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Abstract

Background: Proteomic protein identification results need to be compared across laboratories
and platforms, and thus a reliable method is needed to estimate false discovery rates. The target-
decoy strategy is a platform-independent and thus a prime candidate for standardized reporting of
data. In its current usage based on global population parameters, the method does not utilize
individual peptide scores optimally.

Results: Here we show that proteomic analyses largely benefit from using separate treatment of
peptides matching to proteins alone or in groups based on locally estimated false discovery rates.
Our implementation reduces the number of false positives and simultaneously increases the
number of proteins identified. Importantly, single peptide identifications achieve defined confidence
and the sequence coverage of proteins is optimized. As a result, we improve the number of
proteins identified in a human serum analysis by 58% without compromising identification
confidence.

Conclusion: We show that proteins can reliably be identified with a single peptide and the
sequence coverage for multi-peptide proteins can be increased when using an improved estimation
of false discovery rates.

Background confidence. Nevertheless, proteins identified with a
Current proteomic investigations have greatly expanded = non-corroborated single peptide account for a consider-
our ability to list proteins from complex mixtures  able fraction of all proteins identified and cannot simply
ranging from immunoprecipitated complexes to sub-  be disregarded.

cellular structures [1]. The validity of the proteomic

approach depends critically on a reasonable estimation = The confidence in peptide identifications is generally
of the confidence in the identified proteins. The protein  estimated by interrogating the quality of match between
inference problem [2,3] aside, proteins are identified  mass spectra and peptides. False identifications are
based on the comparison of peptide fragmentation  reduced through manual interrogation of peptide-spec-
spectra to sequence databases. While a single matched  trum matches, by applying filters created using a training
peptide is sufficient to identify a protein, the identifica-  data set [4], using probabilistic approaches [5-7], or
tion of a second peptide for the same protein corrobo-  relying on machine learning [8]. However, a key
rates the first and greatly increases the statistical  problem is the difficulty of determining the reliability
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of reported identifications as we lack a field-wide
standard describing identification confidence. As a
result, only experts for exactly the data interpretation
method used can judge if a presented list leans towards
over- or under-reporting protein identifications.

The target-decoy approach, combining the ordinary (target)
database usually with an inverted (decoy) database, offers a
platform-independent method to determine the confidence
of protein identifications and hence addresses the standar-
dization problem of MS-based proteomics [9-11]. The
database search is performed against a concatenated
database composed of target and decoy sequences. The
target sequences are of such proteins that could be present in
the sample while the decoy sequences are all false and
normally obtained by simply inverting the target sequences.
There is no sequence overlap and the probability of a
random/false identification is, at least in principle, equal in
both. It is not possible a priori to tell which target matches
are false identifications. However, the frequency of false
positive peptide spectrum matches is revealed by the
number of decoy matches. Currently, a cut-off score is
defined and adjusted until the ratio between the global
count of decoy and target matches above the cut-off reaches
a desired value, which is taken as the estimation of the false
discovery rate (FDR) (see Choi and Nesvizhskii [12] for a
detailed description).

The target-decoy approach provides a universal expres-
sion of the identification confidence reached by a given
data analysis and hence a possible path to standardiza-
tion of proteomic results. The target-decoy approach
generates peptide and protein lists that are very compar-
able using different search algorithms, as was shown
recently for OMSSA, X!Tandem, Mascot, and Sequest
[13]. We here complement the target-decoy approach by
investigating the validity of the false-positive estimation.
Furthermore we introduce an alteration to the target-
decoy approach to maximize the number of correctly
identified proteins while minimizing the number of false
positives, even when single-peptide hits are included. To
achieve this, we calculate the FDR locally within a score
window (as illustrated in Figure 1) and separately
consider matches to proteins alone or in groups. The
local FDR calculation was previously discussed by Kaill et
al. [14] and is related to the posterior probability
(probability = 1 - local FDR) as used by PeptideProphet
(discussed by Choi and Nesvizhskii [15]).

