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Abstract
Background: Regulatory motifs describe sets of related transcription factor binding sites (TFBSs)
and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is
a crucial problem in computational biology which includes the issue of comparing putative motifs
with one another and with motifs that are already known. The relative importance of each
nucleotide within a given position in the PFMs should be considered in order to compute PFM
similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is
particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for
representing the interaction among different information sources.

Results: We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral
of the distance of the nucleotides with respect to the information content of the positions. Unlike
existing methods, FISim is designed to consider the higher contribution of better conserved
positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly
generated motifs, and outperforms the remaining methods when handling real datasets of related
motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with
FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust
results than existing approaches.

Conclusion: FISim corrects a design flaw of the most popular methods, whose measures favour
similarity of low information content positions. We use our measure to successfully identify motifs
that describe binding sites for the same TF and to solve real-life problems. In this study the
reliability of fuzzy technology for motif comparison tasks is proven.

Background
One of the main goals in computational biology is to
understand how expression of genes is controlled, and to
unravel gene regulatory networks. Cells control the abun-
dance and activity of proteins by means of diverse factors
in which transcription regulation plays a central role. Mul-
tiple events are involved in the initiation of transcription

of a gene. One of the most important ones is the binding
of several proteins, called transcription factors (TFs), to
DNA near the gene, called transcription factor binding
sites (TFBSs). TFBSs are usually located close to the tran-
scription start site (TSS) of the gene and upstream from it.
Additionally, in some cases TFBSs can be found down-
stream the TSS or, in rare instances, even within exons [1].
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These interactions between DNA and proteins play a cru-
cial role in controlling the expression of the genes by acti-
vating or inhibiting the transcriptional machinery.

The identification of binding sites bound by transcription
factors is therefore a key problem in predicting transcrip-
tion regulation. Sometimes a given TF can bind to only
one TFBS, but usually the same TF can bind to different
DNA sequences and its binding preferences are repre-
sented by means regulatory motifs. The recognition of de
novo TFBSs usually includes the issue of comparing puta-
tive motifs with one another and with motifs that are
already known. Many studies discuss the advantages of
different regulatory motifs representations [2]. Regulatory
motifs are usually presented as matrices representing the
binding affinity of the TFs, derived from a multiple align-
ment of confirmed binding sites for a given transcription
factor. Most existing approaches for computing motif sim-
ilarity represent the motifs by means of position fre-
quency matrices (PFMs) that record the position-
dependent frequency of each nucleotide, or position
weights matrices (PWMs) of score values that give a
weighted match to any given substring of fixed length.
With the emergence of high-throughput technologies (e.g.
ChIP-chip assays, DNA microarrays, etc.) numerous algo-
rithms for finding motifs have appeared (for a review see
[3]). These algorithms usually filter their outputs in order
to improve their significance, e.g. merging similar motifs.
However, the outcome of these tools, particularly when
dealing with large datasets, is usually presented as a large
list of motifs that require further post-processing in order
to make it meaningful. Methods for comparing motifs are
usually applied to give biological significance to the out-
puts of these programs. This is usually done by comparing
the putative motifs provided by these algorithms against
known motifs reported in motif databases such as JASPAR
or TRANSFAC [4,5]. Unveiling these relationships might
be crucial for the design of appropriate biological experi-
ments.

The existing motif discovery algorithms make use of dif-
ferent strategies to overcome drawbacks of other
approaches, usually implying new or different limitations.
One common approach involves using several of these
algorithms and compounding their outputs [6]. In this
case, motifs found by different algorithms can either cor-
respond to the same TFBSs or to different ones, making
the compounded result very noisy and imprecise. This
suggests a need for comparison methods for finding simi-
lar motifs to be either removed or merged into a new
motif.

The most common strategy relies on the assumption that
the columns of the matrices are probability distributions.
Thus, most measures between motifs are based on statisti-

cal techniques that test whether the different columns
belong to the same distribution. Pietrokovski [7] used a
straightforward algorithm based on the Pearson correla-
tion coefficient (PCC). Wang and Stormo [8] proposed
the average log-likelihood ratio (ALLR) to compare
between motif columns. Schones et al. [9] made the com-
parison by means of a Pearson χ2 test (PCST). They also
proposed the Fisher-Irwin exact test (FIET) which pro-
vided poorer results. In addition, the Kullback-Leibler
divergence (KLD) was used to compare motifs [10].
Rather than comparing distributions, Choi et al. [11] used
the euclidean distance (ED) between columns, obtaining
promising results. In addition, Gupta et al. [12] developed
an algorithm (Tomtom) that allows any column-to-col-
umn measure. They compute p-values of the match scores
for the columns of the query motif aligned with a given
target motif. They obtained best results when using eucli-
dean distance. More recently, Pape et al. [13] introduced
the concept of a natural measure between motifs. They
proposed that two motifs should be considered to be sim-
ilar if they yield a high number of overlapping hits on a
random sequence. They considered the number of hits as
a random variable and described a method based on cov-
ariance to measure the correlation between the random
variables of two PFMs.

