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Abstract

Background: It is extremely important and challenging to identify the sites that are responsible
for functional specification or diversification in protein families. In this study, a rigorous
comparative benchmarking protocol was employed to provide a reliable evaluation of methods
which predict the specificity determining sites. Subsequently, three best performing methods were
applied to identify new potential specificity determining sites through ensemble approach and
common agreement of their prediction results.

Results: It was shown that the analysis of structural characteristics of predicted specificity
determining sites might provide the means to validate their prediction accuracy. For example, we
found that for smaller distances it holds true that the more reliable the prediction method is, the
closer predicted specificity determining sites are to each other and to the ligand.

Conclusion: We observed certain similarities of structural features between predicted and actual
subsites which might point to their functional relevance. We speculate that majority of the
identified potential specificity determining sites might be indirectly involved in specific interactions
and could be ideal target for mutagenesis experiments.

Background

Proteins within a homologous family usually share a 'gen-
eral' function while functional specificities may vary
within a family. Proteins belonging to subgroups (sub-
families) may evolve slightly different functions and dif-
ferent substrate specificities while maintaining an overall
function of a family. Positions that are conserved within
subsets of closely related proteins in a given family, but
are variable between the subsets, are likely to be involved
in functional specificity [1-4]. These sites generally deter-
mine the protein specificity either by binding to specific
substrate or through interaction with specific protein part-
ner. In many cases, comparative techniques allow one to
assign common specificity to groups of proteins, and thus

provide data for analysis of specificity determining resi-
dues in protein sequences [5].

Several computational techniques have been designed to
predict specificity determining sites. The evolutionary
trace method identified invariant specific residues by par-
titioning the phylogenetic tree into subgroups of similar
sequences [6,7]. Various site-specific conservation scores
have been offered to distinguish conserved functionally
important sites from the background of neutral changes,
such as relative entropy, mutual entropy or "sequence har-
mony" [8-17]. Other methods have overcome the limita-
tion of requirement of pre-defined subgrouping by
simultaneous identification of optimal groups and spe-
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cific conserved positions [18,19]. In our previous study
[20] we reported a method that encodes the specific con-
servation pattern within and between subfamilies using
amino acids' physico-chemical properties and the evolu-
tionary rates.

Despite several recent efforts, successful prediction of spe-
cificity determining sites (called "subsites" hereafter) still
remains to be a difficult task. On one hand, the lack of
success might be caused by the limited availability of
experimentally characterized subsites which, in turn, can
make the methods to be biased toward the prediction of
certain types of subsites. Moreover, the specificity may be
affected by subtle changes in residue stereochemistry
which can be difficult to detect and in many cases subsites
are located on flexible or disordered loops that are diffi-
cult to characterize. Therefore, a comparative analysis of
subsite prediction methods on a larger, comprehensive
dataset will provide a reliable evaluation revealing the
weak and strong points of each method. Additionally, a
meta-prediction approach combining the results from
best performing methods would be also useful for identi-
fication of new potential subsites. It should be mentioned
that division of protein families into subfamilies is also a
crucial step and requires careful manual intervention.
However, reasonable success of several recent methods
[9,18,21,22] is encouraging to advocate use of automated
subgrouping in specificity site prediction.

In this study, prediction performances of almost all available
methods were tested and validated using a comprehensive
dataset comprising 20 protein families for which experimen-
tal data are available for subsites. Several additional potential
subsites were also predicted by combining the results of
methods showing the best performance on the benchmark
of 20 families (using our dataset), SPEER [20] GroupSim
[16] and MultiRELIEF [17]. Potential subsites, commonly
predicted either by all three best methods (C3 sites) or by any
two (C2 sites) can be excellent targets for mutagenesis stud-
ies to reveal specificity determining sites. We also showed
that the analysis of structural characteristics of actual and pre-
dicted subsites might provide the means to validate the pre-
diction accuracy.

