data matrices. In case of a com-
mon row mode (with I1 = ... = IK = I) this introduces the
constraint T1 = ... = TK = T such that the matrices are mod-
eled by

with T denoting the common component scores and Pk
the matrix-specific loadings. Similarly, for a common col-
umn mode (J1 = ... = JK = J), the constraint is imposed that
P1 = ... = PK = P, so that the model becomes

wk k k k
T

kX T P E= + (1)

wk k k
T

kX TP E= + (2)

wk k k
T

kX T P E= + (3)

Illustrations of coupled dataFigure 1
Illustrations of coupled data. Illustrations of coupled two-way two-mode data that share a single mode: In the left panel 
three data matrices (gene expression data, motif data, and ChIP-chip data) share the row mode (genes); in the right panel two 
data blocks (gas chromatography and liquid chromatography mass spectrometry data) share the column mode (fermentation 
batches).
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with P1 = ... = PK = P the common loadings. This gives the
general model

Except for the equality constraint on the common compo-
nent scores in (2) or on the loadings in (3), identification
constraints (e.g., orthogonality or orthonormality) might
be applicable but the latter do not affect the scores repro-

duced by the model, Tk .

Objective function
To estimate the model parameters Tk and Pk, the following
optimization criterion is introduced:

under the restriction that either T1 = ... = TK = T (common
object mode) or P1 = ... = PK = P (common variable mode).

Identification constraints
In general it holds for any nonsingular matrix B that if Tk
and Pk are solutions of (5), TkB and PkB-1 are solutions too
(e.g., B can be a rotation matrix). Examples of identifica-
tion constraints often encountered in practice are that the
component scores and loadings are expressed with respect
to orthogonal axes in the direction of the highest variance
(principal axes orientation) and that the component
scores or loadings are orthonormal.

Model estimation
Optimal parameters that minimize (5) can be obtained
either by a singular value decomposition (SVD) of the
concatenated weighted data matrices or by a two-step
approach in which first the common structure is found by
an eigendecomposition of the sum of cross-product matri-
ces and second the K companion matrices are found by
means of a suitable regression analysis. Both strategies can
be used for data with a coupled object (row) mode as well
as for data with a coupled variable (column) mode and
they result in the same solution. We refer to the additional
file (see additional file 1: Estimation.pdf) for details on
both estimation procedures and a proof of their equiva-
lence.

Specific simultaneous component methods
In the previous section we have set up a general frame-
work for a simultaneous component representation of
data that consist of at least two matrices sharing a com-
mon mode. Here, we will show how five published meth-
ods are specializations of the general framework. These
are SUM-PCA [5], unrestricted principal covariates regres-

sion (unrestricted PCovR see [11] and also Gurden: Mul-
tiway covariates regression, unpublished), multiple factor
analysis (MFA [7,12]), STATIS [8], and SCA-P [6]).

The general framework includes six aspects: (1) the data,
(2) pre-processing, (3) the model, (4) the objective func-
tion, (5) the identification constraints, and (6) the algo-
rithmic strategy. We will discuss the published methods
with respect to the specific choices they make for the first,
second, third, and fifth aspect. The fourth aspect (the
objective function) is not discussed because it is the same
for all methods; the sixth aspect (the algorithmic strategy)
is not discussed either, because the choice made with
respect to this aspect does not affect the obtained solu-
tion.

SUM-PCA
A first published method that fits within our general
framework is SUM-PCA. A confusing element though, is
that the name SUMPCA has been used for two different
methods: this paragraph bears on SUM-PCA (with a
hyphen) proposed in the chemometric literature [5] and
not on SUMPCA proposed in the psychometric literature
[13,14]; we will come back to the latter method when dis-
cussing SCA-P.

• Data

SUM-PCA [5] was developed for data that are linked in the
row mode.

• Pre-processing

The pre-processing steps consist of first autoscaling the
data per variable and secondly, scaling each data block to
sum of squares equal to one [5].

• Model

SUM-PCA models the K two-way data blocks by the fol-
lowing mathematical structure,

which implies pre-specified weights wk = 1. Note, how-
ever, that the pre-processing step of a scaling of each block
to sum of squares one applied to autoscaled data, is equiv-
alent to using weights on the autoscaled data; this means
blocks with more variables are downweighted more than
blocks with fewer variables in order to avoid that larger
blocks dominate the solution.

• Identification constraints

wk k k k
T

k K KX T P E T T T P P P= + = = = = = = with either  or 1 1  .