In recent years, it has been seen that the inherent uncer-
tainty and noise that characterize biological data cannot
always be modeled sufficiently well by probabilistic
approaches and that, consequently, alternative models for
gathering this uncertainty may be required. Furthermore,
in the context of motif comparisons, the utilization of
PFMs as a representation of the binding preferences of the
TFs inherently includes imprecision. In addition to the
usual missing values and noisy data associated with bio-
logical data, there exist some hidden factors apart from the
DNA sequence itself that affect the binding preferences of
TFs, e.g. cooperative binding and chromatin structure
[14]. Moreover, an arbitrary threshold must usually be
chosen in the construction of a PFM itself.

Although existing methods have been shown to work
well, there is still room for improvement. Several proper-
ties are desirable for a motif similarity measure:

• Greater importance should be given to the similarity of
high information content positions of the motifs than to
the similarity of low information content positions.

• Methods should be designed to deal with the inherent
uncertainty associated with motif comparison tasks.

• The use of parameters should be minimized.
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Existing methods fail to follow one or more of these con-
siderations. In general their approaches are not designed
to deal with imprecise scenarios. In addition, these meth-
ods are not designed to consider the higher contribution
of better conserved positions to the binding affinity. Some
methods intrinsically tend to give greater importance to
better conserved positions (e.g. ED). However, this can be
improved. There is therefore a need for similarity meas-
ures for motifs that deal with these kinds of problems. In
this paper we present FISim (Fuzzy Integral Similarity), a
novel similarity measure for comparing two motifs with
one another based on the fuzzy integral with respect to a
fuzzy measure.

Zadeh [15] proposed fuzzy set theory to mathematically
model the imprecision inherent to some concepts. Briefly,
fuzzy set theory allows an object to partially belong to a
set with a membership degree between 0 and 1. Classical
set theory is a special case of its fuzzy counterpart in which
membership and certainty degrees are restricted to either
0 or 1. Fuzzy theory is especially suitable for dealing with
imprecise, noisy and uncertain environments. It has been
successfully applied to many different areas, including
control, pattern recognition, and data mining, e.g. classi-
fication and clustering [16]. In recent years, some works
have appeared that integrate fuzzy solutions to solve bio-
logical problems like microarray analysis, protein loca-
tion, etc., showing promising results [1,17].

One of the most popular tools for information aggrega-
tion is the weighted average method. It is simple, intuitive
and easy to implement. This method assumes that the dif-
ferent information sources are non-interactive/independ-
ent and, hence, their weighted effects are viewed as
additive. Due to some inherent interaction/inter-depend-
encies among diverse information sources, the weighted
average method does not work well in many real prob-
lems. In our case, the affinity of a TF to a specific TFBS is
typically correlated with how well the site matches the
consensus sequence of the corresponding motif. However
not all mismatches at a given position have the same effect
and some interactions between positions have been
observed [18]. In this paper we propose the use of the
fuzzy integral to formally incorporate the different degrees
of importance of the positions according to their infoma-
tion content level. Fuzzy integrals are a type of non-linear
function dependent on fuzzy measures, and have been
shown to be very useful for multiple information source
fusion [19,20]. The combination of multiple information
sources is very valuable with regard to overcoming the
inherent ambiguities present in single information
sources. Fuzzy integrals are capable of representing the
interaction among the information sources (e.g. motif
columns) and of combining them to make the result more
significant than just the sum of the individual compari-

sons, enabling the individual importance of each source
to be considered in the final result (e.g. information con-
tent level).

FISim is intended to meet these requirements. First,
greater importance is given to the similarity of higher
information content positions via the fuzzy integral,
according with the biological binding properties of TFs to
TFBSs (more details in Methods section). Second, it is
based on fuzzy technology and is intended to deal with
the intrinsic uncertainty involved in motif comparison
tasks. Third, FISim does not require the user to have any
previous knowledge, as it does not need any user-pro-
vided parameter. In what follows, we use the term conser-
vation to refer to the information content level of the motif
positions.

