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Abstract

Background: Network visualization would serve as a useful first step for analysis. However,
current graph layout algorithms for biological pathways are insensitive to biologically important
information, e.g. subcellular localization, biological node and graph attributes, or/and not available
for large scale networks, e.g. more than 10000 elements.

Results: To overcome these problems, we propose the use of a biologically important graph metric,
betweenness, a measure of network flow. This metric is highly correlated with many biological
phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness
to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based
fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the
low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by
combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach
reduces the expected runtime of the algorithm to O(n?) when considering edge crossings, and to O(n log
n) when considering only density and edge lengths.

Conclusion: Our BFL algorithm is compared against fast graph layout algorithms and approaches
requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all
layout algorithms tested while providing readability on par with intensive optimization algorithms.
We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard
desktop computer.

Background

Advances in biotechnology have made it possible to
collect vast amounts of genetic data. Although extensive
research has been done on numerical and statistical
methods to infer the relationship among genes, which
we call gene networks, methods for analyzing such data
visualizing large gene networks has received less
attention.

There exists significant former literature on general graph
layout algorithms such as orthogonal drawing, planar
embedding, force-directed layout [1]. Similarly, meta-
bolic networks with relatively small numbers of nodes
(<100) have received significant attention, with notable
algorithms being proposed by Karp [2], and [3].
However, these algorithms are designed with fundamen-
tally different goals than those for gene networks. Well
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known fast graph-theoretic algorithms such as Sugiyama
[4], radial tree [5] are capable of drawing large graphs,
but give degenerate results for large and dense graphs.
On the other hand, force based algorithms such as spring
embedder [6] are able to produce symmetric and
aesthetic results, but become intractable in the case of
large datasets, and fail to represent biological datasets.
Former work in incorporating biologically information
[7, 8] applies simple positional constraints, but do not
scale well to large networks. It has also been noted that
such algorithms fail to produce compact layouts [9].

Optimizing algorithms rely on minimizing an under-
lying metric, and have been used to great success. Grid-
layout [3, 9, 10] has been used in cellular circuits to
incorporate complex constraints, while multidimen-
sional scaling [11] along with planar subgraph extraction
[12], which maps an artificial metric to Euclidean space,
has been used to create fast algorithms incorporating
biological attributes.

All of the above approaches have their drawbacks; they
either fail to reflect biological relationships in the layout
or fail to scale for large problems. This problem arises
because utilizing biological facts is a computationally
expensive operation [9, 10] which most algorithms are
not designed for. Grid layout [13] for example, requires
satisfying biologically meaningful component
placements.

This paper introduces a fast, biologically relevant layout
algorithm using the concept called betweenness.

Betweenness is most commonly used as a way of
analyzing social networks [14, 15]. This metric was first
proposed by Freeman et al. [14] as a way to characterize
sparsely connected graphs. Betweenness centrality for
certain types of flow is known as an indicator of traffic
through a certain node or edge [14, 16, 17]. The index
has previously been used in ranking websites and
clustering in social networks [15].

Biologically, betweenness is useful when the digraph
relationship correspond to information flow. In this case
modules from betweenness represents informationally
isolated modules while the high betweenness nodes and
edges are hubs and links with high betweenenss.

BFL is of interest in large gene, and protein networks.
Protein and gene networks allow for a straightforward
attack with BFL, in that a straightforward weighted
layout will produce biologically relevant results, as they
represent interaction networks. Metabolic networks on
the other hand should first be analyzed with modularity
analysis [11]. This is because the genes of interest are
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often not those with the highest information content
(which would be common ATP, NADH pathways) but
rather those which function uniquely.

Specifically, given oy, defined as the number of shortest
paths between nodes s and t, and o,(v) defined as the
number of shortest paths passing through v (and s, t = v),
betweenness is defined as the sum of oy(v)/o for all
nodes s and ¢ in the graph. In other words, betweenness
is the sum of the probabilities of v being in the shortest
path between any two nodes. This definition of node
betweenness has been extended to edges by Newman
et al. as a way to extract community structures [15]. Edge
betweenness is similarly defined as above by taking the
sum of o,,(e)/oy, where oy(e) is defined as the number of
shortest paths between s and ¢ passing through edge e.

Recently, betweenness has become of interest in bioin-
formatics because of its biological importance in gene
and protein networks. Specifically, it has been shown
that betweenness values correctly identify bridge pro-
teins [18], protein modules [11, 16, 19], and essential
proteins [20].

Although there are other measures which fulfill the
above measures, such as random walk betweenness [19]
and eigenvector centrality [19], these measures have a
higher runtime complexity and produce similar values.
In some isolated cases, such as an extremely dense graph,
these measures may result in better layout, although we
consider that in general the runtime trade-off is
unnecessary.