(4)

Pk
T

min ,
,T P

X T P
k k

k k k
T

k

−∑ 2
(5)

X TP Ek k
T

k= + , (6)
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The SUM-PCA model (6) is estimated under the identifi-
cation constraints of a principal axes orientation and
orthonormality of the common component scores: TTT =
I. The latter constraint is unusual in chemometrics where
it is common practice to have orthonormal loadings.
However, it implies that the method finds exactly the
same global scores as CPCA-W, a method that extracts the
components in a sequential way (for a proof of the equiv-
alence, see [5]).

Unrestricted PCovR
• Data

Principal covariates regression (PCovR) was proposed for
the analysis of data consisting of a matrix of dependent
variables X1 and a matrix of independent variables X2 for
the same set of objects [11].

• Pre-processing

In [11], different options are mentioned for pre-process-
ing on the level of the variables, including centering, scal-
ing and autoscaling.

• Model

Principal covariates regression represents the data by
means of the following model,

with the common component scores T1 being restricted to
belong to the column space of X1 and with 0    1. Such
a restriction does not fit within the general framework as
outlined above; yet, in the more general context of multi-
way covariates regression, also an unrestricted model has
been proposed in which this restriction was dropped
(Gurden: Multiway covariates regression, unpublished);
clearly, the unrestricted PCovR model fits within the gen-
eral framework. The pre-specified weight is determined by
a strategy that minimizes the cross-validation error for the
prediction of X2; this introduces some asymmetry in the
treatment of X1 and X2. Both simulation studies (Gurden:
Multiway covariates regression, unpublished) and empir-
ical results [15] yielded unsatisfying results for the pro-
posed cross-validation approach because it results in -
values close to zero or one, implying that all weight is
placed on a single matrix.

• Identification constraints

In [11], it is suggested to constrain the common compo-
nent scores to be column-wise orthonormal: TTT = I.

MFA
• Data

Multiple Factor Analysis or MFA [7,12,16], also known as
Analyse Factorielle Multiple or AFM, was proposed in the
French literature as a method for the analysis of data con-
sisting of several sets of variables for the same group of
subjects (common object mode). Recently, the method
was applied to integrate distinct omics data [17].

• Pre-processing

The variables are supposed to be autoscaled.

• Model

Multiple Factor Analysis is based on the following model,

with k1 being the largest singular value of Xk. The choice

of the inverted k1's as the matrix-specific weights is moti-

vated by the fact that in this way two corrections take place
at once: one for differences in the number of variables and
one for the redundancy of the information contained by
the data matrices. This can be understood by observing
the following properties of the eigenvalues: (1) the size of

the matrix can be measured by  (which

equals Jk for autoscaled variables); (2) redundancy can be

measured by the proportion of VAF by the first compo-

nent, . So, matrix Xk can be corrected for

size and redundancy by

which is the correction used by MFA. Note that scaling the
matrices (e.g., to unit sum of squares) is of no influence
on the MFA results as the singular value of f times Xk
equals fk and the first step of MFA is to divide each block
by this singular value.

• Identification constraints

MFA estimates the parameters under a principal axes con-
straint and orthonormality of the component scores: TTT
= I.

 1 2
1 1 1 1

1 2
2 1 2 21/ /( ) ,X T P E X T P E= + − = + and 

(7)

 k k k
T

k1
1− = +X TP E , (8)

 kj k
T

kj
2 =∑ trX X

 k kjk1
2 2/( )∑

1
2

1

1
2

2

1

1 




kjj k

kjj

k
k k

∑

∑

=X X ,

(9)
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STATIS
• Data

STATIS was proposed in the French literature [8] (see also
[13] for an English description of the method). In both
publications, three-way data are used but the authors note
that the method is also applicable to coupled two-way
data matrices with a common object mode.

• Pre-processing

In [8], nothing is mentioned on pre-processing. Centering
and scaling to unit variance are mentioned as options of
the STATIS (ACT) method in [18]; a weighting to account
for differences in size of the matrices is described in [19].

• Model

STATIS is based on the following model,

with ak being the weight associated to the kth data matrix.

