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Abstract
Background: Recent years have seen an increased amount of natural language processing (NLP)
work on full text biomedical journal publications. Much of this work is done with Open Access
journal articles. Such work assumes that Open Access articles are representative of biomedical
publications in general and that methods developed for analysis of Open Access full text
publications will generalize to the biomedical literature as a whole. If this assumption is wrong, the
cost to the community will be large, including not just wasted resources, but also flawed science.
This paper examines that assumption.

Results: We collected two sets of documents, one consisting only of Open Access publications
and the other consisting only of traditional journal publications. We examined them for differences
in surface linguistic structures that have obvious consequences for the ease or difficulty of natural
language processing and for differences in semantic content as reflected in lexical items. Regarding
surface linguistic structures, we examined the incidence of conjunctions, negation, passives, and
pronominal anaphora, and found that the two collections did not differ. We also examined the
distribution of sentence lengths and found that both collections were characterized by the same
mode. Regarding lexical items, we found that the Kullback-Leibler divergence between the two
collections was low, and was lower than the divergence between either collection and a reference
corpus. Where small differences did exist, log likelihood analysis showed that they were primarily
in the area of formatting and in specific named entities.

Conclusion: We did not find structural or semantic differences between the Open Access and
traditional journal collections.

Background
For much of the modern period of biomedical natural lan-
guage processing (BioNLP) research, work in text mining
has focused on abstracts of journal articles. Free and
widely available via PubMed/MEDLINE in numbers pre-
viously unseen in most statistical text mining work,

abstracts enabled a mass of work that has grown remarka-
bly quickly [1]. In recent years, however, there has been
both a growing awareness that full text articles are impor-
tant, and an increasing amount of work using the full text
of articles. As early as 2001, Blaschke and Valencia exam-
ined recoverability of databased protein-protein interac-
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tions from text and concluded that the ability to handle
full text would be essential to achieving high-coverage
performance [2]. Shah et al. examined the location of bio-
logically relevant words in journal articles and found that
although the density of biologically relevant terms is
higher in the abstract than in the body of the article, there
is much more relevant information in the body of the arti-
cle than in the abstract [3]. Corney et al. (2004) provided
a careful quantification of the costs of failing to work with
full text, finding that more than half of the information in
molecular biology papers was in the body of the text and
not in the abstract [4].

At the same time, it became clear very early on that full
text poses challenges that are different from those of
abstracts. For example, Tanabe and Wilbur (2002) found
that some sections (particularly Materials and Methods)
tend to produce much higher rates of false positives on
information extraction tasks than others [5]. Furthermore,
the substantial length of full text articles as compared to
abstracts means that it is likely more difficult to identify
individual entities or events, due to the increased linguis-
tic complexity of the text, and the use of longer-distance
references. Preprocessing requirements alone can be pro-
hibitively time-costly with full text. Even issues of charac-
ter encodings and how various journals deal with them –
solutions range from inserted gifs to HTML character enti-
ties to Unicode – are sufficient to throw off character-off-
set-based systems, which are increasingly popular.

These problems notwithstanding, recent years have seen
an increased emphasis on working with full text papers
(see e.g. [6] and [7] for papers that review a substantial
amount of work using full text). However, much of this
work is done with Open Access journal articles, and with
the availability of the PubMed Central Open Access subset
[8] of close to 90K biomedical publications (and grow-
ing), we expect research on full text to further concentrate
on Open Access publications. Such work will assume that
the Open Access articles are representative of biomedical
publications in general and that methods developed for
analysis of Open Access full text publications will general-
ize to the biomedical literature as a whole. This assump-
tion requires investigation due to the possibility that there
exist significant differences in format or content. For
instance, the majority of open access journals have to date
been exclusively electronic publications, often without
formal restrictions on article length (such as the BioMed
Central journals), where the lack of strict space constraints
could certainly impact the language authors use to present
their findings. Furthermore there is at least a perception
that these journals often have quicker turnaround on the
time from submission to publication [9], and that open
access publications have higher community impact [10],
both of which could affect the sort of research results that

are submitted to open access journals. Similarly, the cost
of publication of open access articles may mean that
authors tend to submit longer articles combining more
research results. The effect of such differences on the tex-
tual characteristics of the publications has not to our
knowledge been previously explored.

If the basic assumption of the representativeness of Open
Access publications is wrong, the cost to the community
will be large, including not just wasted resources but also
flawed science. This paper sets out to examine that
assumption. Our null hypothesis is that traditional and
Open Access publications are the same; we seek to find
differences between them.