Results and Discussion

A true-false target database serves as a control for the
success of FDR estimations

We used a test system to control the selectivity of
the target-decoy method. We searched the mass
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lllustrating the principal of calculating global- and
local-FDR. The global-FDR is calculated on a list of results
that rank above a given score, whilst the local-FDR is
calculated on a list of results within a window surrounding a
given score. In both cases the given score can be changed to
obtain an FDR profile for the entire results list, or to find a
particular FDR cut-off. True positives (green), false positives
(red).

spectrometric data obtained by analyzing E. coli lysate
against a non-redundant database that contained Arabi-
dopsis and Chicken in addition to E. coli sequences using
Mascot (for OMSSA see additional file 1). Normally, if
the aim was to identify E. coli proteins, one would use an
E. coli-only database as that would reduce the number of
random matches, i.e. false identifications, and maximize
the number of correctly identified peptides. We were,
however, interested in testing how well false and correct
identified peptides are discriminated from each other by
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the target-decoy method and thus needed a way in which
to recognize the false peptide identifications. While the
target-decoy approach reveals the fraction of false
identifications and thus allows reducing false positives
to a defined rate it does not reveal which peptides are
actually false. Adding the 19-times larger Arabidopsis/
Chicken sequence databases to E. coli enables us to
obtain most of that information in our experiment.
Theoretically, all false matches are random, and hence
95% (19/20) should occur to the non-E. coli part of the
database making them recognizable. Importantly, we do
not choose our cut-off to minimize the number of non-
E. coli matches but merely use these false target matches
to reveal the success of different ways of estimating the
FDR. Note that we include only the highest scoring
spectrum match for a given peptide sequence rather than
including all peptide spectrum matches. This simplifies
the computations and discussion presented below. We
also tested taking all PSMs, as is normally done, and
could not see a significant difference in the outcome of
our analysis.

Aiming for a 5% FDR for matches we found a score
(Mascot score minus the homology value if present else
minus the identity value) threshold of 3.2, to yield the
desired number of 374 decoy matches (4.8%) out of a
total of 8179 matched peptides above the threshold. At
the next lower cut-off (score = 1.9) the number of decoy
matches exceeds our tolerated error rate (6.7%). From
the equal probability of matching randomly decoy and
target peptides follows that there should be 374 incorrect
peptides distributed amongst the target peptide
matches in relation to the relative proportion of
Arabidopsis+Chicken:E. coli database size 19:1 (355 pep-
tides:19 peptides). We observed 337 matches (4.3%) to
non-E. coli peptides demonstrating that the false positive
calculation is performing essentially as expected.

These 337 non-E. coli target peptides gave rise to
332 (17%) of our identified proteins being non-E. coli.
The vast majority (98%) of these non-E. coli and thus
very likely false proteins were identified with a single
peptide only, while many E. coli proteins were identified
with multiple peptides (Figure 2A, B, C, D). This
summarizes into the observation that correct peptides
accumulate together in proteins while false peptides
tend to remain single (also known as non-random
grouping [16]). Discarding all proteins with a single
peptide and hence reducing the number of falsely
identified proteins comes at the price of also losing a
significant number of proteins that are likely correct. We
hence set out to extend the target-decoy approach to
more accurately reflect the FDR of the identified peptides
and to increase confidence into proteins identified by a
single peptide.
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We next asked if the non-E. coli peptides scattered
randomly over the list of identified peptides or clustered
and could thus be removed selectively.

Locally estimated FDR to predict probabilities for
individual hits

As discussed by Kall et al. [14], globally estimated FDR is
essentially an estimate of confidence (g-value) and is a
measure of the quality of a list. However, in order to
estimate the probability of individual peptide spectrum
matches being false, the posterior error probability is
used. We calculate this as the locally estimated FDR, in
which only PSMs falling within a score window
contribute to the FDR for PSMs within that window.
Sliding the window over the entire list allows locally
calculate FDR value to be assigned to each PSM. Since
the decoy hits cluster towards lower scores, setting a cut-
off for local FDR gives a much more conservative score
threshold than for global FDR. This can be observed in
Figures 2E and 2F, which show the decoy and target
distributions and corresponding local and global FDRs
over the mascot score. It is important to note that whilst
it is more appropriate to consider the global FDR when
working with lists of matches, we are next considering
relationships between individual matches, and so use of
the local FDR seems more valid.