As explained above, one of the main applications of a sim-
ilarity measure for motifs is as the basis for clustering pro-
cedures for grouping related motifs together. Previous
studies either make use of hierarchical clustering methods
[21] or define modifications of the PAM algorithm to
obtain the grouping [13]. In this research, we present a
novel clustering methodology termed kcmeans (kernel c-
means) based on kernel methods and the c-means algo-
rithm combined with our FISim measure. Familial Bind-
ing Profiles (FBPs) are generalized binding profiles that
can be used as the representatives of their respective group
of motifs [22]. In our proposed methodology, we auto-
matically compute FBPs for the clusters from a multiple
alignment of the motifs within each cluster. We use
kcmeans to cluster motifs obtained from the JASPAR data-
base [4], and we compare our results with those from
existing approaches.

Results
Distinguishing randomized motifs
Random motifs
We tested the performance of FISim in measuring the dif-
ferences between sets of random motifs. We considered
20 randomly generated seed motifs of a fixed length of 6
nucleotides. Following the JASPAR motif properties, the
information content was uniformly ranged from 1.5 to
10.5 (for some JASPAR motif statistics see additional file
1: "JASPAR motif statistics"). For each one of the 20 seed
motifs, a true dataset was generated containing 10000
motifs. In order to match with the properties of real motifs
[23], each motif in the true datasets was obtained as fol-
lows:

A random motif of a random length between 6 and 14 was
generated. The information content of this random motif
is controlled to be low in order to create a non-conserved
flanking region for the motif. The corresponding seed
motif was sampled from a Dirichlet distribution with a
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random sample size between 25 and 35 [9], which gener-
ated a sample motif of length 6. Finally, starting in a ran-
dom position, the columns in the random motif are
replaced by the sample motif.

Similarly, a false dataset was generated. The process is the
same as for the true datasets but we omitted the insertion
of samples from seed motifs and the information content
is not controlled. Figure 1 shows the power (selectivity) of
the methods in recognizing motifs generated from the seed
motifs when the FDR is 0.01. FISim shows a very good
performance in a random dataset.

Distinguishing conserved and non-conserved motifs
Case study
We wanted to demonstrate the ability of the measures in
discriminating the importance of non-conserved posi-
tions and well-conserved positions. In Figure 2 we show
three motifs. We used the middle one as a reference. It has
well-conserved positions in the odd locations (permuta-

tions of the column vector [10, 2, 2, 2]), and non-con-
served positions in the even locations (from column
vector [4, 4, 4, 4]). This reference motif was compared with
the other two motifs to check how each measure per-
forms:

• Motif A is composed of non-conserved columns. It
therefore matches perfectly with the even positions of the
reference motif. However, the similarity between odd posi-
tions (well-conserved) is expected to be low.

• Motif B is made up of two kind of columns: a) well-con-
served positions in the odd locations that match perfectly
with the corresponding positions of the reference motif,
and b) medium-conserved positions (derived from per-
mutations of the vector [7, 7, 1, 1]) in the odd locations
that differ from the odd positions of the reference motif.

Note that both motifs A and B perfectly match half of the
positions of the reference motif, while they differ in the

Random MotifsFigure 1
Random Motifs. Power of the methods to recognize random PFMs generated by the same distribution.
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other half of the positions. These differences are control-
led for balance, in the sense that the raw distance of the dif-
ferent positions is the same, e.g. raw distance between [10,
2, 2, 2] and [4, 4, 4, 4] (reference motif and motif A differ-
ences) equals to the raw distance between [4, 4, 4, 4] and
[7, 7, 1, 1] (reference motif and motif B differences). We
call raw distance to the sum of the absolute value of the
four differences between the counts of the nucleotides of
the two columns.

We then considered two cases for each of the measures:
case 1 : distance between motif A and the reference motif,
and case 2 : distance between motif B and the reference
motif. As has been explained above, it would be desirable
that the distance for case 2 be lower than the distance case
1, as, unlike motif A, motif B and the reference motif share
the similarities in the most conserved positions of the
motifs. In Figure 2 we show the ratio of the distances for
case 1 against case 2. Results for the measures proposed by
Gupta et al. and Pape et al. [12,13] are not shown since
they require a background dataset to function correctly.
Three of the measures (χ2, KLD and ALLR) failed to cap-
ture the expected differences, and provided a lower dis-
tance for case 1. On the other hand, our measure obtained

a more realistic distance between the motifs, providing a
much lower distance for case 2,