These weights are obtained from the first component of
the PCA of a matrix which is derived from the data in the
following way: 1) Derive the cross-product matrices Sk =

 (note that for vectors of autoscaled object

scores, this would be the matrix of correlations between
objects). 2) Construct the matrix F of size N2 × K by insert-
ing the vectorized matrix Sk, formally written as vec(Sk), in

the kth column. The weights ak are the loadings on the first

principal component of F and can be obtained from the
first right singular vector of F or from an eigendecomposi-

tion of the matrix S with values  (note that

the element on the intersection of row k and column k' of
the matrix FTF equals vec (Sk)T vec(Sk') so S = FTF). Larger

weights can be expected for: (a) data matrices with larger
values (the values on the diagonal of the cross product
matrix Sk will be larger for such matrices and thus the

loading associated to the kth column of F, vec(Sk)), (b)

larger matrices, (c) data matrices with more covariation
between the vectors of object scores, and (d) matrices with
more similar cross product matrices to other matrices (K >
2). The latter property is the motivation for the proposed
weighting strategy: STATIS wants to find a compromise of
the different cross-product matrices Sk. This idea of a com-

promise or a consensus is prominent in the analysis of
three-way data and underlies Generalized Procrustes anal-
ysis (GPA) and Generalized Canonical Correlation analy-
sis [20]. See [21,22] for a comparison of STATIS and GPA.

• Identification constraints

STATIS looks for simultaneous components with a princi-
pal axes orientation and under the restriction of orthonor-

mal loadings ( Pconc = I, with Pconc representing the

matrix of concatenated block specific loadings).

SCA-P
• Data

In the psychometric literature, SCA-P was proposed as a
method for the analysis of multiple data matrices
obtained by measuring the same set of variables in differ-
ent groups; the variable mode is therefore considered to
be the common mode [6]. The acronym SCA-P stands for
simultaneous component analysis with a common pat-
tern matrix, where "pattern matrix" is a psychometric term
for "loading matrix".

• Pre-processing

In the original applications of SCA-P, where the main
interest is to account for variation within the matrices Xk,
it is recommended to autoscale each variable per data
block [6]. Another proposed strategy is to center each var-
iable per matrix and to scale the variables to sum of
squares kIk for the concatenated data, this is over matri-
ces [23]. The latter strategy preserves the variability within
the matrices Xk. In the remainder of the paper we will refer
to SCA-P with a variable-wise autoscaling per block.

• Model

The following model is used to structure the data,

with P a common loading matrix. The different blocks are
not explicitly weighted but larger blocks will not contrib-
ute more to the common components given that the vari-
able mode is common and that each variable has been
autoscaled: This can be understood by observing that P
can be found by the eigendecomposition of

 with Rk the matrix of correlations

between the variables in data matrix k. Indeed, this is the
method denoted as SUMPCA [13,14], hence SCA-P is
equivalent to SUMPCA and also to Levin's method [24]
that minimizes

ak k k
T

kX TP E= + , (10)

S X Xk k k
T=

S S Skk
T

k k
T

′ ′= tr( )

Pconc
T

X T P Ek k
T

k= + , (11)

X X Rk
T

kk kk∑ ∑=

R PPk
T

k

K

−
=

∑
1

2

. (12)
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• Identification constraints

SCA-P looks for simultaneous components that have a
prinicipal axes orientation and orthonormal component

scores, Tconc= I, with Tconc representing the matrix of

concatenated block specific loadings).

Reflection on the general framework
We presented a general framework for simultaneous com-
ponent methods and showed how several published
methods fit within the framework. In this section we will
reflect on the comparability of the simultaneous compo-
nent results when making a specific choice for different
aspects of the general framework. In Table 1 a summary
overview of the published methods discussed in the meth-
ods section is given in function of the specific choices they
make with respect to the four aspects as discussed above:
1) the mode that is considered common (object or varia-
ble), 2) the pre-processing steps, 3) the pre-specified
matrix-specific weights, and 4) the identification con-
straints. To arrive at a deeper understanding of the rela-
tions between the different published methods below we
will first consider each of these aspects and the different
choices made by the published methods with regard to
them; second, we will discuss more in detail those aspects
for which the choices are consequential for the obtained
results.

Structured overview of the methods
A first aspect concerns the labeling of the common mode
as the object or as the variable mode. Ignoring for a
moment what happens on the level of pre-processing and
weighting but taking into account whether the orthonor-
mality restriction is imposed on the common mode or on
the other mode, changing the label of the common mode
from object to variable or vice versa makes that STATIS
turns into SCA-P or vice versa. Second, with respect to pre-
processing, all methods except STATIS autoscale each var-
iable. Furthermore, SUM-PCA additionally also scales

each matrix to unit sum of squares (alternatively this can
also be considered a matrix-specific weighting strategy).
Third, except for SCA-P, all methods use a distinct matrix-
specific weighting strategy (note that as indicated above
SUM-PCA can be considered to do this weighting via the
pre-processing step). Fourth, all methods use a principal
axis identification constraint but differ in their choice of
putting an orthonormality constraint either on the com-
mon structure (SUM-PCA, unr. PCovR, and MFA) or on
the concatenated structure (STATIS and SCA-P); as dis-
cussed previously, however, this affects the scaling of the
components only, and yields the same reconstructed data.