These results imply first that clusters generated with
Girvan-Newman's algorithm [15] using edge between-
ness accurately represent clusters in protein function
[11]. Second, high betweenness value nodes are biolo-
gically important to the function of the gene network.
Finally, betweenness based layout correctly identifies
bridges, which is valuable to graph layout techniques.
We attach a standard biological dataset by Luo et al. [21]
to show these properties.

The remainder is organized as follows. In the methods
section, we first define betweenness and then we
demonstrate an efficient parallel algorithm for calculat-
ing betweenness. We then present a new node and edge
betweenness based fast layout algorithm (BFL) and the
specific score methods. Lastly, we present the expected
runtime of the layout methods. In the results and
discussion section, we show the effects of graph size
and confirm the effectiveness of our approach on
runtime. We then compare the run-times and outputs
of various networks with other layout algorithms, and
also show that betweenness is crucial to our algorithm.
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Methods

Definition of betweenness

We will use the same notation originally developed by
Brandes [17] to describe node and edge betweenness
calculations. First, let G = (V, E) be a connected directed
graph. We define o,;, to be the number of shortest paths
between nodes a and b in G. We then define o,,(n) as the
number of shortest paths between a and b which go
through n € V. In this paper, for each edge e € E, we
denote e, and e, to be the originating and destination
nodes respectively.

The node betweenness for node v is defined as

Uviu]' (v)
NB(v) = — (1)
VeV vjeV\{v,-} Gvil/]‘
The edge betweenness for edge e is defined as
oyl
LOED VD Wi @
vieVveV\{v;} le]

In order to calculate these betweennesses, Brandes [17]
proposed an efficient backwards algorithm which starts
at the leaf nodes of a tree of shortest paths from a source
in V (we call the tree TSP) and accumulates the
betweenness values to the root node. The following
two properties of TSP is used in [17]:

(i) If the graph is a TSP, following property is satisfied for
a, b € V with a as an ascendant of b.

Oup() = Cun* O (3)

(ii) Similarly for each edge e € E, we define the sigma
operator o,,(e) to be the number of paths from a to b
which pass through edge e. In a TSP, we have

Gab(e) = Gaep "Oeb- (4)

We propose a new forward algorithm where we start at
the root node and propagate downwards. This allows us
to parallelize the operations in a much more straightfor-
ward way compared to the backwards algorithm as in the
next section.

Parallelized betweenness calculation

Brandes [17] previously showed an implementation for
calculating edge betweenness values. We show that the
forward algorithm operates upon the same principle
while allowing for parallelism.
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Given a graph G, we start by running Dijkstra's algorithm
on each node v and storing all shortest paths from node v
to all other nodes. This gives us a TSP T comprises of
shortest paths from v.

Our algorithm attempts to break down the betweenness
calculation for shortest paths starting at each node v in a
recurrent relation.

The node betweenness NB(v) for a node v € V consists of
the internal sum and the external sum (see Equation 1).
Given the TSP T containing the shortest paths from v €
V, we can obtain the internal sum of the node
Ovivj )

——~— . For this node v,
v;eV [{v} Gviyj

betweenness, i.e. Z

we can derive a recursive relation for v;y; (¥) in terms of
the number of paths through its destination k as,
O'Uiv]'(") B SypOvk Cvivj (k)

Ovik

Cvivj " Ovjvj

The first term can be seen as the additional contribution
made from the new edge between v and k. The latter term
can be seen as the contributions of all nodes down-
stream of k. A proof of the correctness of the backwards
form of this equation is given in [17].

We then derive the recursive formula for edge betweenness
in a similar manner. Substituting Equation 1 into Equation 2,
we can rewrite the betweenness of an edge e as:

N

vieVveVi{y} Ulv]

If we let v in the previous derivation equal to e, and k
equal to e, we have that

o= 3 Y

vieVveV\iv}

Oy vGepeC Oy v](ec)

c
ec ViV

Since 0., =1, we have that

Sviv

Ovivj(ec)

EB(e) = Z

oy e
vieVveV\{y} Viéc le]

This equation implies that the operations involved in
calculating node betweenness can be used for edge
betweenness values.
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This algorithm can be parallelized for each v € V since
the operations from each TSP T are independent.
Therefore, this is a more efficient algorithm than many
of the current methods, which depend on calculating
node betweenness before edge betweenness.

The method presented in [17] relied upon this approach,
but started at v; rather than v;. This is an obstacle for
parallelization since the values of some v; cannot be fixed
unlike those for v;.

For large networks, betweenness values become extre-
mely large for central nodes, while terminal nodes with
no children have zero centrality. In order to make this
metric more suited for layout, we take the log centrality
for both edge and betweenness (we add value one to the
original betweenness value in order to avoid log(0)).

Edge and node betweenness based fast layout

algorithm BFL

After calculating the betweenness scores, our edge and
node betweenness based fast layout algorithm (BFL) is
executed as in Tables 1 and 2.