Applying a cut-off to our E. coli dataset according a 5%
local FDR, i.e. moving the calculation window from the
high scoring matches down the list until the local FDR
reaches 5%, resulted in 42 (0.5%) Non-E. coli peptides
among the identified peptides. This gave 42 (2.2%)
falsely identified, non-E. coli proteins. Using local FDR
excluded many non-E. coli (i.e. false) peptides. However,
just one increment below the cut-off, the peptides have
almost the same FDR as above the cut-off. Many peptides
below the cut-off are correct but nevertheless excluded as
exemplified by the excess of target over decoy peptides
below the cut-off (Figure 3A). Only at much lower score
values did the number of target and decoy peptides
equalize indicating complete random matching. The
peptides below the score cut-off could potentially be
critical in expanding the depth of the analysis towards
low abundant proteins. The question is how to access
these peptides without compromising confidence in the
identified proteins.

Peptides from below the local FDR cut-off do not result in
additional correct protein identifications; they increase

the sequence coverage of the already identified proteins
We divided the matches with score values below the cut-
off into two classes. The first class of peptides would
match to proteins already identified by peptides from
above the cut-off and thus increase the sequence
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Figure 2

LC-MS/MS dataset of E. coli lysate searched against a combined E. coli/non-E. coli target-decoy database.
Number of peptides (A) and proteins (B) identified with 5% FDR. Number of peptides (C) and proteins (D) falling into the class
of corroborating (c) and non-corroborating (nc) peptide hits. (E) Distribution of E. coli and non-E. coli peptides over peptide
score. FDR: number of decoy peptides at or above a score divided by the number of target peptides at or above the same
score; local FDR: number of decoy peptides in a score window divided by the number of target peptides in that window. (F)
Plot of the FDR and the local FDR over the peptide score. The grey zone marks the score region of those peptides that would
be included as correct results according to the FDR but excluded by the local FDR. Score is defined as Mascot score
minus the homology value if present or minus the identity value.
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Figure 3
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LC-MS/MS dataset of E. coli lysate searched against a combined E. coli/lnon-E. coli target-decoy (ACE) database.
(A) Distribution of target peptides (green) and decoy peptides (blue) over the peptide score. (B) as in panel (A) but the target
peptides below the score cut-off at 5% FDR split into two distributions: those matching to proteins identified by peptides
above the score cut-off (green) and those that do not (left behind: grey). (C) Number of peptides (corroborated and non-
corroborated) identified as a function of the score cut-off. (D) Number of peptides and proteins identified by Mascot alone
(Msc), and with 5% FDR as a function of the way in which the FDR was determined: number of decoy peptides at or above the
score cut-off divided by the target peptides at or above the score cut-off (FDR); number of decoy peptides in a score window
divided by the number of target peptides in that window (local FDR; Loc); as local FDR but considering separately peptides that
corroborate each other in matching the same protein in or above the current score window and those that do not
corroborate (CNC local FDR; cnc).
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coverage of these proteins. The second class of peptides
would add novel proteins to the list if the cut-off was
lowered. Importantly, the chance of matching randomly
to one of the proteins identified already is significantly
smaller than the chance of matching randomly to one of
the many remaining entries from the database. This is
also exemplified by the behaviour of non-E. coli matches:
92,978 (96%) of 96,812 class two peptides are non-E.
coli and thus false positives while it is only 432 (3.7%) of
11,654 class one peptides. Hence, class-one peptides are
much more likely correct. We observe that class one
peptides largely accounted for the excess of target
matches found below the cut-off, while the distribution
of class two peptides closely coincided with the
distribution of decoy matches (Figure 3B). Lowering
the cut-off by one score unit would result in the
inclusion of 172 class one peptides, all of which are
from E. coli, and 25 class two peptides - and thus 25
proteins — of which 16 (64%) are not from E. coli.
Clearly, including additional peptides irrespective of
their class by lowering the cut-off would add a large
proportion of false proteins to the list. Nevertheless,
correct peptides are found below the local FDR cut-off.
They mostly match to proteins identified already,
improving sequence coverage. However, some of these
peptides will be false and we require unbiased criteria for
determining what fraction of matches to upgrade onto
the list of identified peptides and which to leave out.