Consequential differences between the methods
Next, one may wonder for which of the aspects as dis-
cussed above the choices may be consequential for the
obtained results. A first such aspect is the type of pre-
processing, with all methods except STATIS relying on a
variable-wise autoscaling. This means that the solutions
obtained with STATIS can be dominated by the variables
with the largest sums of squares; for that reason, these
solutions can be very different from the results as
obtained with the other methods. A second possibly con-
sequential aspect is the matrix-specific weighting strategy.
This can strongly influence the obtained results, with as an
extreme all weight being put on a particular matrix which
results in a structure of the common mode (T or P) that
equals the structure obtained from the separate compo-
nent analysis of that matrix. Note that in case the R dom-
inant directions of the different data matrices span
approximately the same subspace, a matrix-specific
weighting will have little impact on the obtained results
(Escoufier's RV coefficient can be used to measure this
dependency between the data matrices [25,26]). Third,
although the labeling of the common mode has no direct
consequential effect, it may have important indirect con-
sequences through what happens on the level of pre-
processing. Indeed, methods that perform autoscaling do
this in the direction of the variables: Labeling the com-
mon mode as 'variables' results in autoscaling in the direc-

Tconc
T

Table 1: Characterization of published simultaneous component methods in function of the general framework.

Common mode Pre-processing Matrix-specific weights Identification constraint

SUM-PCA object Variables: auto-scaling
Matrices: scaled to sum of squares one

All wk = 1 Principal axes
TTT = I

unr. PCovR object Variables: auto-scaling Minimize cross- validation error Principal axes
TTT = I

MFA object Variables: auto-scaling Inverse of largest singular value Principal axes
TTT = I

STATIS object Compromise weights Principal axes

Pconc = I

SCA-P variable Variables: auto-scaling All wk = 1 Principal axes

Tconc = I

Pconc
T

Tconc
T
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tion of the common mode while labeling it as 'objects'
results in autoscaling in the other direction.

Furthermore, matrix-specific weighting operates differ-
ently for autoscaled data with a common object mode
than for autoscaled data with a common variable mode.
To understand the latter, let the row elements (which may
pertain to either objects or variables) be common, such
that the common structure (T or P) can be derived from

 when the row mode is the variable mode

Xk  is a correlation matrix and when the row mode is

the object mode it will be a cross-product matrix. Now, as
the size of a correlation does not depend on the sample
size, in case of a common variable mode larger matrices
will not necessarily have a larger contribution; on the
other hand entries of cross-product matrices may take
larger values in case of larger matrices. As a consequence,
in case of a common object mode, larger matrices may

contribute more to the sum  hence in such a

case, unlike in a case with a common variable mode, a
downweighting of larger matrices may be desired. Note
that in the description of the methods used here, we are
strict in the choices made on the level of pre-processing.
The methods, however, could also be defined on the basis
of the matrix-specific weighting strategy apart from any
pre-processing strategy. Then, the labelling of the com-
mon mode is not consequential (such that SCA-P can also
be used for data that are coupled in the variable mode
while SUM-PCA, unr. PCovR, MFA, and STATIS can also
be used for data coupled in the object mode).

Reflection on pre-processing and weighting
The proposed pre-processing and weighting strategies
reflect data-analytic concerns to correct for possible dis-
turbing factors on the level of the variables and on the
level of the matrices. First, on the level of the variables a
disturbing factor may stem from different variables being
measured by different measurement techniques or with
different measurement scales. Often such differences may
be irrelevant from a substantive perspective but they are

essential and may distort the results, which may necessi-
tate a suitable type of preprocessing. Now STATIS as orig-
inal published [8], unlike all other published methods
does not autoscale variables; therefore, in case of irrele-
vant differences between variables in measurement scale,
STATIS may not be used or only in combination with a
preliminary centering, scaling, or autoscaling of the data
as proposed in later publications on the method [18,19].