http://www.biomedcentral.com/1471-2105/10/207

Results

Performance evaluation of subsite prediction methods
Multiple sequence alignments of 20 families (validation
dataset) were used to identify actual subsites. Experimen-
tally supported subsites (195 actual subsites) from these
families were considered as gold standards for the evalua-
tion of performance of five prediction methods, namely
SPEER [20] GroupSim [16] and MultiRELIEF [17], SDP-
pred [12] and SPEL [18]. The prediction sensitivities of
these five methods are shown (Figure 1) as Receiver Oper-
ating Characteristics (ROC) curves where sensitivity is
plotted against the error rate (percentage of false positive).
ROC,, statistics for individual methods are also provided
in Table 1. As can be seen from Figure 1 and Table 1,
SPEER, GroupSim and MultiRELIEF clearly perform better
than the other two methods with their sensitivities at 5%
error rate being 54, 38 and 40 respectively (Additional file
1). Similar trend is also observed in PR (precision-recall)
curves where precision (TP/TP+FP) for each method is
plotted on the y-axis, and recall (TP/TP+FN) is plotted on
the x-axis (Additional file 2). It should be mentioned that
the SPEL method does not take full advantage of the
curated subfamily clustering provided in the validation
testset since SPEL performs the clustering automatically
along with the subsite identification. If there is no infor-
mation on subfamilies, the automatic clustering is advan-
tageous, but this is not within the scope of our paper to
analyze such cases.

Prediction of potential subsites and their structural
properties

Based on the performance assessment using the validation
dataset (195 subsites from 20 family alignments) three
best performing methods, namely SPEER [20] GroupSim
[16] and MultiRELIEF [17] were further employed to iden-
tify new potential subsites. Results (top 15 predicted sites
excluding the actual subsites) from these three methods
were compared and sites that were commonly predicted
by all three methods (C3 sites) or by any pair of methods
(C2 sites) were selected as new potential subsites. Addi-
tional file 3 provides a list of such 264 new potential sub-
sites (135 C3 sites, 129 C2 sites) for all families.

Table I: Comparison of ROC, statistics for different methods (see Methods for definition).

Methods ROC ROC,, ROC,,, ROC, 00 ROC;;y
SPEER 0.12 + 0.009 0.22+0.014 0.40 £ 0.011 0.54 + 0.009 0.80 + 0.005
GroupSim 0.08 + 0.011 0.20 £ 0.013 0.36 £ 0.01 I 0.53 + 0.009 0.78 + 0.005
MultiRELIEF 0.11 £0.010 0.16 + 0.009 0.32+0.014 0.50 + 0.011 0.78 + 0.006
SDPpred 0.04 + 0.005 0.08 + 0.008 0.22 + 0.008 0.33 + 0.005 0.70 + 0.007
SPEL* 0.02 £ 0.010 0.06 + 0.008 0.16 £0.010 0.30 £ 0.012 0.62 + 0.005

* SPEL algorithm performs automatic clustering along with the subsite identification.
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Comparison of prediction performances. ROC-curves for prediction of subsites are shown for SPEER, GroupSim, Mul-
tiRELIEF, SDPpred and SPEL methods. Sensitivity and error rates are estimated based on the number of true positives (cor-
rectly predicted actual subsites) and false positives (predicted sites which are not actual subsites) found at each score cutoff.
Sensitivity (TP/TP+FN) is defined as a number of true positives (TP) found at each score threshold divided by the sum of true
positives and false negatives (FN), where false negatives are defined as actual subsites below the score threshold. Error rate
(FP/FP+TN) is estimated as the number of false positives (FP) divided by the sum of false positives and true negatives (TN, non-

subsites below the score threshold).

Since the sets of C3 and C2 sites do not include actual sub-
sites and are not assigned any combined rank and score
(this would require combining scores from different
methods which is a non-trivial task), it is difficult to vali-
date the performance of the ensemble approach. To esti-
mate the performance, we defined subsites predicted by
three or two methods (top 15 predicted sites including
actual subsites; C3 and C2 sites). Altogether we identified
141 such C3 and 129 C2 sites, calculated the PR statistics
and compared it with each individual method (Addi-
tional file 4). Expectedly, C3' and C2' sites provide better
reliability (precision) than sensitivity (recall) compared to
individual prediction methods.