All of the 42 non-E. coli proteins were identified with a
single peptide and hence lack the validation by a second
peptide. In effect, 8% (42) of the 510 proteins we
identified with a single peptide were non-E. coli while
this is the case for none of the 872 proteins identified
with two or more peptides. This means that this FDR-
based method has two deficiencies: first by excluding
likely correct peptides matching to proteins identified
already (corroborating) and second by including likely
incorrect peptides matching proteins alone (non-corro-
borating). This opens the question if those two classes of
matches should be treated separately for the FDR
computation.

Separating corroborating and non-corroborating matches
in target-decoy analyses improves selectivity for correct
identifications

The likelihood of falsely identifying a single non-
corroborating matches is much higher than falsely
identifying a peptide that is corroborated by matching
together with other matches to the same protein.
Correspondingly, identified decoy matches match to a
protein much more frequently alone than together
(Figure 3C). Treating both classes of matches together
distorts the FDR for both. On one hand, the score cut-off
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is too high for corroborating matches. A consequence is
the excess of target matches over decoy matches below
the local FDR cut-off, described above. On the other
hand, the score cut off is too low for non-corroborating
matches. False, non-corroborating matches are included
above the local FDR cut-off, exemplified by the large
number of non-E. coli proteins with a single match being
identified in our search. Hence, the two classes of
matches should be considered individually for FDR
estimation to improve selectivity for correct identifica-
tions. On some existing platforms such as Protein
Prophet (Number of Sibling peptides) [7] and Spectrum
Mill the obvious step is already done of allowing one to
set higher score thresholds for peptides contributing to
one-hit proteins than for peptides contributing to multi-
hit proteins. This concept should also be implemented in
the platform-spanning target-decoy approach. By apply-
ing cut-offs corresponding to 5% local FDR separately to
the two match classes the vast majority of non-E. coli
target matches were rejected in our E. coli analysis. Of the
127 proteins identified by a single peptide 3(2%) were
non-E. coli. In addition, the number of corroborating
E. coli peptides increased from 5156 to 7670 and thus
the sequence coverage of the proteins was optimized
without lowering confidence criteria. In fact, considering
corroborating (C) and non-corroborating (NC) matches
separately for local FDR (i.e. CNC local FDR) estimation
and cut-off yields increased corroborating peptide and
protein identifications over both FDR and local FDR
methods. The proportion of non-E. coli to total targets
among proteins identified with a single peptide is 8%
but by considering these non-corroborating hits sepa-
rately this percentage falls to 2%. We now can report
with defined confidence the non-corroborated peptides
giving rise to single-match proteins.

In order to investigate if our findings are specific for
search results obtained by Mascot [5] we have conducted
an equivalent analysis of the search results obtained by
OMSSA [17] (see Additional File 1). We find that all
trends are identical and our preference for the CNC local
FDR method holds across platforms. The CNC local FDR
method can thus be used to express confidence in
peptide identifications in cross-platform manner. Note
that our results do not support the recently reported clear
superiority of OMSSA over Mascot [13] but find both
programs performing comparably (1382 proteins iden-
tified with Mascot compared to 1029 proteins identified
with OMSSA) with an overlap of 47% in peptides and
68% in proteins.

The concept of corroborating and non-corroborating
matches can be expanded further beyond highest scoring
PSM for a given peptide matching alone or in groups to
proteins. This can be done by further dividing the groups
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or by using other features than number of matches. Such
features can be charge states, modifications, sequence
overlap (missed cleavage), contiguity or vicinity in the
protein sequence, or even proteins falling into related
functional or localization classes, e.g. being members of
a complex/pathway or being membrane associated.
These and other features remain to be explored.

Comparison of the Target-Decoy approach with the
confidence assignment offered by Mascot

Mascot offers a confidence assignment for its peptide-
spectrum matches on a per-match basis. The algorithm
includes calculation of the homology value that aims to
represent the 95% limit of confidence for each match. In
our analysis we use the Mascot score minus the
homology value, so that if the resulting score is greater
than zero, Mascot has considered this hit statistically
significant.