Second, on the level of the different matrices a major con-
cern may lead to combine them in a fair way. Different
possible principles of fairness can be considered; an over-
view is given in Table 2. A first (naive) principle may be to
give equal weight to all matrices (which may be realized
through a mere concatenation of the data). More sophis-
ticated principles imply the use of matrix-specific weights
to correct for possible unwanted dominance of some
matrices. A first such principle is to attach more weight to
smaller matrices in order to avoid that large matrices
dominate the solution. Second, more weight may be given
to matrices that contain more heterogeneous information
in order to avoid that the solution is dominated by redun-
dancies. Third, one may wish to give more weight to
matrices containing more stable predictive information,
in order to avoid that the solution is steered by particular-
ities that cannot be replicated. Fourth, one may wish to
give more weight to matrices that have more in common
with other matrices to avoid that idiosyncracies dominate
the solution. The different published methods aim at spe-
cific principles (see Table 2).

It can be useful to apply these principles of fairness in a
flexible way. For example, different principles may be
combined when there are different reasons for unwanted
dominance of a matrix. This is the case for the weighting
strategy underlying MFA; another example is a modified
weighting strategy for STATIS that corrects for differences
in sizes between the matrices and also gives more weight
to matrices that have more in common with other matri-
ces [21,22]. Also, different principles can be used for dif-
ferent data matrices. For example, suppose that a
particular matrix is very noisy, that all matrices have equal
sum of squares, and that interest is in avoiding redundan-
cies. In the noisy (i.e., extremely heterogenous) block all
singular values will be almost equal such that applying the

wk k k
T

k
2X X∑

X k
T

wk k k
T

k
2X X∑

Table 2: Principles to realize a fair integration of different data matrices.

Principle Methods aiming at this principle

Same weight for all matrices (naive approach) SCA-P
More weight for smaller matrices SUM-PCA, MFA
More weight for less redundant matrices MFA
More weight for matrices with more stable predictive information PCovR
More weight for matrices that share more information with other matrices (K > 2) STATIS
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principle of more weight for the less redundant matrices
will give most weight to the noisy data block. In such a
case one may consider to use the principle of more weight
for the matrices with more stable predictive information
in order to give less weight to this particular block, and to
additionally use the principle of avoiding redundancies
on the other blocks.

Results
In this Section we will apply each of the existing methods
to an example biological dataset. First the data are
described, then each of the methods is applied and the
solution obtained with MFA is interpreted.

Description of the data
The phenylalanine production in the Escherichia coli NST
74 and a wild type strain was studied with the aim to iden-
tify bottlenecks in the production of this compound [3].
Metabolomes were screened at different fermentation
times and obtained under various environmental condi-
tions using both gas chromatography (GC) and liquid
chromatography (LC) in combination with mass spec-
trometry (MS). In general GC/MS and LC/MS methods are
known to detect different classes of chemical compounds,
although some classes are detected by both methods [4].
The data consist of two coupled data matrices: a GC/MS
matrix with the measurements of 144 metabolites
(including 13 intermediates of the phenylalanine biosyn-
thesis route) and a LC/MS matrix with the measurements
of 44 metabolites, both for the same 28 samples of E. coli
(common object mode); no metabolite was measured on
both platforms, hence, there is no trivial overlap. In the
data considered here, only those metabolites that were
detected in at least 20 percent of the experiments were
used; furthermore, the data were manually curated and
normalized as described by [27]. Measurement values
below the detection threshold were set equal to one half
of the smallest detected value [3]: 687 (17 percent) of the
GC measurements and 34 (3 percent) of the LC measure-
ments were below the limit of detection. Due to a lot of
values below the detection limit for a few metabolites in
the GC data, some extreme outliers were observed. To deal
with skewness and asymmetry, all values were log-trans-
formed. No influential outliers were found among the
log-transformed values.

Application of different simultaneous component methods
The different published simultaneous component meth-
ods were applied to the coupled GC/MS – LC/MS data.
Due to the asymmetry associated to the cross-validation
procedure in PCovR, we report two unrestricted PCovR
analyses denoted as PCovR GC and PCovR LC with the
former denoting a leave-one-out crossvalidation based on
using the observed scores in the LC data to reproduce the
scores of the GC data and the latter a crossvalidation that

uses the observed GC data to reproduce the LC data. We
also report the analysis based on the unweighted but var-
iable-wise autoscaled data. This can be considered to be
SCA-P applied to the transposed versions of the data
matrices.

