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Abstract
Background: DNA sequence comparison is based on optimal local alignment of two sequences
using a similarity score. However, some new DNA sequencing technologies do not directly
measure the base sequence, but rather an encoded form, such as the two-base encoding
considered here. In order to compare such data to a reference sequence, the data must be decoded
into sequence. The decoding is deterministic, but the possibility of measurement errors requires
searching among all possible error modes and resulting alignments to achieve an optimal balance of
fewer errors versus greater sequence similarity.

Results: We present an extension of the standard dynamic programming method for local
alignment, which simultaneously decodes the data and performs the alignment, maximizing a
similarity score based on a weighted combination of errors and edits, and allowing an affine gap
penalty. We also present simulations that demonstrate the performance characteristics of our two
base encoded alignment method and contrast those with standard DNA sequence alignment under
the same conditions.

Conclusion: The new local alignment algorithm for two-base encoded data has substantial power
to properly detect and correct measurement errors while identifying underlying sequence variants,
and facilitating genome re-sequencing efforts based on this form of sequence data.

Background
DNA sequence comparison is a common problem in biol-
ogy. In this problem, we wish to measure the similarity of
two sequences of DNA. Hamming distance [1] can be
used to quantify similarity but forces the two sequences to
be of the same length. More generally, the idea of a
weighted edit distance can be applied, which allows for
base changes, insertions and deletions [2], with weights
chosen to reflect their likelihood of occurrence. Given
some set of operators that can modify a sequence, we wish
to find the set of edit operators that transforms one
sequence into a (sub)sequence of the other by maximiz-

ing a similarity score. This problem can be solved by a
dynamic programming algorithm, which was first
described in 1970 [3]. This led to the Smith-Waterman
algorithm [4] that has been a critical component of local
sequence alignment. Affine gap penalties were subse-
quently introduced, whereby in practice the per-base aver-
age penalty decreases, but the overall penalty increases
with longer length[5]. This algorithm has a known O(nm)
running time and O(min(n, m)) space requirements, for
both finding a maximum similarity score and finding a
transformation that achieves the maximum similarity
score, where n and m are the lengths of the two sequences
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to be compared [3-9]. The resulting algorithm has become
the standard for DNA sequence comparison [3,4,10,11].

Sequence comparison has an important application to re-
sequencing, whereby a DNA sequence that is observed
may differ from a reference due to biological events or
measurement errors. We wish to find the maximum simi-
larity score between the observed sequence and a sub-
string of the reference sequence. This is referred to as local
sequence alignment and is typically a final finishing step
in a two-stage search process found in many current
sequence alignment tools [12-15] (Homer N, Merriman
B, Nelson SF: BFAST: the BLAT-like Fast Accurate Search
Tool for Large-Scale Genome Resequencing, submitted)
that support alignment of a short sequence to an entire
genome. Among the 'next-generation' DNA sequencing
technologies that produce millions to billions of short
sequence reads, there is one (the SOLiD™ platform [16-
18]) that does not observe each DNA base (A, C, G, or T)
individually, but measures successive sequential pairs,
with the 16 possibilities encoded degenerately in groups
of four, using four "color" codes (see Figure 1 for details).
The resulting two-base encoded form of data is referred to
as color space sequence data, to distinguish this from the
decoded base space sequence data[16,17]. For example, a
50-base DNA sequence would be encoded as 49 sequen-
tial two-base measurements, each of which is one of four
states (colors). Given the first base of the sequence as a
boundary condition (which in practice is the known last
base of the sequencing primer), the chosen encoding
allows for the bases to be sequentially decoded, moving
from first to last, in a fully deterministic manner. While
the actual two-base encoding used has a number of inter-
esting and useful algebraic properties [17], the most
important properties are that a single base change to the
DNA base sequence results in two adjacent color changes

in the color space sequence, and that an isolated error in
color space will cause all subsequent bases to be altered in
the decoding. The result is that isolated measurement
errors and real variants have distinguishable signatures
that in principle provide some ability to perform error
detection and correction. In particular, two specific adja-
cent measurement errors are required to produce a single
base change error in the decoded sequence, so that the
base calling error rate could be reduced to the square of
the intrinsic measurement error rate (which is ~1%–
10%), if the encoding properties can be fully exploited
when comparing the color space reads to a reference DNA
sequence.

In a typical re-sequencing experiment using next-genera-
tion sequencing technology, millions of short sequence
"reads", 20–100 bases in length, must be aligned to a large
reference genome, such as the human genome. This
demands an initial search space reduction step [12-14,18-
20] (Homer N, Merriman B, Nelson SF: BFAST: the BLAT-
like Fast Accurate Search Tool for Large-Scale Genome
Resequencing, submitted) prior to performing the more
expensive optimal local alignment. This first step typically
involves some form of indexed look-up or hashing of the
full genome or reads, so that a small number of candidate
alignment locations are quickly obtained for each read, in
a way that is tolerant of the read containing errors or real
variants relative to the reference. The optimal local align-
ments are then used to select which of these candidates is
the true location, as well as to identify the differences from
the reference sequence at that location. In the case of color
space data, the look-up phase can be performed entirely in
color space, using the color-space encoded form of the ref-
erence genome to find candidate locations for each color
space read. The optimal alignment algorithm described
here would then be used as the finishing step, which
simultaneously decodes, identifies color (measurement)
errors, and optimally aligns resulting DNA sequence to a
short candidate segment of the reference sequence, typi-
cally 100–1000 bases in length (to allow for insertions
and deletions in the read).