Distribution of spatial distances

Understandably, experimental validation is the most
authentic verification process for the predicted subsites.
But, in the absence of such rigorous protocol one alternate
way would be to examine structural features which are
characteristic for actual subsites (such as the distribution

of their spatial distances, solvent accessibility, secondary
structural content and hydrogen bonding patterns) and to
compare them with the characteristic structural features of
predicted subsites.

Figure 2 shows the distribution of spatial distances
between actual and between potential subsites (Figure
2a); distances of actual/potential subsites to the specific
ligand/substrate (Figure 2b). As can be seen from Figure
2a, the mode of the pairwise distance distribution of the
actual subsites is shifted toward lower distances compared
to C3-C3 distances and this shift is more pronounced with
respect to C2-C2 distances. Indeed, majority of site pairs
fall within 20 A and within this distance range the distri-
bution means are statistically different (p-value << 10-5).
Interestingly enough, for distances less than 20 A, the
more reliable prediction method is used (C3 instead of C2
sites), the closer potential subsites are to each other and to
the distance distribution of actual subsites. For distances
larger than 20 A the situation is different and the actual
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Figure 2

Distribution of spatial distances between actual and potential subsites. (a) and distances of actual/potential subsites
to the specific ligand/substrate (b) for validation test set. Distances were calculated using the nearest protein and ligand/cofac-
tor atom coordinates supplied in the individual PDB files. Potential subsites, commonly predicted either by all three best meth-
ods are called C3 sites or by any two methods are called C2 sites.

subsite distance distribution has a longer tail correspond-
ing to subsites located at large distances from each other.

Figure 2b shows the spatial distances of actual and poten-
tial subsites from the specific substrate/ligands. As can be
seen from this figure, the larger fraction (66%) of actual
subsites is found to be in close contact (<= 10 A) to sub-
strates/ligands compared to C3 and C2 sites (52 and 46%
respectively). This difference is even more prominent at a
closer range (<= 5 A) where 43% of actual subsites are
found compared to only 17% C3 and 12% C2 sites. This
might indicate the possibility of indirect interactions of
C3 and C2 sites with the specific substrate/ligands. It
shows that combining more reliable methods' predictions
(C3 sites) provides better agreement with the actual sub-
site-ligand distance - another indication that the analysis
of distance distribution patterns can provide the means to
validate the prediction accuracy.

Structural properties of actual and predicted subsites
Important structural characteristics such as solvent acces-
sibility, secondary structural content and hydrogen bond-

ing patterns of actual and predicted subsites were
analyzed and compared. Figure 3 shows the solvent acces-
sibility, secondary structure content and hydrogen bond-
ing patterns of actual subsites (a), C3 (b) and C2 (c) sites.
Overall, the distributions of structural properties of poten-
tial subsites are not very different from that observed for
actual subsites or all sites. As can be seen from this figure,
subsite prediction methods tend to over predict sites in
beta-strands and under predict sites in solvent accessible
areas and coils which are less evolutionary conserved than
protein cores.

Examples of predicted subsites

Actual and potential subsites are shown for four protein
families in Figure 4. For the IDH_IMDH family, SPEER,
GroupSim and MultiRELIEF identified 10, 8 and 6 actual
subsites, respectively, at 15% error rate. However, three
other sites (N305, H229, and A323) were commonly pre-
dicted by all three methods (within the top 15 predicted
sites excluding actual subsites). Figure 4a maps the actual
subsites along with sites that were commonly predicted by
all three (three C3 sites; colored in green) or any two

Page 4 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:207

http://www.biomedcentral.com/1471-2105/10/207

B Solventburied L ;[':llx d B Hydrogenbonded
B Solvent accessible = Coi’;" @ Nothydrogen bonded

Figure 3

Structural properties of actual and potential subsites (C3 and C2 sites). Solvent accessibility, secondary structure
content and hydrogen bonding patterns for actual subsites (A), C3 (B) and C2 sites (C) were computed from the individual
protein structures using the JOY package [28]. Structural property values extracted from all residues in our dataset are men-

tioned within parenthesis.

methods (nine C2 sites; colored in blue) onto 3D-struc-
ture of a representative protein from IDH_IMDH family.
Spatial mapping of the potential subsites shows that two
(N305 and A323) of the three C3 sites, reside within close
distance (<= 10 A) with respect to the specific cofactor
NADP (shown in cyan) or specific ligand, isocitrate
(shown in purple). In addition, five C2 sites (G101, L103,
T104, E154, and Y308) are also found to be less than 10
A apart in space from the NADP or isocitrate molecule.