As described in introduction section, for the BFL layout
algorithm, we mainly care following two points; (i) the
important elements (high betweenness nodes and edges)
should be emphasized in the resulting layout, (ii) the
layout algorithm should run in real-time for large scale
gene networks (around 10000 elements).

A naive implementation of betweenness would scale
scores as part of an optimizing algorithm. Such a naive

Table I: Variable legend and overall layout algorithm
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method was initially investigated, but incorporating
betweenness in a global optimization algorithm caused
significant slowdowns (conflicting with (ii)). The global
optimization incurred a large penalty because the scaling
forced high-betweenness nodes with strict tolerances to
be optimized in a sea of lower-betweenness nodes.

For the above reason, instead of using a global
optimization approach in BFL, we created a local
optimization procedure which took advantage of the
properties of betweenness and minimized the loss of
quality. BFL places one node at a time in order of
descending betweenness instead of placing all nodes at
once (see lines 5 to 14 in Table 2). In BFL, simulated
annealing is used to place the inserted node by
minimizing the score function (the detail of this
function is defined in the next section).

The execution steps of BFL in Tables 1 and 2 is
summarized as follows. Initially, BFL stores all nodes
to the priority queue Q, in which each node is prioritized
with the node betweenness value (highest value is at the
head) and creates an empty set S that is used to store the
already placed nodes. In the first step, dequeue the top
node in Q, put the node to S, and set the position of the
node to (0,0). In the main recursive loop (lines 5 to 14),
dequeue the current head node v in Q and check whether
or not S contains a neighbor of v. (i) If S does not
contain a neighbor, all edges connected to v are inserted
into a map H (lines 9-13) and is not added the v to S.
(ii) If S contains a neighbor of v (lines 7-9), the v is
inserted to S (line 19) and one node v' in S is with the
highest edge betweenness is selected and placed the v at
the initial coordinate randomly drawn from a Gaussian

Global Variables

Type Name

Detail

Priority Queue Q
N odeBC [v]

Queue of nodes with largest node betweenness first

Array Betweenness values for node v

2D Array EdgeBC [v|] [v2] Edge betweenness from v, to v,

Set S Empty set (contains nodes already placed)

Map H Empty multi-value map (Key — node, Value — orphans with v as parent)

Tree T Tree contains a quadtree containing nodes in Table 4
Constants

double C controls how far from the parent nodes are initially placed

double threshold lower values force tighter convergence constraints

double C, controls how far nodes are moved each iteration

integer Kmax controls when to cut off simulated annealing loops

double K, controls how much density is used in score calculation

double K> controls how much edge lengths are used

double K3 controls how important edge crossings are

int maxT reeSize sets how large each bucket can be in the quadtree
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centered at v with variance ¢, - NodeBC[v]> (line 17). The
initial coordinate is optimized by using the annealing
method described in the next section (line 18). In (ii), all
nodes connected to v in H are also placed in the same
manner (line 21). We separate execution branches (i)
and (ii) in order to resolve orphan nodes. Since insertion
order depends only on betweenness, there are some
nodes which are disconnected from the currently placed
graph S. In this case we put this node on a dependency
queue, and place the node as soon as the dependency is
fulfilled.

This significantly speeds up BFL layout since only nodes
directly connected to the newly inserted node is needed
to calculate the score function in each insertion step, i.e.
pairwise effects elsewhere on the graph do not need to be
calculated at all.

BFL runtime is further shorten by using following two
properties. In the beginning phase, few nodes are already
placed and score calculation proceeds quickly. Later, on
the other hand, the inserted nodes will have few edges
(since the value of betweenness is low), leading to much
looser score tolerances and fewer children to process (the
effectiveness of those properties are confirmed in later
section with simulation test).

Table 2: Fast Edge and Node Betweenness Based Layout
Algorithm

|: procedure Layout

2: Dequev«—Q

3:  Set v. coordinate < (0, 0)
4. Pushv—>S

5:  while Q is not empty do
6 Deque v <— Q

7 if S contains a v' connected to v then
8 PlaceNode(v,v')

9: else

10: for all Neighbors n of v do

Il Put (n,v) > H

12: end for

13: end if

14:  end while

15: end procedure

16: procedure PLACENODE(V, V')

I7:  Set v. coordinate « Coordinate generated by a Gaussian centered
at v'. coordinate with variance ¢|N odeBC [v]2

I18:  Anneal(v,threshold)

19: Pushv—S§

20: Get nodes < values in H with key v > Get orphans which can now

be placed

21: for all node in nodes do
22: PlaceNode(node,v)
23:  end for

24: end procedure

Table above shows the type and usage of each global variable as well as
parameters

http://www.biomedcentral.com/1471-2105/10/19

Simulated annealing with betweenness based score
function

For the insertion step of each node in BFL, we use
simulated annealing to optimize the location of a newly
inserted node v; € V by optimizing the following score
function (which is referred to as EnergeOf in Table 3)

Score(v;, E, , Vi, E}) = k; - NodeDensity(v;, V{) + k, - EdgeLength(E, ) + ks - EdgeCross(E, , E}),

where E, is the connected edges to the node v;
G; =(V},E;) is the subgraph before inserting node v;
and k; + ky + k3 = 1 (NodeDensity, EdgeLength and
EdgeCross are defined later).