Results
Power of two-base encoding
We performed simulations to evaluate the power of our
proposed algorithm to align sequences with two-base
encoding compared to the local alignment without two-
base encoding (see Methods for details). We model errors
as base substitutions when the sequence is not encoded
and model errors as color substitutions (encoding errors)
when the sequence is encoded in color space. In Figure 2,
we demonstrate that for sequences with increasing error
rates, aligning with two-base encoding is nearly equal to
(for longer reads) or more powerful than (for shorter
reads) aligning without two-base encoding. Nevertheless,

The function ΦFigure 1
The function Φ. Φ is a function that encodes two bases as a 
color. Each color is represented by a number ∈ {0, 1, 2, 3}.
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if we examine base substitutions in the presence of error
(Figure 3), the current algorithm is unable to properly
align sequences with an increasing number of base substi-
tutions in the presence of a small number of random
errors. The scenario where there are many base substitu-
tions that are not errors (in this case Single Nucleotide
Polymorphisms or SNPs) is rare, especially in the human
genome[21,22], and therefore this behavior is tolerable.
In Figures 4 and 5 we see the power to detect deletions and
insertions with an increasing number of errors. For a con-
tiguous deletion the power to align such sequences is
equal or greater with two-base encoding, except in the case
of a one base deletion with no errors where the power is
slightly reduced. For a contiguous insertion, the case is
more ambiguous. As expected with greater error (≥ 5
errors), the two-base encoding becomes more powerful.
Nevertheless, for a small amount of error, the two-base
encoding has lower power to align longer contiguous
insertions. In this case, over-correction can occur, whereby
we align with too many color substitutions rather than the
contiguous insertion. This may be mediated by decreasing
the penalty for extending an insertion or deletion,
although this may reduce the accuracy for high-error
sequences without insertions or deletions.

Performance of two-base encoding
We performed simulations to evaluate the performance of
the current algorithm compared to the local alignment
without two-base encoding (see Methods for details). We
found that for length 25 and 50 color space sequences our
algorithm was 36 and 28 times slower, respectively, than
the standard Dynamic Programming algorithm applied to
base space sequence. Although the algorithmic complex-
ity as a function of read length and reference length is not
increased, the absolute number of operations does
increase (see Methods), and thus we observe a decrease in
the speed performance compared to sequences without
the two-base encoding. This performance decrease is par-
ticularly relevant given that an experimentalist may be
required to choose between competing sequencing tech-
nologies that do not utilize the two-base encoding scheme
and sequencing technologies that do use the two-base
encoding scheme. Two base encoding has potentially
powerful error correction modes and at the time of this
publication is able to generate substantially more data
than direct sequencing approaches. Thus, the two base
encoding strategy while preferable in some scenarios for
base error correction and better performance of alignment
does impose a need for increased computational capacity
largely due to the local sequence alignment complexity.

Discussion
Although the power of this algorithm enables accurate
alignment of color space sequences with greater error, it is
also computationally an order of magnitude more expen-
sive than the standard dynamic programming algorithm
applied in sequence space. To partially mitigate this, the
performance can be optimized without changing the
results by employing some simple search space reduction
and greedy search techniques, as follows: first, decode the
encoded sequence by the standard deterministic rules and
perform an exact string matching search. If an exact match
is found, then the algorithm stops. Upon unsuccessful
return, we find a lower bound for the optimal similarity
for the proposed algorithm by first performing our two-
base encoded alignment but without allowing insertion
or deletion edits, which substantially reduces the compu-
tational cost. Using this lower bound, we then reduce the
search space of our full algorithm by omitting the paths
where the search parameters that permit detection of
insertions or deletions would result in a score below the
established lower bound. In this manner, the empirical
running time of the algorithm can be improved by
approximately 20% (data not shown) while still obtain-
ing the true optimal alignment.

We note that the general strategy of two-base encoding in
color space is possible to apply in more complex formats
for error correction. For instance, three or more bases may
be encoded by four or more colors. This would further

Power evaluation for sequences with errorsFigure 2
Power evaluation for sequences with errors. We 
assess the power to align sequences with and without two-
base encoding in the presence of a per-base or per-color 
error rate respectively.