Related motifs
We extended the last experiment to check the performance
of the methods in datasets of related motifs. We generated
a reference motif of length 8 comprising four well-con-
served positions and four non-conserved positions used
as a reference (see previous section for more details). We
then obtained a pair of seed motifs comprising one close
motif and one distant motif with respect to the reference
one. Each of these motifs present three positions dissimi-
lar to the reference motif. The close motif present the dis-
similarities in the non-conserved positions, while the
distant motif present the dissimilarities in the conserved
positions (Figure 3). We generated a true dataset for the
close motif and a true dataset for the distant motif follow-
ing the procedure of above experiments. For each motif in
the datasets we computed its distance to the reference
motif. We determined a correct classification when a
smaller distance is assigned to the close motif, and deter-
mined an incorrect classification otherwise. We arranged
the motifs according to their distances, and from this
arranged set of motifs we computed an ROC (Receiver

Case studyFigure 2
Case study. Ratio of distances. In order to facilitate the visual comparison of the non-conserved positions, fraction-based 
logos are used. We do not show results for the measures proposed by Pape et al. [13] nor Gupta et al. [12] since they need a 
background dataset to work properly.
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Related motifsFigure 3
Related motifs. Three dissimilar positions are observed between the reference motif and both close and distant motif. Again, 
fraction-based logos are used to ease the visual comparison of the non-conserved positions.

ROC curvesFigure 4
ROC curves. ROC curves for the case of three different columns. FISim provides a more consistent classification than the 
rest of the methods.
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Operating Characteristic) curve [24]. ROC curves plot the
percentage of correct classifications as a function of incor-
rect classifications. In Figure 4 we show the ROC curves
obtained from the different approaches. It can be seen
that our FISim method proposed outperforms the other
methods. Similar results are obtained when varying the
number of dissimilar positions of the seed motifs. The
area under the curves (AUC) scores and the logos for the
motifs can be found in the additional file 2: "Related
motifs experiment".

Clustering real data
In order to check the performance of kcmeans in separat-
ing related motifs, we used the freely accessible JASPAR
[4] database for our experiments. JASPAR contains 71
nonzinc-finger motifs divided into 11 classes according to
the structural properties of the transcription factors. The
distribution of the families of the JASPAR motifs can be
found in Table 1. For each motif we computed the core
region, following the suggestions of Schones et al. [9]. In
order to obtain a symmetric matrix, comparisons between
two motifs were made by averaging the similarity between
the core region of the first motif and the second motif, and
the similarity between the first motif and the core region
of the second motif. Once we obtained the similarity
matrix, we applied the kcmeans clustering method as
described in the Methods section. For each cluster, the FBP
is automatically obtained from a multiple alignment of its
corresponding motifs.

To obtain the optimal number of clusters (k) we used the
Silhouette coefficient [25]. The optimal clustering of the
11 motifs classes was found for k = 15. The 15 clusters and
the logos of the motifs within each cluster can be found in
additional file 3: "JASPAR clustering". To ensure the qual-
ity of the clustering, we compared our results with those
provided by Pape et al. [13].

Two identical clusters are obtained: NUCLEAR and bZIP
CREB. The same MADS and HOMEO groups are provided
but we yielded a MADS motif (MEF2A) within the
HOMEO group. MADSs motifs present the consensus
CCA*A, while HOMEO motifs present the consensus

ATTA. MEF2A motif contains the consensus ATT showing
that the FISim measure certainly gives greater importance
to better conserved positions (for sequence logos see addi-
tional file 3: "JASPAR clustering"). We presented the REL
family in two clusters, while in Pape et al. [13], this
appears together in the same cluster. We obtained the
same two TRPs clusters, but added one extra TRP motif
(MYB.ph3) to one cluster which Pape et al. [13] consid-
ered as an outlier. The MYB.ph3 motif shares the consen-
sus AAC*G with the motifs in its cluster. The same bZIP
cEBP group is provided, although we added six out of the
seven ETSs motifs. Here, the common high degree of con-
servation of the consensus TTCC forces them to belong to
the same cluster. We yielded the same two bHLH clusters,
but added one bHLH motif (Arnt-Ahr), considered as an
outlier in Pape et al. [13], as well as the remaining ETS
motif to one of the clusters. Pape et al. [13] presented the
FORKHEAD and HMG groups in one single cluster in
comparison with three homogeneous clusters obtained.
Finally, the heterogeneous cluster that we produced com-
prises one extra FORKHEAD motif Foxd3 that does not
contain the consensus GTTTA present in the FORKHEAD
group.

In short, we obtained 15 clusters (eleven homogeneous)
and found eight outliers (i.e. motifs not clustered), com-
pared to 14 clusters (ten homogeneous) and twelve out-
liers in Pape et al. [13]. Hence, we found more motifs in
the final clustering, reducing the number of non-classified
motifs, and maintaining a homogeneous structure. Figure
5 shows the sequence logos of one REL group as well as its
corresponding FBP.