Results and Discussion
Results
Text collections
We developed or assembled four text collections for com-
parison.

• CRAFT is the Colorado Rich Annotation of Full Text
corpus. This is a true corpus in the linguistic sense of
that word – a static set of documents with associated
linguistic and semantic annotations. The document
set was assembled from the PubMed Central Open
Access subset [8] with input from the Mouse Genome
Informatics group at the Jackson Laboratory to ensure
biological relevance. It focuses on mouse genomics.
The corpus comprises 97 open access articles contain-
ing nearly 750K words.

• TraJour (Traditional Journals corpus) is a document
collection that we assembled from traditional sub-
scription-based journals, with the intent of collecting
a set of texts that topically parallels the CRAFT corpus
as closely as possible. This parallelism was achieved
via shared Gene Ontology annotations (see the Meth-
ods section). TraJour consists of 99 articles and almost
600K words.

• Reference is a corpus based on the the Wall Street
Journal corpus. This is a collection of newspaper arti-
cles that has been extensively annotated in the course
of the Penn Treebank [11] and PropBank [12] projects.
We took the raw text version from the Penn Treebank
distribution. It contains about 1.1 million words.

• BioReference is a document collection which aims
to be representative of full text biomedical publica-
tions in general, rather than being tailored to mouse
genomics. It was constructed from a random subsam-
ple of two document collections: the TREC Genomics
Corpus [13], containing full text publications from
primarily subscription-based traditional journals, and
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the PubMed Central Open Access subset, containing
exclusively Open Access publications. It is comparable
in size to CRAFT and TraJour, at 650K words in 163
articles.

Characteristics that we compared in the corpora
We compared the corpora according to various surface-
level characteristics as well as several linguistic phenom-
ena. We performed comparisons of the statistical proper-

Table 1: Incidence of syntactic/semantic phenomena

CRAFT TraJour Reference BioReference

Document count 97 99 2,500 163

Sentence count 43,694 35,997 53,107 32,895

Avg. Sentence count 450 364 21 202

Token count 717,166 598,331 1,096,976 654,493

Type count 41,574 49,394 40,139 38,801

Stopword count 238,542 193,905 453,264 238,077

Stopword % 33.3% 32.4% 41.3% 36.4%

Avg. Document length 7,393 6,044 439 4,015

Avg. Sentence length 22.5 24.7 26.4 27.8

Types/Tokens 5.8% 8.3% 3.7% 5.9%

Tokens/Types 17.3 12.1 27.3 16.9

Negatives 3,273 2,587 7,605 2,961

Negatives % 0.46% 0.43% 0.69% 0.45%

Coordination 25,237 23,706 26,019 25,059

Coordination % 3.52% 3.96% 2.37% 3.83%

Pronouns 18,874 15,603 57,406 20,699

Pronouns % 2.63% 2.61% 5.23% 3.16%

Passives 2,783 2,587 2,661 3,172

Passives % 0.39% 0.43% 0.24% 0.48%

This table represents the counts of linguistic phenomena determined from our four document sets, CRAFT (open access), TraJour (traditional 
journals), Reference (Wall Street Journal), and BioReference (full text biomedical publications).
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ties of the vocabularies of the corpora in order to identify
important variations of language use among them. The
two corpora of primary interest are the two semantically
comparable corpora – CRAFT, our open access publica-
tion corpus, and TraJour, our traditional journal corpus.

We examined the incidence of a number of morphosyn-
tactic/semantic phenomena in the four sets of documents.
We selected them because each is known to have conse-
quences for natural language processing: in particular, all
of the morphosyntactic phenomena that we examined
make the text mining task more difficult by introducing
complexity and variability in the linguistic structures
found in the text. The linguistic phenomena that we
examined were negation, passivization, conjunction, and
pronominal anaphora.

To examine negation, we counted every instance of the
words no, not, neither, and nor, as well as the affix n't. To
examine passivization, we counted instances of the strings
ed by, en by, and ound by. This clearly underestimates the
number of passives. For example, conjoined passive verbs,

as in eEF2 kinase is phosphorylated and inhibited by SAPK4/
p38 delta [14], will be undercounted. Similarly, interven-
ing adverbials, as in MAPK is activated primarily by FGF in
this context [15], will cause undercounting, as will bare
passives (i.e. those without a subsequent by-phrase indi-
cating the agent). However, it yields a reasonable approx-
imation of the number of passives, and the undercounting
applies proportionally to all four document sets, so the
intra-corpus comparison probably remains valid,
although we would need to do a separate analysis to verify
this. To examine conjunction, we counted every instance
of and, or, and but not. Finally, to examine pronominal
anaphora, we counted every instance of any pronoun. In
each case, we normalized the counts by the number of
words in the corpus.