Similar metrics have been used in [22] and there have
been aesthetic justifications for their use. Simulated
annealing is even more suited in this case because of its
robustness and single-point performance. While there
are very efficient algorithms such as genetic, particle
swarm, or ant colony optimization for parallel optimiza-
tion procedures, BFL reduces global optimization to a
series of local optimization problems, which removes
the need for parallel optimization. In this case, nearly all

Table 3: Score functions

I: procedure ENerGYOF(v,currentCoord)

2:  Add energy < c3 density(v,currentCoord)

3:  Add energy < c4 edgelLength(v,currentCoord)
4:  Add energy < cs edgeCrosses(v,currentCoord)
5:  Return energy

6: end procedure

7: procedure DENsITY(v,currentCoord)
8: for all node in Set s do

Log(NodeBC|node]+1)

Distance(v,node) 2

9:  Add density «—

10: if v and node overlap then |1: Return «
12: end if
13:  end for

14:  Return density
15: end procedure

16: procedure EpGe LENGTH(v,currentCoord)

17:  for all Edges of v connected to a destination in S do

18: Add length — EdgeBC [v] [destination] * Distance(v, destination)2
19:  end for

20: Return length

21: end procedure

22: procedure EpGeCROssEs(v,currentCoord)

23:  for all Edges in v connected to a destination in S do

24: Add crosses «— Countlntersections(Edges) * EdgeBC [v] [destination]
> Intersections should be counted with an efficent Ray-Shooting
algorithm

25:  end for

26: Return crosses

27: end procedure

Shows scoring functions for each aesthetic parameter, weighted by
betweenness scores.
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stochastic optimization problems become a variant of
simulated annealing. On the other hand, hill climbing
and BFGS based numerical optimization procedures are
not robust enough for this problem. The optimization
landscape is extremely multimodal (as each vertex
becomes a local mode) and therefore the chance of
local minima are extremely high.

In our score function, values of node and edge
betweennesses are effectively used to ensure that
high betweenness nodes are given more emphasis than
low-betweenness ones with low calculation cost.

Node density function
In addition to the traditional notion that high node
density makes graphs hard to read, we concluded that
high betweenness nodes should contribute more to the
local density score than low betweenness nodes. We
therefore define a density function for placing v; into a
set of already placed nodes V/

1

NodeDensity(v;, V) = z || v; = ;|| NB(v;) - NB(v;)(correspond to Table 3, lines 7-15),

VeV,

where NB(U)=2 2

vieVveV\iv}

Gvivj (v)

Cvjvj

is the Euclidean

distance of nodes v; and v].

The density function will create a multi-scale layout; high
betweenness nodes are separately positioned as core nodes
and low-betweenness nodes are positioned around them.

We can efficiently implement a localized variant of this by
using quad-trees (see Table 4). For a graph with i nodes, we
can query a bucket in log(i) amortized runtime. [23]

Edge length function

In [22], the average edge length is used to counter-
balance the density and prevent a space-inefficient
layout. In BFL, each edge length is scaled by its
betweenness score, which forces nodes to shorten high
betweenness edges over low betweenness ones. Edge
lengths therefore as a aesthetic measure of the contribu-
tion of an edge to the node betweenness.

We define an edge length function for edges E,,
connected to the newly inserted node v;,

EdgeLength(E,, ) = z [ley, ||'EB(e,, ) (correspond to Table 3, lines 16-21),

e, €L,

where || e, || is the Euclidean length of the edge e, .
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Table 4: Fast density modifications

I: procedure FasTDEeNsITY(v,currentCoord)

2:  Set currentNode <« head of tree T

3:  while currentNode is not a leaf do

4 if currentCoord > currentNode.vpartition then

5 if currentCoord > currentNode.hpartition then

6: Set currentNode «— currentNode.topRight

7 else Set currentNode «— currentNode.bottomRight
8

: end if
9: else

10: if currentCoord > currentNode.hpartition then
I: Set currentNode « currentNode.topLeft

12: else Set currentNode < currentNode.bottomLeft
13: end if

14: end if

15:  end while
16:  for all node in Set currentNode do

Log(NodeBC|node]+1)

Dismnce(v,node)2

17: Add density «—

18: if v and node overlap then
19: Return oo

20: end if

21: end for

22:  Return density

23: end procedure

24: procedure FASTPLACENODE(V,VI)