For nucleotidyl cyclase family both actual subsites were
identified by SPEER, GroupSim and MultiRELIEF within
15% error rate (Figure 4b). Eight potential C3 sites and
three C2 sites fall within 10 A distance from the specific
activator (forskolin; shown in purple) or P-site inhibitor
molecules (2'-deoxy-3'-AMP and pyrophosphate; shown

in cyan).

SPEER and GroupSim successfully predicted both actual
subsites (D189 and A221) for the serine protease family
while MultiRELIEF failed to identify one subsite (D189)
within 15% error rate. However, there are seven sites
besides actual subsites that were commonly predicted by
all three methods. Figure 4c provides a representative
structure of trypsin with the actual subsites and com-
monly predicted subsites (C3 and C2 sites). All C3 sites
reside less than 10 A apart from the specificity determin-
ing serine residue (marked in purple) whereas three C2
sites reside within 5 A from the serine residue.

Finally, nine C3 and seven C2 sites were identified for the
lactate-malate dehydrogenase (LDH_MDH) family. Fig-
ure 4d shows a representative structure of lactate dehydro-
genase complexed with cofactor, NAD (marked in cyan in
Figure 4d) and ligand, oxamate. Predicted C3 and C2 sites
were also projected onto the lactate dehydrogenase struc-
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Figure 4

Actual and potential subsites are mapped onto the representative 3D structures from four families in the vali-
dation dataset. Actual subsites are shown in space fill model and colored in red while subsites that were commonly pre-
dicted by all three methods (C3 sites) or by any pair of methods (C2 sites) are shown in stick and colored in green and blue,
respectively. Specific ligands and/or cofactors are shown in purple and cyan. a) IDH_IMDH family (1 Al2; ligand: isocitrate;
cofactor: NADP) b) nucleotidyl cyclase family (1 CS4, chain A; activator: forskolin; P-site inhibitor: 2'-d-3'-AMP.PPi) c) serine
protease family (5PTP; ligand: specificity determining serine residue at position 195) and d) LDH_MDH family (9LDT, chain A;
ligand: oxamate; cofactor: NAD). The figure was generated using the PyMOL software [23].

ture. 3D structural images were generated using the
PyMOL software [23].

Prediction of potential subsites using automatic family
clustering

To check whether the use of automatic family clustering
and the lack of manual curation would affect the subsite
prediction accuracy, we predicted subsites for six protein
families obtained from Proteinkeys database (Additional

file 5; prediction dataset) that have automatically defined
subgroups with at least three protein sequences. Three
best performing prediction methods (SPEER, GroupSim
and MultiRELIEF) were applied to this testset to identify
potential new candidate subsites for specificity determina-
tion (Additional file 6). Since there is no information on
the actual subsite locations for the automatically deter-
mined alignments from "prediction testset", we applied
structural analysis of C3 and C2 sites which, as was shown
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in the previous section, may be indirectly used to validate
the subsite prediction accuracy. Potential subsites for the
six families as suggested by common prediction of all
three methods or any two methods are listed in Addi-
tional file 6. In total, 24 C3 and 47 C2 sites were identified
for the six families. These identified C3 and C2 sites could
be extremely important in determining the specificity and
therefore can be ideal target for mutagenesis experiments.
Figure 5 provides projection of these predicted C3 and C2
sites onto representative structures from six families.
Commonly predicted C3 and C2 sites are shown in space
filling model and are colored in green and blue, respec-
tively. 3D structural images were generated using the
PyMOL software [23].

Spatial distances among the C3 and C2 sites were also
analyzed. It has been observed that 90% of C3 sites are
located within 20 A distance with respect to each other
(Additional file 7) whereas 80% of C2 sites reside within

http://www.biomedcentral.com/1471-2105/10/207

20 A distance. Overall, we observed similar distributions
of structural properties of potential (C3 and C2) subsites
from prediction testset and C3 and C2 sites identified
from validation testset (Figure 2, Additional file 8). One
exception is the solvent accessibility which tends to be
larger for potential sites from the prediction testset.