We find the Mascot cut-off (score 0) to be in
approximate agreement with the 5% global FDR cut-off
(score 3.2), in the data we present here. However, 40%
of identified peptides at this score value are false as is
indicated by the local FDR (Figure 2F) and basically all
non-corroborating peptides are falsely identified as is
indicated by the numbers of non-corroborating decoy
and target peptides being equal at this score (Figure 3C).
It should be noted that the difference of values between
global FDR and Mascot was not the same under all
circumstances. For the serum data discussed below the
discrepancy was negative (score -2.1, Table 1) and we
have observed discrepancies of a few score units (-5 to
+5) between the 5% global FDR cut-off and the Mascot
cut-off using other data sets and databases.

Whilst there is reasonable agreement between Mascot
and the target-decoy based global FDR estimation
method, we can improve upon both by using the CNC
local FDR. We find CNC local FDR to propose a cut-off
lower than Mascot/global-FDR for corroborating-
peptides and higher for non-corroborating-peptides
(see Figure 3C), meaning that we accept significantly
more corroborating peptides than Mascot (and global
FDR) and fewer non-corroborating hits, as shown in
Figure 3D. The use of CNC local FDR can thus improve
even on the probabilistic data evaluation done by

Table I: Score thresholds given by different methods of analysis

Measurement Score threshold Score threshold
in E. coli dataset in serum dataset

Mascot 0 0

FDR 3.22 -2.1

Local FDR 13.6 7.2

CNC Local FDR -0.67, 27.88 -3.6, 19.6

http://www.biomedcentral.com/1471-2105/10/179

Mascot. Value is added on the level of peptide
identification by treating single and corroborating-
peptides separately. Value is also added on protein
level by preventing the inclusion of a number of low
confidence single-peptide hits, as basically any single-
peptide protein near the cut-off used by Mascot is falsely
identified, and by improving on sequence coverage.

We also investigated as a base for our target-decoy based
FDR analysis the Mascot score or the Mascot E-value
(data not shown). The results were practically indis-
tinguishable to the ones obtained on the basis of the
difference between Mascot score and homology value.

Impact of FDR method on a serum analysis is significant
Human serum is a high-complexity, wide dynamic-range
biological mixture of great clinical relevance. However,
many serum proteins are of low abundance, making
their detection challenging using current technology.
Proteins present at abundance levels close to the
detection limit are often detected with single, low-
scoring matches. This gives the match score cut-off
determined by FDR estimations a decisive impact on the
final protein list. We processed a large human serum
dataset[18] using FDR and corroborating/non-corrobor-
ating (CNC) local FDR estimation, to see the impact of
the two methods on a dataset of this nature.

Adopting CNC local FDR increases the number of
confidently identified serum proteins in our analysis by
466 (58%) from 806 to 1272 by allowing the inclusion
of proteins identified with a single peptide without
significantly increasing the expected number of false
identifications (Figure 4). These proteins were also seen
when using global FDR but mixed with a large number
of false positives. Using the latter method, one therefore
has to choose between accepting single peptide hits and
with this a large number of false positives and rejecting
single peptide hits and loosing a large number of
correctly identified proteins. Using CNC local FDRs,
many of the correct proteins can be identified with high
confidence even though they were observed with a single
peptide.

If one used the number of decoys (222) to estimate the
number of false positives in the single-peptide proteins
identified by the global FDR method, and subtract this
number from the total (1112-222 = 890), there are about
450 additional single-peptide proteins identified by the
global FDR method than by our CNC local FDR method
using a 5% cut-off. Some of these 450 peptides may be
additional false positives in the global FDR method that
the decoy approach has failed to model, whilst the
remainder will be false negatives in the CNC local FDR
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Figure 4