25:  Set v.coordinate <— Coordinate generated by a Gaussian centered at
v'.coordinate with variance ¢,N odeBC [v]2

26:  Anneal(v,threshold)

27: Pushv—>S§

28: InsertNode(v) > Node insertion to tree added

29: Get set of nodes «<— values in H with key v > Get orphans which can
now be placed

30: for all node in nodes do

31 PlaceNode(node,v)

32:  end for

33: end procedure

34: procedure INSERTNODE(V)

35:  Set currentN ode < head of tree T

36:  while currentN ode is not a leaf do

37: if currentCoord > currentN ode.vpartition then

38: if currentCoord > currentN ode.hpartition then

39: Set currentN ode «— currentN ode.topRight

40: else Set currentN ode < currentN ode.bottomRight
41: end if

42: else

43: if currentCoord > currentN ode.hpartition then

44: Set currentN ode <« currentN ode.toplef t

45: else Set currentN ode «— currentN ode.bottomLef t
46: end if

47: end if

48: end while
49:  currentN ode.add(v)
50:  while currentN ode.size > maxT reeSize do*?

51: Set currentN ode.topRight < currentN ode.partitionT opRight

52: Set currentN ode.topleft «— currentN ode.partitionT opLef t

53: Set currentN ode.bottomRight <— currentN ode.partitionBottomRight
54. Set currentN ode.bottomLeft «<— currentN ode.partitionBottomLef t

55:  end while
56: end procedure

This pseudo code shows modifications needed to query local densities
and speed overall runtime.
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Edge crossing function

In order to achieve (i), the important elements should be
emphasized in the resulting layout. Edge crossings high
betweenness edges should be minimized, while crossings
among low betweenness edges can be tolerated (for the
sake of runtime). For this reason, each edge crossing is
scaled by its betweenness score. Similarly, for newly
inserted edges E, , we define an edge crossing function,

EdgeCross(E,,, E7) = z z (e, €;) - EB(¢}) - EB(e,,) (correspond to Table 3, lines 22-24),

e,€E, eeE\e, }

4 . . . . .
where 5(e,,i,ei) is an indicator function which returns 1

if  BdeeCross(E, E) = S Y, b(e,, ) BB(E)- BB(e,,) (commespond to Table 3, lines 22-24),

ev,eh, deENe,)

and

¢; cross and otherwise returns 0. In order to calculate the

number of crossings, we use the efficient ray shooting
algorithm proposed by [24].

For our simulated annealing loop, a polynomial cooling
scheme is specified by defining the temperature t as

t= (kmax - k)n/

where k,,,, is the maximum iteration count and k is the
current loop (correspond to Table 5, lines 24-33).
Former literature [22] and our tests suggested that n =
3 was reasonable for most cases.

Layout algorithm runtime analysis
Since the betweenness calculation can be cached into the
network file for repeated uses, we only consider the
runtime of the layout algorithm itself. The runtime of the
layout is dominated by evaluation of the scoring
function which is called |V| times.

Let f be the runtime of scoring function. The total
runtime is given as

V|1

N Wik, Vi E).

i=0

While nodes are sequentially inserted according to the value
of the node betweenness, we cannot know the exact values
of |E,, |, | V]|, and | E;| in advance. Thus, we evaluate the
expected total runtime to analyze its asymptotic behavior,

V-1 [V]-1
N B VIE) |= Y B B VEED) (5)
i=0 i=0

The runtime of the score function can be expressed by
the sum of its component run-times, which is

f(vi, E,, Vi, E;) = NodeDensity(v;, V{) + EdgeLength(E,, ) + EdgeCross(E, , E}).

http://www.biomedcentral.com/1471-2105/10/19

Table 5: Annealing and optimization algorithm

I: procedure ANNEAL(v,threshold)

2:  Set currentCoord « v.coordinate

3:  Set currentEnergy < EnergyOf(v, currentCoord)

4:  Set bestCoord « currentCoord

5:  Set bestEnergy < currentEnergy

6: Setk« 0

7:  while currentEnergy — tempEnergy > threshold AND k < kmax do *
kmax is some constant to cut off runaway calculations

8: Set tempCoord «<— newNeighbor(currentCoord,v)
9: Set tempEnergy < EnergyOf(v,tempCoord)

10: if bestEnergy > tempEnergy then

I Set bestEnergy <« tempEnergy

12: Set bestCoord <« tempCoord

13: end if

14: if transition(currentEnergy, tempEnergy, k) then
15: Set currentCoord «— tempCoord

16: Set currentEnergy «— tempEnergy

17: end if

18: end while
19:  Set v.coordinate < bestCoord
20: end procedure

21: procedure NewNEiGHBOR(currentCoord,v)

22:  Return Gaussian centered at currentCoord with deviation ¢c;Ln(N
odeBC [v] + 1)?