Table 1 reports the ratio of each phenomenon to the
number of words in the four corpora, along with the abso-
lute counts of each. The ratios for the two semantically
matched corpora CRAFT (Open Access) and TraJour are
similar to each other, and are more similar to each other
than they are to the general Reference corpus. When com-

Sentence length distributionFigure 1
Sentence length distribution. Sentence length distributions for the four document sets, measured as the relative propor-
tion of the sentences in the corpus of a particular length. The data here is binned – "10" means a sentence length of 1–10 
tokens, "20" 11–20 tokens, etc.
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pared to the BioReference corpus, the CRAFT and TraJour
corpora are more similar to each other than to the BioRef-
erence on the proportion of pronouns and passives in the
text. On the proportion of coordination and negatives, the
BioReference corpus numbers are about halfway between
the CRAFT and TraJour values, though all differences are
small. The proximity to the BioReference measures on all
of the linguistic dimensions indicates that the differences
among them are minor and likely within the range of nor-
mal variation for the biomedical literature.

The directions of the differences with the reference corpus
are mostly not surprising. Passives are more common in
the two semantically matched corpora (0.39% and
0.43%) and in the BioReference (0.48%) than they are in
the Reference corpus (0.24%). This accords with the
observation that passives are almost caricatural of scien-
tific writing and are quite common in biomedical lan-
guage [16].

Conjunctions are more frequent in the scientific corpora
than in the reference corpus. As Biber et al. [17] point out
in their corpus-based study of the grammar of English,
comparison of competing hypotheses is a dominant
theme in scientific writing. Comparison is often realized
by use of conjunctions and by asserting the competing
hypotheses. Thus the results are in line with previous
research in this area, although a separate analysis would
be required to establish what proportion of the conjunc-
tions link competing hypotheses.

The pattern of incidence of negations is also in line with
other contrastive reports of negation in the academic and
news registers [17]. Incidence of negatives in the two
semantically matched corpora and the BioReference refer-
ence collection were quite similar – 0.46% for CRAFT,
0.43% for TraJour, and 0.45% for BioReference. However,
they were much more common in the WSJ reference than

Kullback-Leibler divergencesFigure 2
Kullback-Leibler divergences. KL divergences at the top n terms for CRAFT (open access) versus TraJour (traditional jour-
nal) and for each target corpus against the Wall Street Journal reference corpus and the BioReference corpus.
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in the three scientific corpora, at 0.69%. This is thought to
be related to the use of other terms to express contrast in
academic discourse, such as although, however, nevertheless,
and on the other hand [17](81–82).

We measured the distribution of sentence lengths because
sentence length has implications for syntactic parser per-
formance. Parser accuracy falls as sentence length
increases: thus, if there were a difference in sentence
lengths between the CRAFT and TraJour corpora, that
would indicate that one would present more challenges
than the other for an important class of linguistic analysis.
Figure 1 shows the histogram of sentence lengths in the
four corpora. The mode for both CRAFT and TraJour is at
the 0–10 words bin: they do not differ with respect to sen-

tence lengths. In contrast, the WSJ reference differs mark-
edly with respect to sentence length, showing a mode of
20–30 words. Surprisingly, the BioReference also has a
mode of 20–30 words; we do not know why it should be
more like the WSJ than like the other scientific docu-
ments.

The preceding measures are all concerned with linguistic
(conjunction, passivization, etc.) or structural (sentence
length) feature distributions and their implications for
processing difficulty. We now turn to measures that are
more reflective of the semantic content of the corpora.

To further explore the possibility of important differences

Table 2: KL divergence of term probability distributions, CRAFT versus TraJour

n terms CRAFT v. TraJour CRAFT v. BioRef. TraJour v. BioRef. CRAFT v. Ref. TraJour v. Ref.