An overview of the relative matrix-specific weights, calcu-
lated as the matrix-specific sum of squares divided by the
sum of squares of the concatenated data, obtained with
the different simultaneous component methods is given
in Table 3: For ease of comparison, these are expressed as
the sum of squares of the specific weighted matrix divided
by the total sum of squares over all weighted matrices. For
the first method reported (PCovR GC) all weight is put on
the GC matrix; such extreme weights could be expected on
the basis of what has been reported in the literature (Gur-
den: Multiway covariates regression, unpublished and
[15]). Also STATIS uses extreme weights with almost all
weight put on the GC matrix; this can be mainly attributed
to the fact that the GC matrix is much larger than the LC
matrix. The relative weights obtained for SCA-P purely
reflect the size difference, with the GC matrix being
approximately three times as large as the LC matrix. MFA
also puts more weight on the GC matrix but less than
SCA-P because the weights used by MFA (the largest sin-
gular value) correct both for size and redundancy: this
reflects the larger heterogeneity in the GC matrix (LC
measures mainly nucleotides while GC measures a larger
variety of metabolites [4]). SUM-PCA gives equal weight
to both matrices as it weights all specific matrices to unit
sum of squares. Finally, the PCovR case where the cross-
validation approach relies on reproducing the LC scores
based on the observed GC scores, puts all weight on the
LC data.

To explore how dissimilar the common structure can be
for the different methods (i.e., matrices T resulting from
the different methods), we calculated Tucker's coefficient
of congruence  for pairs of matrices T, according to the
definition below. For R components, Tucker's coefficient

Table 3: Weights put on GC versus LC by different SCA 
methods. 

GC LC

PCovR GC1 1.00 0
STATIS .99 .01
SCA-P .77 .23
MFA .66 .34
SUM-PCA .50 .50
PCovR LC1 0 1.00

1: Matrix-specific weights obtained by leave one out crossvalidation 
using the observed scores in the LC data to reproduce the scores of 
the GC data (PCovR GC) or the other way around (PCovR LC).
These weights have been calculated as the matrix-specific sum of 
squares divided by the sum of squares of the concatenated data.
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of congruence between two matrices of component scores
X and Y is calculated as follows [28]:

with tr denoting the trace. (Here, R = 5 is taken through-
out, because this is the number of components retained in
the next section on the interpretation of the MFA solu-
tion).  can be interpreted as an uncentered correlation
and takes values between minus one and one (perfect con-
gruence). It is invariant under scaling but not under rota-
tion of the matrices X and Y. To account for the fact that
PCA is invariant under reflection and rotation, but  not,
we will calculate (13) after applying a Procrustean similar-
ity transformation without the translation step [29].
Except for STATIS, all methods are applied to the matrices
obtained after autoscaling per metabolite; therefore we
included the separate component analyses of the thus pre-
processed data as a reference. The modified RV coefficient
[26] calculated between preprocessed GC and LC matrices
equals .20 (with 0  RV  1) which is a low value such that
the different weighting strategies can be expected to yield
different results. Table 4 gives an overview of Tucker's con-
gruence between the common scores obtained with the
different simultaneous component methods and with the
separate component analyses of the GC matrix and of the
LC matrix (autoscaled per metabolite). A low congruence
can be observed between STATIS and the other methods
due to the fact that it relies on a different way of pre-
processing. The two PCovR methods, which put all weight
on either GC or LC, are perfectly congruent with GC and
LC respectively and by consequence also have the same
congruence with the other methods. For the methods
applied to the data that are autoscaled per metabolite, it
holds that methods that put more weight on GC/LC have
higher congruence with the separate analysis of GC/LC
respectively. When interest is in finding a simultaneous

solution that is congruent with both separate analyses,
SCA-P, MFA or SUM-PCA seem the methods of choice (for
R = 5).

Interpretation of the multiple factor analysis solution
In this section we will interpret the solution obtained with
multiple factor analysis (MFA). Our motivation to choose
this specific method is (1) that we want to attach equal
importance to the biological processes behind the metab-
olites found by both types of separation methods so we
need to correct for the difference in size between the
matrices, and (2) that we do not want processes related to
the many nucleotides in the LC data to dominate the solu-
tion. From Figure 2 it can be derived that five components
are needed because the first five components account
clearly for more variance than the next five in at least one
of the data matrices.

For the interpretation of the components, we will first take
a look at the scores of the samples on the components. We
made use of the rotational freedom to rotate the scores to
a simple structure using the VARIMAX criterion (see [30]):
This is a rotation that targets a structure with high scores
on only one component and low (close to zero) scores on
the other components. Table 5 displays the resulting
scores and, on the last three lines, the variance they
account for overall (the 'TOTAL' line) and in each of the
data blocks (the 'GC' and 'LC' lines). A description of the
experimental design can be found in [3]; here it is summa-
rized by the first column that labels the experiments in
relation to the reference condition ('+' means more than
in the reference, '-' less, and 'oxygen ?' means that not the
dissolved oxygen level but the steering speed of the fer-
menter was controlled) and by the second column that
reports after how many hours the samples were taken
from the bioreactor. Taking a look at the two last lines of
Table 5, we see that the first two components are involved
in both types of separation methods while the third and
fifth component seem to be specific for LC and the fourth
for GC. Furthermore, the information captured in the dif-

 = tr

tr tr

( )

( ) ( )

XY

XX YY

T

T T
(13)

Table 4: Tucker's coefficient of congruence between the component scores (R = 5).