23: end procedure

24: procedure TRANSITION(currentEnergy,tempEnergy,k)
25:  Set temp « (kmax - k)3

26: Set transition «— e(currentEnergy-tempEnergy)/temp

27:  Set rand < random value from 0 to |

28: if rand < transition then

29: Return true
30: else

31: Return false
32: endif

33: end procedure

General annealing implementation is shown here with a cubic cooling
schedule.

The runtime for the first term NodeDensity takes
O(log(] Vi ])) since the quad-tree based density calcula-
tion method takes O(log(|V;|)) time to query the
bucket and sum all the nodes [23]. The second term
EdgeLength takes O(| E,, |) time to query all new edges.
The last term EdgeCross is a ray-shooting problem which
can be solved in O(J|E;|log(|E;|)?) time [24].
Thus, the expected total runtime in Equation 5 can be
given as:

= =
Z E(f(vi. E,, Vi, E})) = 2 E(NodeDensity(v;, V) + EdgeLength(E, ) + EdgeCross(E, , E})).
=0 i=0

Vi1

=Y (Bog(| Vi 1)+ E( E,, )+ B(TE T log(| E;1)%))-

i=0

V|-1
= D (log() + (I, 1) + B([TE T log(| E )?) ).
i=0
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Since E(log(| v} |) is log(i), we remove the expectation of
the first term to get,

Vi1

= D (logli) + E(| E,, |) + BT 7 log(| E; )*) ).

i=0

The expectation of | E, | must be the average degree d of
graph G since E(| E,, |) is the expected number of edges,
which the newly inserted node v; brings. This leaves the
expectation of ./|E;|. Since ./|E;| is concave, by
Jensen's inequality and E(| E; |) = di we have,

E(JI E; [log(| E; 1)*) < JE(I E7]) log(E(| E; |))* = Vdi log(di)*.

Which dominates the density term, giving us an
asymptotic runtime of

V]-1 V]-1

2 (d+ Vi log(di)? ) =d| V| +2 Jdi [ log(di)>2.
i=0

i=0

We claim that the expression

D Jilog(i)? = ¢ *0(=1/2,0) = £ O(=1/2,n +1),
i=0

where (") is the 2nd derivative of generalized Zeta
function with respect to x.

Proof of claim. The generalized Zeta function is given by

S(x,y) =

i=0 (iﬂ’)x

Taking the second derivative with respect to x,

£O0x,y) =Y (i+y) ™ log(i +7)*.

Plugging x = -1/2,
£C0-1/2,) =Y Ji+ylogli+).
i=0

¢@0(-1/2,00-£@0(-1/2,n+1) = i\ﬁlog(i)z - i«/i +n+1log(i+n+1)?
i=0 i=0

= iﬁ log(i)?
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Now by simple manipulation we can take into account
the degree and make O

i=0

V-1 VI-1
2 Jdi log(di)? =d [ 2 (log(d) + log(i))* ]
i=0
=] Vi1 V-1
- ﬁ[z Jilog(d)? + 2 Jilog(i)? + 22 log(d) log(i) ]
i=0 i=0 i=0
V-1
= ﬁ[ log(d)zz Vi -2log(d)(¢ "V(-1/2,0)- ¢ “O(-1/2,|V [)) - ¢ ®I(-1/2,0)- ¢ (-1/2,| V|) ]
i=0
Removing negligible terms, we have
V]-1

= A PO(-1/2,| v [)+Vd log(d)* Y i
i=0

Using L'hopitel's rule and the knowledge that
d21(1/2, |V]) is zero,

202w i @D q/2)v)) —o
[V]—eo 2|V| .

lim
Vi V|2
Which shows that, the runtime grows slower than d log

(d) with respect to degree d and slower than |V|* for
node size |V|, or in little o notation,

{29172, [V]) = O(IVP).

The estimated result O(|V|?) implies that our algorithm
has an asymptotic complexity better than many fast
optimizing algorithms with respect to node size. Edge
crossing calculation can be ignored in many cases
leading to an even faster runtime log(Gamma(|V| + 1))
if degree is constant, which is asymptotically equal to |V|
log(|V]) and is the current standard for the fastest layout
algorithms.

This speedup would not be possible without the
sequential layout from the betweenness algorithm.

Results and discussion

Methods and datasets

The algorithm was implemented in Java with files stored
in Cell System Markup Language (CSML) format [25].
A Fibonacci heap was used for the priority queue, all
other data structures used library implementations
available in the JDK.