100 -0.006925696 0.043712192 0.020944793 0.161024124 0.16794174

200 -0.007124725 0.053331913 0.03214335 0.236587232 0.257485466

300 -0.005614059 0.050666423 0.037185528 0.319120526 0.341360939

400 -0.001556702 0.05700178 0.047472912 0.36994002 0.386699809

500 0.007515454 0.064545725 0.04958329 0.411526361 0.421816134

1000 0.041726207 0.096664283 0.089761915 0.513431974 0.548467754

1500 0.06325848 0.134310701 0.11321715 0.577868266 0.641503517

2000 0.078438422 0.158005507 0.138857184 0.642507317 0.69333303

2500 0.098753882 0.180169586 0.157642056 0.697711222 0.746388986

3000 0.108449436 0.19872906 0.179409293 0.746911394 0.817412333

3500 0.118474793 0.215904498 0.193018939 0.794260113 0.87476207

4000 0.132179627 0.228193197 0.207559096 0.830437495 0.904734502

4500 0.145510397 0.244716631 0.21989223 0.872842604 0.942379721

5000 0.152931092 0.258427849 0.230542781 0.89245553 0.969431637

This table shows the KL divergence of the probability distributions of words in the corpora. Each row in the table corresponds to the figure for the 
top n most frequent terms in the corpora.
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between CRAFT and TraJour, we looked at two measures
of lexical difference and similarity. The first of these is
Kullback-Leibler divergence [18], or relative entropy, and
the second is log likelihood [19].

Kullback-Leibler divergence measures the divergence
between two probability distributions. Here, we consider
the probability of each word w in the vocabulary V formed
by combining the sets of unique words in two corpora c1
and c2. It is calculated as shown in equation (1), and it is
converted to a symmetric distance with equation (2).

Intuitively, as two distributions become more different,
the value for KL divergence increases. We assume a thresh-
old value of 0.005 corresponds to near identity of the dis-
tributions. We calculated the KL divergence between
CRAFT and TraJour and between each of the two and the
reference corpora. We ordered words by frequency in the
merged vocabulary of the corpora and then calculated the
KL divergence for different values of the top n most fre-
quent words, from the 100 most frequent words to the
10,000 most frequent words, comparing the probability
distributions for those selected words in the two corpora.
We employed Laplace (add-one) smoothing to accommo-
date for words which occurred in one corpus but not in
the other.

Figure 2 shows the pattern of values; Table 2 shows actual
values for a subset of the data points at the two extremes
of the frequency list. For the top 500 words, CRAFT and
TraJour are nearly identical. In fact we see that the KL-
divergence numbers dip below zero in this case. KL-diver-
gence has a theoretical lower bound of 0; the violation of
the bound here is a result of error introduced by our
smoothing method. This indicates that the two probabil-
ity distributions have near-complete overlap in the vocab-
ulary for the most frequent terms, and that the
probabilities of the shared terms do not differ signifi-
cantly in the two corpora. The probability distributions
for CRAFT and TraJour do not differ above the assumed
identity threshold of 0.005 until 500 words are consid-
ered, and then only slightly.

In contrast, if either corpus is compared against the refer-
ence corpus, they are drastically different, with KL diver-
gences for the top 100 words of 0.161 and 0.167,
respectively – far above the assumed identity threshold.
Even compared with the BioReference corpus, the diver-
gence is well above this threshold (0.044 and 0.021 @100
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Table 3: Log Likelihood analysis of terms in CRAFT vs. TraJour

CRAFT TraJour LL

figure 2318.9

doi 1099.3

window 854.6

fig 756.7

text 743.6

abstract 721.9

mice 678.2

pp 608.5

hair 601.8

pdf 588.1

x1 570.6

full 550.8

pgc 516.9

?m 502.3

e2 465.6

chm 460.5

gp 435.8

ephrin 418.1

qtl 381.5

view 363.9

°c 338.5

sam68 328.8
Page 7 of 16
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:183 http://www.biomedcentral.com/1471-2105/10/183
words), suggesting that there are significant lexical differ-
ences between the mouse genome corpora and general
biomedical text, while there do not appear to be lexical
differences simply due to the mode of publication of the
text.

KL divergence scores indicate that CRAFT and TraJour dif-
fer very little with respect to semantic content; analysis of
the log likelihood scores helps us understand where pre-
cisely the two scientific corpora do differ. It will be seen
that much of the difference between them is due to for-
matting and to named entities. Log likelihood values
uncover terms that distinguish one corpus from another,
by identifying terms that have the most significant relative
frequency difference [20]. For each term in the frequency
lists derived from two corpora being compared, we calcu-
late the log likelihood statistic. It is based on the expected
value for a term t in corpus i, where Ni is the number of
word types in corpus i and Oi is the number of occurrences
of t in corpus i. It is calculated as shown in equations (3)–
(4), with (3) representing the expected value for a term in
corpus i, and (4) the log likelihood for that term. Ei tells
us how many instances of the term we would expect to see
in corpus i if the occurrences were evenly distributed
across the two corpora. The Log Likelihood measures how
far off from that ideal the actual occurrences are. This
measure is argued by [19] to be preferable for corpus anal-
ysis to statistics that assume a normal distribution (such
as the chi squared statistic), due to its ability to more accu-
rately analyze rare events.