Motif identification in co-regulated genes
As discussed in previous sections, one of the most com-
mon applications of a motif similarity measure is its use
for comparing putative motifs of co-regulated genes
obtained from motif discovery algorithms to those
reported in motif databases such as JASPAR or TRANS-
FAC. In this section we present the results of applying
FISim to this workflow with the data studied in [26].

The aim of this study was to classify breast carcinomas
based on their gene expression profiling derived from 85
microarray experiments and to correlate tumor character-
istics to clinical outcome. The authors classified the tumor
samples into two main branches, each of these separated
into three subgroups. For this experiment, we selected the
"Luminal Subtype A" subgroup, which contains 15 clones
(13 genes) clearly involved in pathological processes of
breast cancer. This cluster includes genes implicated in
transcription, development and differentiation such as
ESR1, GATA3, LIV1, and XBP1 (see additional file 4:
"Motif discovery data" for a whole list of genes).

Table 1: JASPAR family distribution

Family Number of motifs Family Number of motifs

ETS 7 TRP 5
FORKHEAD 8 HMG 6
bHLH 10 HOMEO 8
bZIP EBP 4 NUCLEAR 8
MADS 5 bZIP CREB 4
REL 6

Summary of the JASPAR classification. There exist 71 motifs divided 
into 11 families.
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We applied the motif discovery tool WebMOTIFS [27] to
further investigate regulation of the predicted cluster of
genes. We used WebMOTIFS to find putative motifs in the
promoter regions of these 15 clones, setting the options to
default, i.e. selecting AlignACE, MDscan, MEME and
Weeder methods [28-31] and no Bayesian information.
For each method, we selected the most significant motifs
and compared these to the publicly available JASPAR
motifs using FISim. Some of the most similar motifs
found in JASPAR include ESR1, CREB1, TAL1-TCF3, TP53,

NFKB1 and PAX5. For a complete list of motifs, as well as
their similarities with JASPAR motifs, see the additional
file 4: "Motif discovery data".

As expected, the link between these motifs is the estrogen
receptor alpha (ESR1) gene. Estrogens play an important
role in both female and male reproductive function, as
well as in female cancers, and they have multiple effects
on the nervous, skeletal, and cardiovascular systems. ESR1
is over-expressed in the "Luminal Subtype A" subgroup
together with, among others, the GATA-3, LIV-1 and XBP1
genes. Previous studies described how these genes are
coordinately expressed with ESR1 in breast cancers
[32,33]. A wide variety of non-DNA binding molecules,
called coactivators, have been identified that are able to
enhance ligand-induced activity of steroid receptors,
including ESR1, through direct or indirect binding to
these receptors [34]. Among them, CREB-binding protein
is critical for ligand-induced, nuclear receptor-mediated
transcription activation [35]. In addition, there is evi-
dence that estrogen and progesterone together with TGF-
β signaling are necessary for maintenance of p53 activity
in the mammary epithelium [36], and for an ESR-medi-
ated inhibition of the NFKB signaling pathway. NFKB tar-
get genes are significantly elevated in ESR-negative versus
ESR-positive breast tumors, which indicates a potential
crosstalk between NFKB and ESR [37].

Discussion
We have introduced a new measure of similarity for regu-
latory motifs called FISim. The uncertainty associated
with motif comparison tasks makes fuzzy concepts partic-
ularly suitable for handling this kind of data. FISim is
based on the fuzzy integral and takes advantage of the
fuzzy concepts to overcome some of the known difficul-
ties that arise in measuring motifs tasks. There are three
main differences from other approaches: i) it considers
not only the distance between the PFMs columns, but also
the relative importance of each occurrence within each
column, ii) it enables the inherent uncertainty of the
PFMs to be handled, and iii) it does not make use of any
user-provided parameter.

A simple experiment shows how other measures fail in
capturing realistic differences, while FISim provides good
results (Figure 2). These results are confirmed on extend-
ing the experiment to long datasets (Figure 4). Further-
more, it is noteworthy how the naive euclidean distance
[11] inherently appears to assign greater importance to
better conserved positions (see Figure 2). This might
explain why [12] and [21] found the best performance of
their methods when using the euclidean distance to com-
pare the motifs.