Runtime tests were done on a 8-core Intel Xeon 4800
X5450 3 GHz machine with 16 GBs RAM, with random
graphs generated by methods given by Rodionov et al.
[26]. Comparisons to other programs were made on one
sparse graph (2000 nodes and 7000 edges), two dense
graphs (2000 nodes and 11000/47000 edges) and one
estimated gene regulatory network (1897 nodes and 2849
edges) on an Athlon X2 3.3 GHz machine with 4 GBs
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RAM running on Windows XP. For the last gene regulatory
network (calls UO Analysis), the microarray data of the
ultradian oscillation (UO) clock in mouse presomitic
mesoderm cells by Dequeant et al [27] is used. We
generated graphs in CSML, GML, NET, and TLP files for
various programs and used the same graph to compare
run-times and outputs. These graph data files used in our
simulation are available in the additional file 1.

For all tests, cached costs were not calculated (including
loading, preprocessing, and betweenness calculations),
as we are concerned with the time to layout.

BFL runtime dependency on node size

Runtime for random graphs of degree three from size
400 to 3000 are shown in Figure 1. As the cores could
not be load-isolated, the runtime fluctuations at the
larger sizes are a result of parallel loads on the cluster.
Even with the fluctuations however, the maximum
runtime for layout is less than 13 seconds for a graph
with 3000 nodes and 9000 edges. Betweenness calcula-
tions take more time, but such calculations were cached
for this test since we evaluate solely the performance of
the layout algorithm. The runtime graph seems to show
that for constant degree, runtime rises near linearly from
1000 nodes to 3000 nodes, which is consistent with our
previous analysis that the runtime for layout should be
less than n2. We also note that the error bars grow, which
is to be expected as the larger graphs have high
variability with respect to graph structure and therefore
can have highly unbalanced graphs, leading to longer
run-times.

Runtime (ms)

Vertex Size

Figure |

Runtime changes from graph size. Result of running the
BFL algorithm on graphs of degree 3 ranging from 400 to
3000 nodes and measuring runtime.

http://www.biomedcentral.com/1471-2105/10/19

BFL runtime dependency on betweenness

In order to show that sequential insertion with between-
ness order leads to a lower runtime, we corrupted the
betweenness values with zero-mean fixed-variance Gaus-
sian noise prior to ordering the nodes in the queue.
Figure 2 shows the effect of such perturbation on
runtime for a graph of 2000 nodes and 4000 edges.
The runtime shows expected behavior as the runtime
jumps when Gaussian noise becomes large enough to
cause perturbations in the large-betweenness nodes. We
also note that 1000-variance noise (which is relatively
small, as the log betweenness is about seven) caused zero
losses in runtime, and therefore future algorithms could
use a heuristic version of betweenness calculated by
random walk or approximative methods. Our algorithm
would perform as well given low-noise approximations.

BFL runtime dependency on graph density

While BFL is optimized for sparse networks, we show
that BFL performance may actually improve with dense
networks. In is not usual that the most of the nodes of
the biological networks have high degrees. Instead, this
is reasonable to consider parts nodes have high degrees
in the network since they work as hub genes in the
network [28]. Thus, we have applied our layout
algorithms to the following graph. 10% of the node
has high degree m (m is around 10% to the total node n).
For a random graph with 2000 nodes (= n) and 7000
edges, we have created two graphs by adding (i) 4000
edges to 10% nodes (i.e. 200 nodes around degree 20 (=
m)) and (ii) 40000 edges to 10% nodes (i.e. 200 nodes
around degree 200 (= m)). For those graphs as in Table 6,
the runtimes are reasonable as (i) 0.05 s and (ii) 3.7 s.

1500

1000 -

Runtime (ms)

500 -

0 1000 2000 3000 4000
Noise

Figure 2

Noise perturbation to betweenness. Run-times of the
algorithm when the betweenness information is perturbed.
Runtime grows with noise.
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Table 6: Runtime Comparisons

http://www.biomedcentral.com/1471-2105/10/19

Runtime Comparisons Between Algorithms

Dataset Number of Node/Edge Random Graph Random Graph UO Analysis Dense Graph Dense Graph
2000/7000 4000/12000 1897/2849 2000/11000 2000/47000
Betweenness A4s |.4s .8s .05s 3.7s
Kamada-Kawai (Pajek) 17.9s 40.3s 22.2s 14.16s 32.64s
Fruchterman Reingold (Pajek) 30s 34s 3ls 33.20s 42.06s
GEM (Tulip) 485s 1800s+ 665s 394.95s 475s
RSFDP (InterViewer) 1.8s 2.1s 2.1s 31.22s 40.46s

Runtime of the proposed method is compared to those fo existing methods (Kamada-Kawai, Fruchterman Reingold, GEM, and RSDFP) for several
graphs. Dense Graph 2000/1 1000 and Dense Graph 2000/47000 were generated by adding 4000 and 40000 edges respectively to 10% nodes in

Random Graph 2000/7000.