Discussion

It is extremely difficult task to detect features that are
responsible for protein functional divergence and further
differentiate evolutionary changes leading to new specifi-
cities. Indeed, despite numerous efforts in predicting the
specificity determining sites, the accuracy remains limited
as most methods are not sensitive enough to detect small
variations between subsites. An alternate approach to the
underlying problem has been examined here, where sev-
eral prediction methods were simultaneously employed
for detection of subsites within protein families. This
ensemble approach combining best performing methods

Figure 5

Projection of potential subsites onto the representative structures of families in prediction testset. Potential
subsites commonly identified by three methods, SPEER, GroupSim, and MultiRELIEF are mapped onto representative struc-
tures from the following families: a) ADP specific phosphofructokinase/glucokinase family (1U2X); b) DUF498/DUF598 domain
family (IIHN); c) guanine nucleotide exchange factor (GEF)-Ras like GTPases family (INVX); d) p21-Rho binding domain family
(I CEE); e) Raf-like Ras-binding domain family (1C1Y) and f) Ras association (RalGDS/AF-6) domain (ILFD) family. Commonly
predicted C3 and C2 sites are colored in green and blue, respectively. The figure was generated using the PyMOL software
[23].
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not only validates the performance of the available predic-
tion methods but, also provides reliability of the new pre-
diction. The performance of five methods, namely, SPEER
[19] GroupSim [15], MultiRELIEF [16], SDPpred [11],
and SPEL [17] were evaluated in 20 well studied protein
families. These families provide accurate alignments, reli-
able subgroup identifications and the locations of sub-
sites. Although all methods identified majority of actual
subsites, SPEER, GroupSim and MultiRELIEF performed
better and reached reasonable sensitivities of 54%, 38%
and 40% at 5% error rates. Importantly, several other sites
(Additional file 3) were commonly predicted by three best
performing methods (135 C3 sites) or by any pair of
methods (129 C2 sites). These sites might also be impor-
tant in determining the specificity and therefore can be
ideal targets for mutagenesis experiments.

Conclusion

Our analysis of structural characteristics first showed that
if we use an ensemble of three best methods, the distance
distribution of potential subsites has a higher similarity to
the distribution of actual subsites for distances less than
20 A. Interestingly, we observed a smaller fraction of C3
and C2 sites at larger distances compared to the actual
subsites. We observed a similar distribution pattern while
studying the coevolution of subsites in our previous work
[24] with 40% of coevolved subsite pairs located at dis-
tances more than 20 A. Possible explanations for this
long-range evolutionary coupling can include the possi-
bility of allosteric regulation, or formation of nonsym-
metrical homodimers. As judged from the comparison of
distance distributions, the subsites which are closer to
each other in space seem to be easier to predict by existing
methods. The analysis of hydrogen bonding, solvent
accessibility and secondary structure content showed that,
overall, distributions of structural properties are quite
similar for actual and potential subsites indicating their
similar involvement in determining the specificity in pro-
tein families.

Further, new potential subsites were predicted for six
other protein families where subgrouping of the
sequences was done by an iterative automated clustering
optimization procedure. Even though the actual subsites
were not available for these families, we were able to
observe certain similarities of structural features between
predicted and actual subsites which might point to their
functional relevance.

Methods

Datasets of protein families and subsites

Reliable manually curated alignments were collected from
different sources for 20 families for which experimental
evidence was available on the locations of most of the
subsites (see Additional files 9 and 10 for description).

http://www.biomedcentral.com/1471-2105/10/207

Each of these families (along with their subsites) was pre-
viously used in separate studies [20,11-13,17,18,25]. The
alignments were constructed by existing alignment meth-
ods and were subjected to the additional round of careful
manual curation. The family alignments were grouped
into subfamilies based on different criteria including
sequence and structural properties, kinetic properties,
substrate specificity, taxonomy, and function [20,11-
13,17,18,25].

In this study the experimentally annotated subsites
("actual” subsites, 195 in total) were pooled together and
used as gold standards to compare and validate the per-
formance of several prediction methods ("validation test-
set"). Details about the families can be found in
Additional file 11. Alignments, location of subsites and
the SPEER program are available via ftp://

ftp.ncbi.nih.gov/pub/SPEER.