atrx 322.0

bhlh 320.2

ptds 311.8

version 305.1

olfactory 301.0

ca 294.9

mena 294.3

ap 292.2

rb 292.0

sox1 288.2

null 287.4

file 278.4

p300 270.1

-catenin 264.0

-1? 262.1

kinase 256.8

binding 256.2

nk 256.0

snail 256.0

-1?? 253.6

ited 251.2

larger 247.3

states 244.0

Table 3: Log Likelihood analysis of terms in CRAFT vs. TraJour 

5? 243.9

nxt1 241.7

strains 240.3

articles 239.6

wk 239.4

These are the results of log likelihood analysis of all terms in the 
CRAFT (open access publications) and TraJour (traditional journals) 
corpora, ranked by the largest difference.
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Table 4: Log Likelihood analysis of terms in CRAFT vs. 
BioReference

CRAFT BioReference LL

mice 3755.8

abstract 1830.7

doi 1650.5

mouse 1489.8

window 1229.4

free 1183.7

embryos 1151.8

figure 1017.2

null 922.5

embryonic 657.2

hair 611.3

pgc 539.9

?m 536.9

e2 532.4

olfactory 512.4

ephrin 503.2

development 492.1

mutant 480.3

view 471.3

wild 465.8

allele 455.9

expression 451.1

qtl 430.6

version 424.9

gene 416.4

type 411.4

homozygous 407.4

larger 405.2

knockout 394.6

shh 387.8

heterozygous 384.8

differentiation 376.9

fig 370.8

°c 361.8

atrx 356.7

sam68 351.5

sections 341.2

new 336.1

ptds 333.3

ap 332.3

es 324.5

women 322.5

sox1 320.3

targeted 317.0

Table 4: Log Likelihood analysis of terms in CRAFT vs. 
BioReference (Continued)
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We see the results of the log likelihood analysis in Tables
3, 4, 5, 6 and 7.

We can analyze this data in terms of two characteristics:
the magnitude of the differences, and the semantic nature
of the words in terms of which the various pairs of corpora
differ.

With respect to the magnitude of differences, we see that
the most different words in the two content-matched cor-
pora, CRAFT and TraJour, are far less different than the
most different words between either of those corpora and
either of the reference corpora: the most different word
between CRAFT and TraJour is figure, with a log likelihood
of 2318.9, while the most different word between CRAFT
and BioReference is mice with a log likelihood of 3755.8.
The most different word between TraJour and BioRefer-
ence is mouse, with a log likelihood of 1260.6. (The differ-
ences between the two content-matched corpora and the
WSJ reference corpus are considerably higher, but we omit
them from consideration here because the comparison
against the BioReference corpus is a much more stringent
comparison.) With respect to the semantic content of the
words in terms of which the various pairs of corpora dif-
fer, we see clear patterns. The six most different words
between the two semantically matched corpora CRAFT
and TraJour all reflect formatting: figure and doi, which are
overrepresented in CRAFT as compared to TraJour, and
window, fig, text, and abstract, which are overrepresented in
TraJour. In fact, of the 50 most different terms between the
two corpora, at least a quarter of them reflect formatting
differences and artifacts of the text conversion routines –
the preceding six terms, plus pp, ?m, °c, null, -1?, -1??, and
5?. Many of the remaining differences are due to the spe-
cific named entities that occur in each corpus. However,
when we compare either of the two semantically matched
corpora CRAFT and TraJour against BioReference, we see

annexin 316.8

defects 312.0

limb 311.4

targeting 310.0

cleavage 306.5

a7 298.7

These are the results of log likelihood analysis of all terms in the 
CRAFT and BioReference corpora, ranked by the largest difference.

Table 4: Log Likelihood analysis of terms in CRAFT vs. 
BioReference (Continued)

Table 5: Log Likelihood analysis of terms in TraJour vs. 
BioReference

TraJour BioReference LL

mouse 1260.6

mice 1219.8

free 911.8

embryos 704.9

pdf 690.2

text 688.1

pp 569.5

full 543.5

expression 514.6

medline 512.5

crossref 497.6

embryonic 479.8

development 447.7

chm 443.4

patients 425.4

x1 422.4

risk 372.3

bhlh 357.7

gp 356.8

slap-2 354.7

figure 354.6

dpc 331.1
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content words such as mice, mouse, and embryos ranked
much higher, and we see more overlap among the most
significant terms. In Table 8 the top 50 terms, by TF*IDF
(Term Frequency * Inverse Document Frequency) calcu-
lated with respect to the Reference corpus term document
frequencies, are shown and the significant overlap in the
vocabularies of CRAFT and TraJour is clear. This indicates
that not only are the Open Access and traditional docu-
ments similar in terms of surface linguistic phenomena,
but that authors talk about the same things in them (in
this case, mouse genomics), as compared against a set of
documents selected from across all of biomedicine.