Number of proteins identified with 5% FDR in an
analysis of human serum as a function of the way in
which the FDR was determined (key as in Figure 2D).
646 proteins were identified in addition by the current FDR
approach taking proteins with one and more peptides
together when compared to our CNC local FDR approach
(FN+FP). Under these conditions also 222 decoy proteins
are identified (D) indicating that more than | out of 3
additional proteins (FP) are identified on false grounds and
thus would devaluate the final protein list. Our method
identifies 22 additional proteins with two or more peptides.
Correct proteins (FN) are missed as a result of a stringent
FDR estimation and would profit from an independent
protein list created from peptide identifications using a
higher local FDR.

method, that simply did not score highly enough to meet
the 5% cut-off criterion. These peptides may nevertheless
be reported, albeit with a defined higher local FDR using
the CNC local FDR method. Researchers can then pick
biologically meaningful candidates for subsequent study
or intersect the list with the results of alternative,
orthogonal high through-put studies and thus exploit
the information gained by mass spectrometry-based
proteomics to completion.

Conclusion

Current target-decoy methods average the probability of
false identification over all reported peptides and
thereby significantly increase the frequency of false
identifications. We show that this leads to the effective

http://www.biomedcentral.com/1471-2105/10/179

loss of proteins identified with a single peptide. The use
of a 19-times larger false-target database allows to asses
the quality of the target-decoy based FDR method used,
separating the cyclic redundancy of using decoy matches
to calculate FDRs as well as evaluating the method of
calculating FDRs. We obtain a better separation between
correct and incorrect peptide spectrum matches thus
minimizing false identifications, by using local FDRs to
treat peptides separately that fall alone or in groups into
proteins. As a result, we gain confidence into single
peptide proteins and optimize the sequence coverage for
multi-peptide proteins. We thus maximize the results
that can be obtained with the available data at a defined
FDR using the cross-platform compatible target-decoy
approach. We furthermore show that the CNC local FDR
method improves in confidence and number on the
results obtained by Mascot and OMSSA parameters
alone and that standardization does hence not compro-
mise the quality of obtained results. This is valuable
contribution towards the standardized presentation of
proteomics data.

Methods

E. coli lysate

100 pg E. coli total soluble cell lysate was electrophor-
esed through Novex NuPAGE 1 mm 4-12% tris-glycine
gels (Invitrogen) in MOPS buffer (Invitrogen), fixed in
50% methanol/5% acetic acid, and stained with the
Colloidal Blue kit (Invitrogen). Bands were excised and
processed following standard trypsin digestion proce-
dure [19]: reduction in 100 mM DTT for 30 minutes at
room temperature, alkylation with 55 mM iodoaceta-
mide for 30 minutes at room temperature in the dark
and digestion with 12.5 ng/pl trypsin (Proteomics
Grade, Sigma) over night at 37°C. The supernatant was
loaded onto StageTips [20,21], and peptides were eluted
in 20 pl 80% acetonitrile, 0.1% trifluoroacetic. The
acetonitrile was allowed to evaporate (Concentrator
5301, Eppendorf AG, Hamburg Germany), the volume
of each eluate was adjusted to 5 pl with 1% trifluor-
oacetic acid and each sample was injected for LC-MS/MS
analysis.

LC-MSIMS analysis

The analytical platform was composed of an Orbitrap
mass spectrometer (ThermoElectron) and an Agilent
1200 binary nano pump (Palo Alto, CA). C18 material
(ReproSil-Pur C18-AQ 3 pum; Dr. Maisch GmbH,
Ammerbuch-Entringen, Germany) was packed into a
spray emitter (100 pm ID, 8 pm opening, 70 mm length;
New Objectives, USA) using an air-pressure pump
(Proxeon Biosystems, Odense, Denmark) to prepare an
analytical column with a self-assembled particle frit [22].
Mobile phase A consisted of water, 5% acetonitrile and
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0.5% acetic acid and mobile phase B of 99.5%
acetonitrile and 0.5% acetic acid. The samples were
loaded from a CTC PAL autosampler onto a loop and
from there onto the column at 700 nL/min flow rate. The
fractions were analyzed on 88 min gradients. The
gradient ran with a flow rate of 300 nL/min from 0%
to 20% mobile phase B in 75 minutes and then to 80%
in 13 min. The mass acquisition was performed in cycles
of one FT-MS (one microscan, 200 ms fill-time, 5 x 105
ion scan target, resolution 30,000, lock mass 429.0887
and 445.1200) and MS2 in the iontrap for the six most
intense species (Normal scan, wideband activation, 105
ion scan target, maximum fill time 100 ms, dynamic
exclusion for 180 seconds). The average length of
an acquisition cycle of one MS and up to six MS2 was
1.6 sec (value obtained by averaging over 50 acquisition
cycles in the middle of an analysis).