We also predicted subsites for six protein families
obtained from Proteinkeys database, version 0.81 beta
http://www.proteinkeys.org/proteinkeys/ where sequence
subgrouping was done by the automated clustering proce-
dure ("prediction testset"). Subgrouping of the sequences
in Proteinkeys database was done by an iterative auto-
mated optimization procedure to cluster similar
sequences with optimal separation. Each individual fam-
ily alignment was clustered into subgroups through utili-
zation of optimization coefficient A (0<A<1). Typically,
the optimal value of A falls between 0.65 and 0.85, there-
fore a default value of A was taken to be 0.75. Six families
from "prediction testset" which were used to identify new
potential subsites included: ADP specific phosphofruc-
tokinase/glucokinase, DUF498/DUF598, guanine nucle-
otide exchange factor(GEF)-Ras like GTPases, p21-Rho
binding domain, Raf-like Ras-binding domain, and Ras
association (RalGDS/AF-6) domain families. Only those
Proteinkeys families were selected for the current study
where total number of subgroups did not exceed twenty
and every subgroup was represented by at least three pro-
tein sequences (altogether six families in prediction data-
set; Additional file 5).

Subsite prediction methods

Five computational methods, SPEER [20] GroupSim [16],
MultiRELIEF [17], SDPpred [12] and SPEL [18] were
applied on the validation dataset (20 families; 195 sub-
sites) to identify the subsites. We also tried to employ two
other methods, Sequence Harmony (SH; 13) and Treedet
[9,10]. However, SH works only for families with two sub-
groups whereas 30% of our dataset families contain more
than 2 subgroups or subfamilies. Similarly, Treedet server
is restricted to input alignment length and provided
(using default parameters) results for only 50% of the
families within the validation dataset. Therefore, predic-

Page 8 of 11

(page number not for citation purposes)


ftp://ftp.ncbi.nih.gov/pub/SPEER
ftp://ftp.ncbi.nih.gov/pub/SPEER
http://www.proteinkeys.org/proteinkeys/

BMC Bioinformatics 2009, 10:207

tion results from these two methods were not included in
this study.

Any individual method does not perform equally well to
identify all different types of specificity determining sites
[20] and those sites which are predicted simultaneously
by several top methods are more reliably predicted com-
pared to only one method used. Given that the prediction
methods perform better than random any combined
approach should be an improvement. Subsequently,
results from the three best performing methods in the val-
idation test, namely SPEER, GroupSim, and MultiRELIEF
were compared and combined to predict potential sub-
sites in addition to the actual subsites. Similarly, these
three methods were also applied on the prediction testset
obtained from the Proteinkeys database. A short descrip-
tion of each method is given below. The perl script provid-
ing such combined approach in predicting subsites is
available at ftp://ftp.ncbi.nih.gov/pub/SPEER/Create-C3-
C2-Sites/. To distinguish subsites from globally conserved
sites we excluded from the subsite set those highly con-
served positions within the overall alignment where any
amino acid type was represented more than 80% of the
time (only one highly conserved subsite was present
among 195 actual subsites).

SPEER (Specificity prediction using amino acids'
Properties, Entropy and Evolution Rate)

SPEER [20] combines FEuclidean distances based on
amino acids' physico-chemical properties, evolutionary
rate and combined relative entropy to predict subsites. All
three terms account for the variability of sites within the
subfamilies in terms of their physico-chemical properties,
evolutionary rates and amino acid types. The first and the
third terms also approximate the variability of physico-
chemical properties and amino acid types between the
subfamilies. As the background conservation levels may
vary substantially between different protein families, each
of the three scores is normalized using the background
score distribution of the family alignment. The linear
combination of three normalized scores, termed as SPEER
score is used to predict the subsites.