BFL compared to existing algorithms

Table 6 shows the various run-times of our algorithm
against those of four other competing algorithms. Force-
directed and optimization algorithms similar to our own
were chosen from possible candidates. By this criterion we
compared against Kamada-Kawai [29] and Fruchterman
Reingold [30] energy based algorithms in Pajek [31], GEM
(Generalized Expectation-Maximization) based optimiza-
tion in Tulip [32], and the RSDFP layout algorithm in
InterViewer [33]. It is worth noting that our algorithm is
implemented in Java while the competing algorithms are
native applications. Thus, if our application were imple-
mented efficiently in C, we would be able to achieve even
faster run-times with even more drastic results. A future
goal is to implement K-K, FR or GEM algorithms using the
sequential insertion and betweenness weight functions
used in the BFL algorithm. We hope to be able to get true
force-directed algorithms which can produce better results
with no increase in runtime.

Resulting Layout of BFL compared to those of others
We show layouts of UO Analysis using GEM-Tulip
(Figure 3), Pajek (Figures 4 and 5), RSDFP-InterViewer
(Figure 6) and our algorithm BFL on Cell Illustrator
(Figure 7) [34, 35]. The graph was not of extremely high
degree; however, Pajek and InterViewer both produce
layouts with no discernible network structure. Tulip with
automatic sizing performs better, sorting all of the
unconnected networks to the outside; however the
program took eleven minutes, an order of magnitude
more than any other program. Our betweenness-based
algorithm was the fastest and also produced a readable
layout. Our algorithm can naturally create a multi-scale
layout, making low-betweenness nodes smaller to give
space for large betweenness nodes and edges. Figure 8
shows an enlargement of a section of the graph,
demonstrating this feature of our algorithm. Magnifica-
tion shows that the complexity of the graph is simply
stored at smaller sizes. In contrast, all other algorithms
fail to create such a layering.

Figure 3
Reference Layout: Tulip Running GEM. A layout result of
UO analysis network run on Tulip using the GEM algorithm.

Figure 4

Reference Layout: Pajek Running Kamada-Kawai. A
layout result of UO analysis network run on Pajek using
Kamada-Kawai energy based algorithm.
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Figure 5
Reference Layout: Pajek Running Fruchterman

Reingold. A layout result of UO analysis network run on
Pajek using Fruchtermon Reingold energy based algorithm.

TP

Figure 6

Reference Layout: InterViewer Running RSFDP.

A layout result of UO analysis network run on InterViewer
using the RSFDP algorithm.

Figure 7

Layout Result:Betweenness algorithm. Result of the
Betweenness based algorithm run on the UO analysis network
red cutout refers to the enlarged section in Figure 8.

http://www.biomedcentral.com/1471-2105/10/19

Figure 8

Enlarged view of Betweenness layout algorithm. A
layout result of UO analysis network run on Cell Illustrator
using betweenness.

We also note that the runtime of this set was significantly
lower (800 ms) for the betweenness algorithm compared
to the others. The betweenness algorithm performs
drastically better than others with sparse and multiscale
datasets, while the competing algorithms have similar
performance in randomly generated graphs.

Betweenness is critical to BFL layout structure

In order to show that betweenness enforces aesthetic
constraints of density and compactness, we compared
BFL to a modified version which did not weight scores
based upon betweenness. Figures 7 and 9 respectively
show the original and modified version of BFL. While
the unweighted density, edge length and crossing
parameters were similar in both runs, the unmodified
BFL is visually superior because of its ability to force
lower betweenness nodes to conform to larger between-
ness nodes.

Conclusion

Our BFL layout algorithm mainly achieved following
two points: (i) the important elements (high between-
ness nodes and edges) are emphasized in the resulting
layout, (ii) the layout algorithm runs in real-time for
large scale gene networks (around 10000 elements). For
a graph with n nodes, this approach reduces the expected
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Figure 9

Layout dependency on Betweenness. Layout algorithm
was run without betweenness modifications to the score.
Scaling and sequential insertion were kept the same.

runtime of the algorithm to O(n”) when considering
edge crossings, and to O(n log n) when considering only
density and edge lengths. We also compared against fast
graph layout algorithms and approaches requiring
intensive optimizations. For gene networks, our algo-
rithm was faster than all layout algorithms tested while
providing readability on par with intensive optimization
algorithms. We achieve a 1.4 second runtime for a graph
with 4000 nodes and 12000 edges on a standard desktop
computer. We will develop an effective tuning method
for scaling parameters automatically in response to
change in graph degree and optimize the algorithm
further. We also intend to show that the layout algorithm
provides a rough metric of functional relations, where
betweenness separates functionally unrelated units and
identifies hub genes.
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Additional material

Additional file 1

Network data. UO analysis dataset used for layout comparison in GML,
TUL, NET, and CSML file. CSML file has been stripped of all metadata
not related to the graph structure. Zip file should be extracted for all
data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-19-S1.zip]
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