Human serum

We took the largest of the datasets acquired on human
serum proteins by Sennels at al. [18]. Sample prepara-
tion and data acquisition are described elsewhere [18].
Database-searching, data-processing, and false-positive
estimation followed the procedure as is described for the
E. coli data with the single exception being the precursor
mass accuracy which uses the value published for this
dataset (7 ppm) and the database being IPI human (v
3.23) in target-decoy configuration as is described for the
database used for E. coli data.

Database-searching and data-processing

Peaks were picked from raw-files using DTA-Supercharge
(v 1.01, http://msquant.sourceforge.net/, peak picking
parameters: initial mass tolerance 0.5, max search level 5,
picking segment size 200, without internal peak picking
or higher level reduction) and combined into a single
peak file. The peak-data was searched against a com-
bined Arabidopsis/Chicken/E. coli (ACE) sequence tar-
get-decoy database using Mascot (v 2.2, Matrix Science,
London, UK) and OMSSA (v 2.1.1) [17]. Mascot was
used with the parameters: mono-isotopic masses, 5 ppm
on MS and 0.6 Da on MS2, ESI TRAP parameters, fully
tryptic specificity, carbamidomethylation of cysteine as
fixed modification, oxidation of methionine as variable
modification, three missed cleavage sites allowed. For
every spectrum the best matching peptide was extracted
from the Mascot-output without further restriction on
score or mass error to obtain the peptide-spectra match
(PSM) dataset used for subsequent calculations. More
than 99% of all peptide-spectrum matches, disregarding
score, fell within 4 ppm of their theoretical mass
showing that our 5 ppm cut-off did not significantly
restrict the chance of identifying correct peptides.
OMSSA was used with the parameters: mono-isotopic

http://www.biomedcentral.com/1471-2105/10/179

masses, 0.08 Da on MS and 0.6 Da on MS2, b- and
y-ions considered, fully tryptic specificity, carbamido-
methylation of cysteine as fixed modification, oxidation
of methionine as variable modification, three missed
cleavage sites allowed. The E-value was chosen to 100 to
not restrict the reported results.

Database construction

The target-decoy database was constructed from IPI
Arabidopsis thaliana v 3.54, IP1 Chicken v 3.49 and all
E. coli sequences in the Swiss-Prot DB release 52.3
(Arabidopsis — Chicken - E. coli database; ACE data-
base). For each species, a Markov chain model (word
length = 4) was used to generate a decoy version for each
sequence. The target and decoy portions of the Arabi-
dopsis, Chicken and E. coli databases were combined to
give the ACE database. It should be noted that the
number of hits returned by Mascot for Arabidopsis and
Chicken was proportional to the volume of sequence
data underlining that hits to sequences of these two
species are equally random. Assuming that this relation-
ship also holds for E. coli and since the ratio of sequence
data volume Arabidopsis + Chicken: E. coli is approxi-
mately 19:1, we estimate that 95% of the false positives
in any search are Arabisopsis and Chicken hits. Con-
taminant peptides were identified by sequence identity
to peptides found in the human database (human IPI v
3.55) and removed prior to FDR calculations.

False-positive estimation

Peptides at or above a given score were counted using in-
house software written in Perl http://www.perl.org. For
both datasets, only peptides with more than 6 residues
and a precursor mass error of 4 ppm/7 ppm (E. coli and
H. sapiens serum respectively), were considered. Only
non-redundant peptide-spectrum matches (PSMs) were
considered. For this, the highest scoring instance of a
sequence was kept while all subsequent matches were
eliminated, irrespective of charge or modification. FDRs
were also calculated for unique combinations of
sequence, charge and modifications, but this did not
result in substantial changes to the outcome described
here for unique sequence alone. We therefore refrained
from complicating the approach by including these extra
parameters.