GroupSim

GroupSim [16] is a sequence based subsite prediction
method, which compares average similarity of amino
acids within and between subgroups. The average similar-
ity of amino acids is calculated using a similarity matrix
(identity matrix) for each subgroup in the alignment. The
GroupSim score is the average within-group similarity
minus the average between-group similarity. Higher
scores indicate a greater likelihood to be a subsite. This
program also employs an accessory heuristic module,
'ConsWin' that considers sequence conservation of neigh-
boring amino acids as well.

http://www.biomedcentral.com/1471-2105/10/207

MultiRELIEF

MultiRELIEF [17] uses 'local' sequence conservation prop-
erties for identification of subsites. This approach utilizes
a machine learning technique for feature weighting, called
RELIEF, which exploits the 'local' sequence space for dis-
criminating samples (sequences) from two subgroups
[26,27]. RELIEF assigns a weight to features (sites) accord-
ing to their ability to separate different samples or sub-
groups. The subsites are predicted based on the maximum
weight which is calculated iteratively as a Hamming dis-
tance between a given sequence and the nearest sequence
from another subgroup minus Hamming distance
between a given sequence and its nearest neighbor from
the same subgroup. MultiRELIEF can handle multiple
subgroups by random sub-sampling of pairs of sub-
groups. It should be mentioned that MultiRELIEF can also
exploit 3D structure information by increasing the weight
of residues that have high number of contacts with other
residues. However, this option is not used in the current
study as none of the other methods use additional struc-
tural information, which is not always available.

SDPpred (Specificity Determining Position prediction)
SDPpred [12] utilizes mutual information to identify the
positions that are conserved within the subgroups but dif-
fer between them. SDPpred takes into account the similar-
ity between the amino acids in the form of amino acid
substitution matrices. To estimate the statistical signifi-
cance of the obtained values of mutual information, it
shuffles each column to calculate the Z-score. SDPpred
also attempts to account for the background similarity
between proteins by calculating the expected mutual
information for each column.

SPEL (Specificity Positions by Evolutionary Likelihood)
SPEL [18] utilizes evolutionary log-likelihood of amino
acid distribution to detect subsites. It should be men-
tioned that SPEL does not require a predetermined sub-
group definition which puts it in the separate group
compared to other tested methods. A phylogenetic tree is
reconstructed from the multiple sequence alignment, and
P-values of an evolutionary likelihood-based score for
alignment positions are estimated from a random model
that eliminates any functional specificity signal. Positions
with low P-values are likely to be important for functional
specificity.

Evaluation of prediction accuracy

The performance of various prediction methods were
evaluated using the actual subsite information from vali-
dation dataset and by calculating the Receiver Operating
Characteristics (ROC) curves and ROC statistics. For a
given alignment, the sensitivity and error rates were esti-
mated based on the number of true positives (correctly
predicted actual subsites) and false positives (incorrectly
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predicted actual subsites) found above each score cutoff.
Sensitivity (TP/TP+FN) was defined as the number of true
positives (TP) found at each score threshold divided by
the sum of true positives and false negatives (FN), where
false negatives are defined as actual subsites below the
score threshold. Error rate (FP/FP+TN) was estimated as
the number of false positives (FP) divided by the sum of
false positives and true negatives (TN, non-subsites below
the score threshold). Each method's performance was also
evaluated by estimating the ROC, statistics [28] where the
sum of the number of true positives corresponding to 1, 2,
3,...n false positives on the ROC curve (t;) was normalized
by the sum of true positives and false negatives: T =
(TP+EN), ROC, = (%;_,,_,t;)/nT. Standard deviations of
ROC statistics were estimated analytically using expres-
sions provided in Schaffer et al, 2001 [28]. Precision (TP/
TP+FP) and Recall or Sensitivity (TP/TP+FN) curve was
also derived to compare the performance of each method.

Calculation of spatial distances and structural properties
Representative 3D structures were collected for each fam-
ily from the PDB database [29]. Spatial distances were cal-
culated using atom coordinates supplied in the individual
PDB file. Structural properties such as solvent accessibil-
ity, secondary structures, and hydrogen bonds were com-
puted from the protein structure using the JOY package
[30]. Solvent accessibility was measured using the PSA
program from the JOY package and residues that have an
accessible surface area less than 7% were treated as solvent
buried or inaccessible. Similarly, secondary structures
(helix, strand and coil) and hydrogen bonding patterns
were estimated using the SSTRUC and HBOND programs
from the JOY package [30], respectively.
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