REL group retrieved by kcmeansFigure 5
REL group retrieved by kcmeans. The FBP is computed 
from the multiple alignment of the TFs Dorsal_1 and RELA.
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As explained above, FISim is based on the fuzzy integral
theory. Fuzzy integrals have been proven to be very suita-
ble for information fusion. The combination of the evi-
dence supplied by the information sources (nucleotide
frequencies) and the importance of each subset of infor-
mation sources (nucleotide conservation level) is very
interesting in motif recognition tasks. When dealing with
long random datasets, we show that FISim provides excel-
lent results in terms of motif recognition, similar to those
obtained applying existing methods. This was expected,
since the probability of overlapping within random
motifs is low, which facilitates the discrimination of the
origins of the motifs. Some methods perform poorly
when the information contents are low (e.g. ALLR and
PCC), however, FISim also provides good results under
these circumstances.

This task gets more complicated when motifs are interre-
lated. In this case, it is noteworthy that the Tomtom algo-
rithm provides very good results for higher information
content values. However, FISim provides better results,
especially when the information content of the motifs is
lower, i.e. when it is more difficult to recognize the motifs.
This makes FISim particularly interesting when dealing
with real problems. For example, as motif discovery algo-
rithms become more and more powerful, motifs with
lower information content will be produced as putative
motifs and these will need to be tested.

Another advantage of our method is that it does not
require any additional parameter. This makes FISim a
more robust and fully automated method, thus avoiding
the need to select parameters via expert knowledge or
trial-and-error approaches.

We used FISim to investigate the motifs found by popular
motif discovery algorithms in a well-known set of co-reg-
ulated genes corresponding to the subgroup "Luminal
Subtype A" of breast carcinomas.

Comparison of the obtained motifs with those reported in
JASPAR suggested that the ESR1 gene plays a crucial role
in this kind pathology. Furthermore, ESR1 interacts with
other motifs also present among the most significant
motifs obtained. These findings confirm previous studies
and show the reliability of FISim in real-life problems.

Our proposed cluster methodology (kcmeans) makes use
of FISim and the kernel theory to avoid problems found
when applying other classical methods (i.e. definition of
a medoid, data order dependence, etc.). The study of the
performance of kcmeans in real data shows promising
results in terms of accuracy and cluster compactness.
Comparison of our results with those from similar exper-

iments shows a better global behavior and a more accu-
rate grouping of the motifs.

Conclusion
In the present study, we introduce FISim, a new similarity
measure for motifs and a novel clustering methodology,
based on the fuzzy integral and on kernel technology
respectively. Our main objectives were to favour the influ-
ence of the better conserved positions of the motifs and to
exploit the tolerance for imprecision and uncertainty of
fuzzy technology. Our measure takes into account the rel-
ative importance of each nucleotide within a given posi-
tion. We show that FISim outperforms other approaches
in motif recognition tasks, and prove how it can be suc-
cessfully applied to day-to-day research problems. As
fuzzy technology is especially suitable for problems that
involving imprecise concepts, we are currently working on
a fuzzy algorithm that applies the proposed methodology
for finding de novo motifs in large sets of DNA sequences.

Methods
In this section we present our similarity measure and the
proposed cluster methodology, and we introduce the con-
cepts used for their definition. A review of the alternative
approaches for measuring motif similarities can be found
in the additional file 5: "Methodological background".

Fuzzy Measures
Let X = {x1, x2...,xn} be a finite set, let A, B ⊆ X, and let
℘(X) the power set of X. A fuzzy measure, μ, is a real val-
ued function μ : ℘(X) → [0, 1], satisfying the following
properties:

The reader should note that the additivity condition of
probability theory is relaxed in property 2 to the condition
of monotonicity.

For a fuzzy measure μ, let μ({xi}) = μi. The mapping xi →
μi is known as fuzzy density function. The fuzzy density of a
single element xi ∈ X, μi, can be interpreted as the impor-
tance of xi in determining the set X.

Due to the nature of the definition of a fuzzy measure μ,
the measure of the union of two disjoints subsets cannot
be directly computed from the component measures. In
other words, the fuzzy measure value of a subset is not just
the sum of the measures of its elements. Therefore, in
order to define a fuzzy measure one needs to know not
only the individual fuzzy densities of the elements of the
measured set, but also the measure for each combination
thereof. This information can be supplied by an expert or

1 0 1. ( ) ( ) .  and μ μ∅ = =X

2. ( ) ( ) .  if μ μA B A B≤ ⊆
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extracted from the problem definition. However, when
dealing with sets of numerous elements this task might
become noisy, tedious or even unfeasible. A possible solu-
tion for this problem is the use of λ-fuzzy measures

λ-Fuzzy Measures
λ-fuzzy measures [19] satisfy the properties of fuzzy meas-
ures plus the following additional property: for all A, B ⊂
X and A ∩ B = ∅,

Furthermore it can be proved that λ can be obtained by
solving:

Therefore, applying equation (1) and (2) one will only
need to know the individual fuzzy densities of the ele-
ments, μi, (i = 1,...,n), in order to construct the fuzzy meas-
ure.