Discussion
In terms of linguistic phenomena such as conjunction,
passivization, negation, and pronominal anaphora, the
content-matched Open Source and traditional publica-
tions do not differ from each other. They also do not differ
in terms of sentence length. When compared against ref-
erence corpora, they do differ from these more general
document sets, indicating that if the Open Source and tra-
ditional journals did differ from each other, our methods
would have uncovered those differences.

The two target corpora analyzed (CRAFT and TraJour) are
both in the molecular biology domain, and more specifi-
cally mouse genomics. As such, the results and conclu-
sions, strictly interpreted, apply only to the particular
datasets we examined. Based on the analysis of the factors
that might lead to textual variation (see Background), it
would be conservative to assume that these results gener-
alize to the molecular biomedical literature as a whole.
We believe that generalizing these results to the entire bio-
medical literature, or even all peer reviewed scientific pub-
lications, is reasonable, although additional testing may
be warranted for areas with substantially different cultures
of scientific practice.

jmj 331.1

women 329.3

tap 326.3

pb 310.7

nxt1 304.5

isi 297.6

p300 295.8

mena 286.7

endoderm 285.6

hybridization 275.7

exercise 273.5

cited4 273.4

tbx2 270.5

zfp-57 266.0

otx2 264.6

neural 263.8

orderarticleviainfotrieve 261.3

sti 258.9

abstract 258.6

ko 258.4

mznf8 257.2

heterozygous 255.9

Table 5: Log Likelihood analysis of terms in TraJour vs. 
BioReference (Continued)

embryo 252.2

gl 249.8

domain 249.5

-catenin 246.6

mutants 245.3

chl1 243.9

These are the results of log likelihood analysis of all terms in the 
TraJour and BioReference corpora, ranked by the largest difference.

Table 5: Log Likelihood analysis of terms in TraJour vs. 
BioReference (Continued)
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Table 6: Log Likelihood analysis of terms in CRAFT vs. 
Reference

CRAFT Reference LL

mice 9705.6

's 9351.0

said 7898.0

cells 6565.1

million 5684.6

expression 5272.3

figure 4528.4

't 4392.8

he 4284.3

cell 4224.9

mouse 3914.6

mr 3850.0

year 3788.4

gene 3766.7

company 3362.6

protein 3221.6

it 3199.2

to 2986.3

will 2948.4

type 2833.5

were 2803.0

embryos 2619.0

its 2564.8

stock 2475.9

genes 2442.7

doi 2431.4

mutant 2383.2

wild 2317.2

about 2192.3

new 2158.6

analysis 2140.2

his 2107.7

and 1972.7

who 1843.6

corp 1769.0

they 1696.4

null 1689.1

dna 1596.9

in 1585.8

al 1557.6

et 1484.3

shares 1477.7

inc 1475.9

would 1468.6

Table 6: Log Likelihood analysis of terms in CRAFT vs. 
Reference (Continued)
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Conclusion
We tried hard to find differences between the CRAFT and
TraJour document sets. We mostly failed. Research on
Open Access documents applies to traditional, subscrip-
tion-only journals.

Methods
Construction of the TraJour corpus
The document set was selected by collecting the set of
Gene Ontology annotations with an evidence code of
Traceable Author Statement (see Gene Ontology 2000 for
an explanation of evidence codes) from the Mouse
Genome Institute's Gene Ontology annotation file [21]
for documents in the CRAFT corpus, eliminating two
annotations that were overly generic (GO:0005515 "pro-
tein amino acid binding" and GO:0005634, "cell
nucleus"), and then randomly selecting 100 articles from
other articles associated with those Gene Ontology terms.
These were all identified as coming from traditional sub-
scription-based journals. One of the selected articles was
discarded due to our inability to access the full text of the
article. The remaining 99 articles form our corpus, and
contain over 650K words. Most of these articles were
obtained as full text HTML from the individual pub-
lisher's websites, though 14 articles were only available as
PDFs. To convert those PDFs to plain text, we used a con-
version tool from the USC Information Sciences Institute.
The HTML files were (imperfectly) processed to handle
character entities and to remove javascript, frames, HTML
tags and other non-contentful text prior to the analysis.