We are interested in estimating how many target
peptides are falsely matched. Decoy peptide hits reveal
the number of target peptide hits anticipated to be false
for a given cut-off. However, decoy hits themselves do
not contribute to the false positive rate of the reported
result, as they can be clearly distinguished from target
hits. The global FDR is obtained in the current
implementation of the target-decoy approach [23] by
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dividing two times the number of decoy peptides at or
above the score cut-off by the sum of the number of
targets and decoys above the cut-off, which gives an
estimate of the proportion of false positives among both
target and decoy populations above the cut-off. In
contrast, we felt that the global FDR should be estimated
as the number of decoy peptides at or above the score
cut-off divided by the number of target peptides at or
above the score cut-off (Table 2). This gives an estimate
of the proportion of false positives among the target
population above the cut-off and we have used this
method here. The same reasoning was also made
recently [24]. Note that we have also compared our
methods with the results of the decoy-incorporating
method and observe similar trends throughout our
analyses.

The local FDR was estimated as a moving average of the
number of decoy peptides found in a window centred
around the score, divided by a moving average of the
number of target peptides with scores in the same
window (Figure 1). The window width was set to 0.05
score-units wide for Mascot, using the Mascot score
minus the homology threshold if present or minus the
identity threshold, and also 0.05 score units for the
OMSSA score, for which minus ten times the logarithm
(base ten) of the OMSSA E-value was taken. The resulting
distributions were then smoothed across a range of 1
score unit. We also analysed our data using the Mascot
score alone, Mascot identity score (score minus identity
threshold), the Mascot E-score (-10 * log(E-value)) and
the OMSSA P-score (-10 * log(P-value)), but found no
significant difference in the outcome, and we therefore
demonstrate the most commonly used score in method
development for each algorithm (OMSSA E-value,
Mascot score — homology/identity threshold).

http://www.biomedcentral.com/1471-2105/10/179

For peptide class-specific local FDRs, the cut-off for
peptides matching together to a protein (corroborating
hits) was determined first and then for peptides
remaining alone (non-corroborating hits). First we
determined whether a peptide is corroborating at a
score S by considering all peptides at the score S and
above, and secondly we segregated these corroborating
hits from the non-corroborating hits. The local FDR was
then computed as described above for each class of hits
in such a way that every peptide contributed only once to
the local FDR estimation, either as corroborating or non-
corroborating hits.

The cut-offs for all FDR calculations were taken as the
centre of the score window at which the local FDR
exceeded 5% and peptides at or above this score were
defined as successfully identified (Table 1). Since the
Mascot score we use is the difference between the Mascot
score and the homology/identity threshold, a cut-off of
zero automatically gives us the peptides that Mascot
would have accepted at 95% confidence. The peptides
accepted by OMSSA were taken as those with and E-
value less than 0.01.

Protein inference

Every protein identified must have at least one unique,
accepted peptide. To avoid peptides being assigned
twice, we ranked the peptide-spectrum matches by
score and then only considered the highest scoring
PSM for a given peptide. This means that every peptide
occurs only once in the final results, and as such, no two
proteins can be identified on the basis of the same
peptide being observed. The protein this peptide is
assigned to is maintained from the database search, i.e.
Mascot or OMSSA, respectively. This means that we have
relied on Mascot (or OMSSA) for deciding on which

Table 2: A glossary of key terms, their abbreviations and formulae

Measurement Formula

Description

Corroborating (c) hits

Correct assignments matching together with others to a protein

Non-corroborating (nc) hits

Correct assignments matching singly to a protein

False positives
Total positives

FDR (global FDR) estimated by

Decoy positives
Target positives

Fraction of incorrect assignments above the score threshold

FDR for peptides with score (S):

Local FDR § + window width
- 2

Fraction of incorrect assignments within a score window

CNC Local FDR

Fraction of incorrect assignments within a score window, separately for
assignments matching together with others (c) or singly (nc) to a protein
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proteins to infer based on the peptides that were
accepted by the respective FDR methods.
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