Fuzzy Integral
Let X = {x1,...,xn} be a finite set representing a set of n
information sources. Let h : X → [0, 1] represent a function
that matches each element of X to its evidence. Let's sup-
pose that h(x1) ≥ h(x2) ≥ � ≥ h(xn), if it is not the case for
any element, then reorder X so that the relation holds, and
let μ : ℘(X) → [0, 1] be a fuzzy measure. Then the fuzzy
integral of h with respect to fuzzy measure μ is

where Ai = {x1,...,xi}. The reader should note that if μ is a
λ-fuzzy measure, then μ(Ai) can be obtained applying
equation (1).

The fuzzy integral considers the evidence supplied by each
element of a given set and the worth of each subset of ele-
ments (by means of a fuzzy measure) in its decision mak-
ing process. This combination of the importance of the
sources and the information provided makes the fuzzy
integral appropriate for information fusion. Due to its
ability to deal with uncertainties associated with the data
extracting and processing procedures, it has been widely
applied in pattern recognition and classification [19,20].

FISim
Using PFMs for the representation of the motifs, we pro-
pose a novel column-to-column motif similarity measure
called FISim (Fuzzy Integral Similarity). FISim is based on

the fuzzy integral of the distances of the nucleotide fre-
quencies with respect to the level of conservation of the
positions. In our case, the binding preferences of each
position (column) are taken as the fuzzy membership
degrees to sets of the four DNA nucleotides (A, C, G, T).
The reader should note that uniform background distribu-
tion is assumed. When dealing with a biased background,
PFMs should be modified as stated in [18].

Let  and

 be the two columns to be com-

pared. Let

 be

the set of information sources. To simplify the notation
we label the pairs with a single letter so that X = {A, C, G,
T}.

As was stated above, fuzzy integrals need of a function to
be integrated (the so-called h function). h can be defined

as , where i = {A, C, G, T}, i.e. the sim-

ilarity of the nucleotide i in the two columns C1 and C2.

In addition, a fuzzy measure is needed to determine the
relative importance of the subset of elements being con-
sidered. Taking advantage of the properties explained

above, we can define a λ-fuzzy measure μ, constructed

from the fuzzy densities of the individual elements μi. In

our case, , where i ∈ {A, C, G, T}, i.e. the

maximum level of conservation of the two nucleotides,
which favors the importance of better conserved posi-
tions. At this point, we can just apply equation (2) to

obtain λ, and equation (1) to finally obtain the fuzzy

measure μ. It can be easily proven that μ fulfils properties

1 and 2 of the fuzzy measures. Once we have h and μ, it is
a straightforward task to obtain the fuzzy integral apply-
ing equation (3).

Similarity between two PFMs comprising multiple col-
umns needs to be constructed from the aggregation of the
column-wise similarities. We proceed by averaging the
similarities of the columns considering the best of all pos-
sible alignments between the PFMs as well as their
reversed complementary sequences. This technique has
been shown to work well in previous approaches [9,10].
The algorithm pseudocode can be found in Figure 6. The
source code can obtained from http://genome.ugr.es/
fisim. We then provide an example of the computation.

μ μ μ λμ μ λ( ) ( ) ( ) ( ) ( ), .A B A B A B∪ = + + > − for some 1

(1)

λ λμ+ = +
=

∏1 1
1

( ).i

i

n

(2)

e h x A
i

n

i i=
=

max[min( ( ), ( ))],
1

μ (3)

C A C G TC C C C1 1 1 1 1
= ( , , , )

C A C G TC C C C2 2 2 2 2
= ( , , , )

X A A C C G G T TC C C C C C C C= {( , ),( , ),( , ),( , )}
1 2 1 2 1 2 1 2

h i i iC C( ) | |= − −1
1 2

μ i
C Ci i= max( ),1 2
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FISim example

Let C1 = (0, 0.9, 0.1, 0), C2 = (0.1, 0.05, 0.05, 0.8) the col-

umns from the PFMs. FISim(C1, C2) is obtained as fol-

lows: First, we need to compute h. Following the formula

explained above . Thus, h(A) = 1 - |0 -

0.1| = 0.9, h(C) = 1 - |0.9 - 0.05| = 0.15, h(G) = 1 - |0.1 -
0.05| = 0.95, h(T) = 1 - |0 - 0.8| = 0.2. Next, h is arranged
in a decreasing order: {G, A, T, C}. From here, the sets Ai

= {x1,...,xi} can be obtained: A1 = {G}, A2 = {G, A}, A3 =

{G, A, T}, and A4 = {G, A, T, C}.