Construction of the BioReference corpus
One hundred PubMed identifiers were selected at random
from each of two sources: the 2006 TREC Genomics Cor-
pus [13] and the PubMed Central Open Access subset [8].
These two sources were used because they are the only two

receptor 1458.6

shown 1396.3

differentiation 1366.1

using 1333.2

has 1332.9

fig 1326.0

These are the results of log likelihood analysis of all terms in the 
CRAFT and the general Reference corpora, ranked by the largest 
difference.

Table 6: Log Likelihood analysis of terms in CRAFT vs. 
Reference (Continued)

Table 7: Log Likelihood analysis of terms in TraJour vs. 
Reference

TraJour Reference LL

's 8358.8

cells 7680.7

said 6854.5

expression 5262.0

million 4975.7

mice 4833.1

mr 4607.9

cell 4285.6

protein 4074.2

fig 3881.0

't 3808.8

he 3660.9

to 3464.4

mouse 3425.1

year 3165.5

and 3144.6

it 2864.9

will 2858.5

company 2820.1

et 2690.1

were 2680.4

al 2555.7
Page 13 of 16
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large collections of full textpublications that we have
access to. The TREC Genomics Corpus was collected orig-
inally for the Genomics Track of the Text Retrieval Confer-
ence. The 2006 corpus contains over 162K articles from
49 journals, ranging from the American Journal of Epidemi-
ology to several American Journal of Physiology journals (e.g.
Heart and Circulatory Physiology), and as such the corpus
has quite broad coverage of biomedicine despite the
"Genomics" name. Our selection included 41 articles
from The Journal of Biological Chemistry, 12 from Blood, 4
each from Human Reproduction, Human Molecular Genetics,
and the Journal of Applied Physiology, and 1–3 each from 20
other journals.

The portion of the BioReference corpus randomly selected
from the PubMed Central Open Access included publica-
tions from Nucleic Acids Research (23 articles), Environmen-
tal Health Perspectives (9 articles), Ulster Medical Journal (4
articles), BMC Genomics (4 articles), Medical History (4
articles) and 44 other journals contributing 1 or 2 articles
each.

Three of the articles selected for the PubMed Central data-
set were missing from that set. After selecting the files and
pre-processing them to extract the plain text, two files
from the TREC Genomics collection were found to be
empty. The corpus thus consists of 195 files containing
content, 97 from the PubMed Central Open Access dataset
and 98 from the TREC Genomics dataset. We then elimi-
nated any files less than 1 kb (1024 bytes) in length, as
those did not represent full text files. The remaining 163
files comprise a reference set which can be considered to
be a balanced sample of both full text Open Access and
traditional journal publications indexed in PubMed, and
are not oriented on the topics relevant to mouse genomics
on which CRAFT and TraJour are focused.

gene 2389.7

stock 2196.0

biol 2180.8

proteins 2163.8

binding 2009.0

type 1990.1

its 1900.2

domain 1897.9

shown 1873.2

about 1859.1

embryos 1822.6

his 1701.0

they 1700.4

who 1694.5

would 1623.4

mutant 1598.6

analysis 1592.6

wild 1591.2

abstract 1560.2

corp 1546.0

receptor 1537.5

up 1483.3

Table 7: Log Likelihood analysis of terms in TraJour vs. 
Reference (Continued)

activity 1404.0

in 1385.2

expressed 1375.6

genes 1337.5

pp 1316.4

on 1304.3

These are the results of log likelihood analysis of all terms in the 
TraJour and the general Reference corpora, ranked by the largest 
difference.

Table 7: Log Likelihood analysis of terms in TraJour vs. 
Reference (Continued)
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Computational methods
All the computations described here were implemented in

Java within the UIMA (Unstructured Information Man-
agement Architecture) [22,23] framework.