PCovR GC SCA-P MFA SUM-PCA PCovR LC LC2 STATIS

GC1 1 0.91 0.86 0.81 0.55 0.55 0.13
PCovR GC3 0.91 0.86 0.81 0.55 0.55 0.13
SCA-P 0.99 0.96 0.73 0.73 0.12
MFA 0.99 0.79 0.79 0.12
SUM-PCA 0.84 0.84 0.11
PCovR LC4 1 0.08
LC 0.08

1: Ordinary principal component analysis of GC data only
2: Ordinary principal component analysis of LC data only
3+4: Matrix-specific weights obtained by leave one out crossvalidation using the observed scores in the LC data to reproduce the scores of the GC 
data (PCovR GC) or the other way around (PCovR LC).
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ferent simultaneous components (SC1 to SC5) showed a
clear link with the environmental conditions under which
these samples were generated. For instance, based on this
analysis SC1 seems to comprise metabolic processes
related to oxygen limitation and to the early stationary
growth phase (after approximately 40 hours of fermenta-
tion) which might be the result of oxygen stress and SC4
captures metabolic processes related to succinate catabo-
lism (Table 5). This analysis also suggests that the meta-
bolic processes related to mid-logarithmic (after
approximately 24 hours of fermentation) to early station-
ary when grown at a higher pH or at a lower phosphate
concentration than under the reference condition are sim-
ilar: the samples taken under these conditions have a high
component score on both SC1 and SC3. Moreover, the LC
specific components are dominated by the samples taken
from the fermentation performed with the wild type strain
and that were performed at an elevated pH compared to
the reference fermentation condition.

Figure 3 visualizes the relation between the 188 metabo-
lites and the components through a so-called heatmap:
the loading of the metabolites on each of the components
is depicted by a color with bright red for strong positive
scores, black for scores around zero, and bright green for
very negative scores. The order of the metabolites was
determined by a hierarchical clustering (average linkage)
using one minus the cosine of the angle between the vec-
tors of metabolite loadings as a distance measure. Note
that we labeled 130 of the 188 metabolites. Different
groups of metabolites could be identified whose concen-
tration were higher or lower in samples obtained under
specific environmental conditions. For instance, a first
group of metabolites (i.e. fumarate, malate, aspartate, -
ketoglutarate, and 2-hydroxyglutarate) is characterized by
positive loadings on SC4 (succinate catabolism): These
metabolites are more abundant in samples with succinate
as a carbon source. As fumarate and malate are the direct
catabolic intermediates in the degradation of succinate
this makes biological sense. Moreover, the increased 2-
hydroxyglutarate concentrations suggest that part of the

Proportion of variance accounted for by the MFA solutionFigure 2
Proportion of variance accounted for by the MFA solution. Proportion of variance accounted for by the MFA solution 
in each matrix (bars) and proportion of variance accounted for by separate component analyses (lines).
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reducing equivalents formed during succinate catabolism
are (partially) used to reduce -ketoglutarate. A second
example is composed out of a group of metabolites con-
sisting out of N-acetylglutamate, N-acetylaspartate and -
phenylpyruvate. The concentrations of these metabolites
are higher in the samples obtained from the wild type
strain, and at the early logarithmic growth phase. By PLS
analysis we have demonstrated that these compounds

specifically correlated with the phenylalanine production
titer (unpublished results), while the samples where the
concentrations of these compounds are high reflect non-
phenylalanine producing growth conditions and/or a
non-phenylalanine overproducing strain.

Discussion
In this paper we proposed a general framework for simul-
taneous component data integration methods based on
six aspects: (1) the data, (2) pre-processing, (3) the model,
(4) the objective function, (5) identification constraints,
and (6) the algorithmic strategy. For two of these aspects
there are no choices to be made that yield different results
(namely the objective function and the algorithmic strat-
egy). For the four remaining aspects, we discussed for each
of the published simultaneous component methods
(SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-
P) the specific choices they make. We further discussed
which choices imply significant consequences for the
obtained results:

1. Labeling the common mode as object versus varia-
ble is consequential for the obtained results only when
considered in combination with pre-processing (the
variable-wise autoscaling).