For the second part of the fuzzy integrals, a fuzzy measure

μ, is needed. Since we have defined a λ-fuzzy measure, we

can obtain μ from the individual importances μ({xi}) = μi.

As we explained above . Hence μA = 0.1,

μC = 0.9, μG = 0.1, and μT = 0.8. Next, we need to obtain

the value for the parameter λ. This can be done by solving
equation (2), for example by applying Newton's method.

In our case λ = -0.979. Now, it is easy to compute μ(Ai) by
applying equation (1).

μ(A1) = μ({G}) = μG = 0.1, μ(A2) = μ({G, A}) = μ({G}) +
μ({A}) + λμ({G})μ({A}) = 0.1 + 0.1 - 0.979·0.1·0.1 =
0.190. Similarly, we obtain μ(A3) = 0.841, and μ(A4) = 1.

Now, we are ready to compute the value of the fuzzy inte-
gral by solving equation (3). In our case it reduces to
FISim(C1, C2) = max(0.1, 0.190, 0.2, 0.15) = 0.2. Table 2
shows a summary of the computation.

The reader should note that FISim will assign a high sim-
ilarity between two columns when their similar values
also correspond to well-conserved nucleotides. If a well-
conserved position in one column (say 0.9) clearly differs
from its corresponding position in the other column (say
0.2), the high value for the importance between these
positions (0.9) is ignored. On the contrary, the similarity
(0.3) will be the value chosen to proceed with the fuzzy
integral computation explained in the previous section.

The reader might ask what are the advantages of FISim

over the weighted sum: . Apart from benefits

such as the combination of multiple information sources
discussed in previous sections, FISim captures much more
effectively the concept of similarity in this context, as can
be seen in the example.

Computing the weighted sum results: WA(C1, C2) =
0.9·0.1 + 0.15·0.9 + 0.95·0.1 + 0.2·0.8 = 0.48. This score
gives the wrong impression that C1 and C2 present
medium similarity. On the other hand, the result pro-
vided by FISim (0.2) is much more realistic, as the similar-
ity between C1 and C2 is expected to be low.

Kernel C-Means
One of the main applications of motif measures is that
they can be incorporated into clustering procedures for
grouping related motifs. There exist two previously pro-
posed approaches: application of hierarchical clustering
methods [21]; or adaptation of the PAM (Partition
Around Medoids) algorithm [13].

Hierarchical methods present problems when dealing
with noisy data. They also suffer from a lack of robustness
and solutions may be dependent on the data order. More-
over, PAM implementations have the drawbacks that they
can converge to local optima and cannot identify clusters

h i i iC Ci
( ) | |= − −1

1

μ i
C Ci i= max( ),1 2

h i ii

n
( )μ=∑ 1

FISim pseudocodeFigure 6
FISim pseudocode. This figure shows the pseudocode of 
the algorithm followed to compute FISim.

Table 2: FISim example

i h(i) μi Ai μ(Ai)

G 0.95 0.1 {G} 0.1
A 0.9 0.1 {G, A} 0.190
T 0.2 0.8 {G, A, T } 0.841
C 0.15 0.9 {G, A, T, C} 1

Summary of the computation of the fuzzy integral for the given 
example (λ = -0.979). In bold are the minimum between h(i) and μ(Ai). 
The fuzzy integral value is the maximum value of such minimums, i.e. 
0.2.
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that are non-linearly separated in the input space. We pro-
pose a novel clustering methodology called kcmeans (ker-
nel c-means) based on the well-known c-means
algorithm, kernel methods, and our FISim measure.

The c-means algorithm uses the distances between the
objects to group them into clusters. As FISim is a similarity
measure, we first need to convert the similarities into dis-
tances. If the similarity (S) is an inner product, we can
compute the distance (D) between objects i and j as Dij =
Sii + Sjj - 2 * Sij.

Furthermore, if we want a similarity S to be an inner prod-
uct, we have to force it into a kernel. According to the ker-
nel theory, we can obtain a kernel matrix S' preserving the
positive eigenvalues and corresponding eigenvectors of S.
The reader should note that this transformation implies
losing some information, however it is expected to be the
least significative. The clustering methodology we pro-
pose works as follows: we obtain a symmetric matrix of
motifs similarities S using FISim, we eliminate negative
eigenvalues to produce a kernel S', which is an inner prod-
uct. Finally, we compute the distance matrix Dij = Sii + Sjj -
2 * Sij and then apply c-means to cluster. A review of ker-
nel methods and of the c-means algorithm can be found
in the additional file 5: "Methodological background".
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