Table 8: TF*IDF-ranked terms in the corpora

CRAFT TraJour Reference BioReference

mice 0.435821989 cells 0.336961638 mr 0.121256579 cells 0.320612568
cells 0.270086285 mice 0.23486562 says 0.118389148 fig 0.205308437
expression 0.216037704 expression 0.23159711 that 0.118092658 cell 0.20214811
mouse 0.178144406 fig 0.220320662 he 0.102566064 abstract 0.190193446
cell 0.172290914 protein 0.195781243 market 0.091669921 medline 0.188483175
gene 0.163204203 cell 0.187501368 's 0.088505453 protein 0.177454065
embryos 0.151251462 mouse 0.167860719 million 0.08479812 fulltext 0.140623811
protein 0.14510293 biol 0.135330482 is 0.083961293 expression 0.138198756
figure 0.12789903 et 0.120455574 as 0.081560405 orderarticle... 0.119943839
doi 0.122095859 gene 0.117032939 his 0.081293607 genes 0.109091523
genes 0.120878869 al 0.1166477 on 0.079143554 proteins 0.106029999
mutant 0.119701823 embryos 0.113119754 stock 0.078988492 gene 0.098232094
null 0.097585044 proteins 0.110513285 they 0.078407133 were 0.096137225
type 0.093527187 domain 0.093587827 at 0.075765418 binding 0.094229295
wild 0.085050648 binding 0.093519941 but 0.075548004 window 0.085695981
differentiation 0.078946407 mutant 0.086691778 billion 0.073818895 induced 0.085566187
analysis 0.076546987 receptor 0.085026763 have 0.073662149 biol 0.085231028
receptor 0.075227992 pp 0.081740644 are 0.072364352 ml 0.083458459
dna 0.073316012 mutants 0.077608416 be 0.071025302 min 0.083015317
pcr 0.073162003 abstract 0.077359299 with 0.068584195 al 0.078391977
biol 0.072197936 antibody 0.076735615 it 0.067830211 et 0.077346227
fig 0.070585942 cdna 0.076317095 was 0.067707989 analysis 0.076920249
were 0.070224935 genes 0.07615871 't 0.066475036 mm 0.073266187
allele 0.069948445 membrane 0.075929698 in 0.065890951 mice 0.072205176
al 0.067582502 transcription 0.073863584 trading 0.065657748 shown 0.070980579
mutants 0.066734887 type 0.073860554 would 0.06509097 data 0.06877046
embryonic 0.0644353 were 0.072302222 said 0.064915624 ph 0.067550112
et 0.06344436 sequence 0.070485632 to 0.064419151 activation 0.06720991
staining 0.061271839 kinase 0.070118752 has 0.064175458 receptor 0.066788269
neurons 0.059343704 pcr 0.070118752 by 0.063766297 sequence 0.066026426
proteins 0.058555579 shown 0.069422034 shares 0.063615252 antibody 0.065025557
mm 0.057094213 X1 0.068956563 company 0.063043995 human 0.064973329
olfactory 0.056987095 activation 0.065599127 their 0.062731731 using 0.064071093
transcription 0.056130146 wild 0.065140388 for 0.062641744 dna 0.063146568
signaling 0.055582376 analysis 0.06314115 bonds 0.061745073 crossref 0.062926201
phenotype 0.052916588 wt 0.062499956 will 0.061422042 activity 0.058794757
observed 0.05206838 dna 0.060635915 year 0.061329696 rna 0.058294133
e2 0.051952521 chem 0.060606544 new 0.060716109 observed 0.05785548
shown 0.050532729 pdf 0.060433841 were 0.06062604 with 0.057545637
homozygous 0.050131504 mrna 0.060175577 or 0.060257745 these 0.057379774
function 0.049871842 rna 0.059552487 an 0.060255469 study 0.056368432
muscle 0.049628485 ca 0.055251655 from 0.059225401 free 0.056039813
data 0.049494253 differentiation 0.055139424 we 0.059174038 mediated 0.055983639
antibody 0.048131217 insulin 0.05440163 index 0.059103846 serum 0.05494964
chromosome 0.048033587 activity 0.053267608 some 0.058883875 actin 0.054506498
we 0.047444291 expressed 0.053108054 one 0.058690763 kinase 0.053029357
sequence 0.047236181 embryonic 0.052726312 more 0.058586253 ?c 0.052586215
transgenic 0.046764407 signaling 0.052369358 stocks 0.058457121 we 0.051671671
using 0.046658651 molecular 0.052281469 sales 0.058224908 figure 0.051378087
pgc 0.045739642 amino 0.052137849 this 0.05791668 amino 0.050216424

These are the top 50 terms in each corpus, by TF*IDF (Term Frequency * Inverse Document Frequency). Terms highlighted in bold in the CRAFT 
and TraJour columns indicate terms that are shared among these two corpora within the top 50 terms of each corpus; terms highlighted in bold in 
the BioReference column are shared among all three corpora in the top 50 terms. There is clearly significant overlap between CRAFT and TraJour 
in their contentful terms.
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Statistical methods
We have not performed significance testing of the statisti-
cal results provided in this paper as we are mostly inter-
ested in the qualitative differences that could impact text
mining applications, and minor variations will always
exist between any particular document corpora. This is a
limitation of the approach.
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