2. Pre-processing can have a strong influence on the
obtained results. This is the case when the variables are
measured on different scales or when the block-spe-
cific sum of squares differ substantially. In the former
case a single/few variables can dominate the solution,
in the latter a single/few matrices. Applying a simulta-
neous component analysis to data corrected for such
differences may yield very different results from an
analysis on the uncorrected data.

3. In general, different matrix-specific weighting strat-
egies lead to different results. The different simultane-
ous component methods each proposed specific
weighting strategies based on different principles of
fairness. As illustrated, these strategies may yield very
different weights ranging from one extreme (all weight
is put on a particular matrix) to the other (all weight is
put on another particular matrix).

4. The identification constraint to impose orthonor-
mality on the common versus on the concatenated
model structure affects the scale of the component
scores and loadings but it is not consequential and
yields the same reproduced scores.

Conclusion
Summarizing, of the four aspects that differentiate the
simultaneous component methods, the choices made
with respect to pre-processing and weighting are conse-

Table 5: Component scores (labeled 'SC1' to 'SC5') after 
VARIMAX rotation of the MFA solution with five components 
and, on the last three lines, the variance accounted for by these 
components in the GC data (the 'GC' line), the LC data (the 'LC' 
line), and the concatenated data (the 'TOTAL' line). 

SC1 SC2 SC3 SC4 SC5

Reference
16 hrs 0.07 0.33 -0.04 0.01 -0.12
24 hrs -0.05 -0.02 -0.10 -0.09 -0.16
32 hrs -0.01 -0.30 -0.05 -0.07 -0.06
40 hrs 0.10 -0.27 -0.01 -0.09 0.01
48 hrs 0.18 -0.17 0.17 -0.03 0.10

pH +
16 hrs 0.18 -0.11 -0.29 -0.10 -0.61
24 hrs 0.03 -0.07 0.36 -0.10 -0.03
40 hrs 0.35 -0.17 0.26 0.03 -0.09
48 hrs 0.22 -0.10 0.05 -0.10 0.03

oxygen +
40 hrs -0.24 0.04 0.02 0.00 -0.06

oxygen ?
16 hrs 0.04 0.34 0.01 -0.11 -0.06
24 hrs -0.26 -0.02 -0.02 -0.08 -0.16
40 hrs -0.45 -0.13 0.09 -0.05 0.08
64 hrs -0.37 -0.10 0.11 -0.02 0.07

phosphate +
16 hrs 0.01 0.38 -0.02 -0.04 0.03
24 hrs -0.09 0.43 0.04 -0.10 0.14
40 hrs -0.33 0.00 -0.04 -0.01 -0.01
48 hrs -0.04 -0.12 0.01 0.01 -0.15

phosphate -
16 hrs -0.03 0.06 0.00 -0.19 -0.09
24 hrs -0.03 -0.02 0.41 -0.12 0.07
40 hrs 0.32 0.09 0.32 -0.01 0.14

succinate
24 hrs 0.07 0.10 -0.02 0.55 -0.13
40 hrs -0.01 -0.02 -0.01 0.57 -0.03
48 hrs -0.05 -0.05 -0.05 0.46 0.11

Wild type
16 hrs 0.19 0.27 -0.25 -0.10 0.06
24 hrs 0.02 -0.11 -0.38 -0.12 0.04
40 hrs 0.08 -0.20 -0.32 -0.06 0.33
48 hrs 0.11 -0.06 -0.26 -0.03 0.55

GC 0.14 0.12 0.08 0.14 0.06
LC 0.10 0.14 0.20 0.07 0.13
TOTAL 0.13 0.13 0.12 0.12 0.09

In the part with component scores, the first column describes the 
experiments in relation to the reference condition and the number of 
hours the samples were in the bioreactor. Component scores  .25 
(in absolute value) are in boldface.
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HeatmapFigure 3
Heatmap. Heat map of the metabolite loadings on the five components. Labels were used for 130 of the 188 metabolites (the 
labels 'unknown' were dropped).
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quential; this was also illustrated by applying the different
simultaneous component methods to two coupled
metabolomics data matrices. Especially, the type of
weighting of the different matrices is essential for simulta-
neous component analysis. These types were shown to be
linked to different specifications of the idea of a fair inte-
gration of the different coupled matrices. A summary
overview of these principles (see Table 2) may be of help
to the data analyst in choosing an appropriate weighting
scheme for the analysis of a data set at hand. As discussed,
such a weighting scheme may be based on a flexible inte-
gration of different principles of fairness.
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