0 10 20 30 40

0
20

40
60

80
10

0

% error rate

%
 o

f s
eq

ue
nc

es
 c

or
re

ct
ly

 a
lig

ne
d

length 25 sequences with two−base encoding
length 25 sequences without two−base encoding
length 50 sequences without two−base encoding
length 50 sequences with two−base encoding
Page 3 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:175 http://www.biomedcentral.com/1471-2105/10/175
increase the power of discriminating between encoding
errors and base substitutions, albeit at a substantial added
cost in local alignment performance. In practice these
alternate encodings could further reduce false-positives
detections when the goal is to find biological variants with
next-generation sequencing technology with relatively
high measurement error rates. This may be an advanta-
geous strategy, for example, to increase read lengths by
accepting noisier color space reads that are correctable
after alignment. The current algorithm can be extended to

accommodate these generalizations, and in future work
we will investigate the detailed performance properties of
such hypothetical encodings.

The present algorithm can be readily extended to include
support for the case where sequence data is missing or
unavailable, in either the given color-encoded sequence
or in the target base space sequence. We introduce a fifth
color code to represent an unknown color in encoded
sequence, and a fifth base code (traditionally "N") to rep-

Power evaluation for sequences with errors and base substitutionsFigure 3
Power evaluation for sequences with errors and base substitutions. We assess the power to align sequences with and 
without two-base encoding in the presence of errors and base substitutions.
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resent an unknown base in the decoded or target
sequence. To incorporate an unknown encoding color we
modify the color substitution function Π to include a
score for this fifth unknown color and any other color. To
incorporate an unknown base in the target, we modify the
base substitution function Δ to include a score for the
unknown base and any other base. Also a simple modifi-
cation to the initialization step in the algorithm is
required if the start base p is not known. While we do not
rely on quality values for each color read, however it is

possible to incorporate into the current alignment algo-
rithm quality values that represent the certainty of color
calling similar to sequence calling with Phred scores [23-
26] by weighting the color substitution function Π.

Finally, Figures 2, 3, 4, and 5 demonstrate the power to
correctly align two-base encoded sequences in the pres-
ence of a large number of color errors. Depending on the
distribution of sequences with a given number of errors,
two-base encoding and this algorithm may make it feasi-

Power evaluation for sequences with errors and a contiguous deletionFigure 4
Power evaluation for sequences with errors and a contiguous deletion. We assess the power to align sequences with 
and without two-base encoding in the presence of errors and a contiguous deletion.
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ble to accept higher error sequences generated by next-
generation sequencing technology, improving both
throughput and cost-effectiveness. Additionally, we place
a constraint on our scoring functions, making a conscious
choice to prefer a base substitution to two adjacent color
substitutions that would cause that base to match the ref-
erence. This is by no means the only constraint available,
but serves to help define the trade-off in power to detect
errors over biological variants. In these practically impor-
tant but ambiguous cases, a decision must be made over

which scenario to prefer, and in practice this ambiguity
can be overcome by using coverage where multiple
sequences observe the same event.

Conclusion
DNA sequence alignment algorithms have been thor-
oughly studied in molecular biology, resulting in well-
developed Dynamic Programming algorithms that opti-
mize an edit distance to find optimal alignments between
two sequences. However, there is a resurgence of interest

Power evaluation for sequences with errors and a contiguous insertionFigure 5
Power evaluation for sequences with errors and a contiguous insertion. We assess the power to align sequences 
with and without two-base encoding in the presence of errors and a contiguous insertion.

0
20

40
60

80
10

0

A

length 25 sequences without two−base encoding

%
 o

f s
eq

ue
nc

es
 c

or
re

ct
ly

 a
lig

ne
d

1 2 3 4 5 6 7 8 9 10

Length of insertion

0 errors
1 errors
2 errors
3 errors
4 errors
5 errors
6 errors
7 errors
8 errors
9 errors
10 errors

0
20

40
60

80
10

0

B

length 50 sequences without two−base encoding

%
 o

f s
eq

ue
nc

es
 c

or
re

ct
ly

 a
lig

ne
d

1 2 3 4 5 6 7 8 9 10

Length of insertion

0 errors
1 errors
2 errors
3 errors
4 errors
5 errors
6 errors
7 errors
8 errors
9 errors
10 errors

0
20

40
60

80
10

0

C

length 25 sequences with two−base encoding
%

 o
f s

eq
ue

nc
es

 c
or

re
ct

ly
 a

lig
ne

d

1 2 3 4 5 6 7 8 9 10

Length of insertion

0 errors
1 errors
2 errors
3 errors
4 errors
5 errors
6 errors
7 errors
8 errors
9 errors
10 errors

0
20

40
60

80
10

0

D

length 50 sequences with two−base encoding

%
 o

f s
eq

ue
nc

es
 c

or
re

ct
ly

 a
lig

ne
d

1 2 3 4 5 6 7 8 9 10

Length of insertion

0 errors
1 errors
2 errors
3 errors
4 errors
5 errors
6 errors
7 errors
8 errors
9 errors
10 errors
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:175 http://www.biomedcentral.com/1471-2105/10/175
in sequence alignment due to large scale re-sequencing
efforts made possible by massively parallel sequencing
technology. The classical algorithm remains an ideal
approach for local alignment of such short-read sequence
data, but some sequencing technologies produce reads in
encoded form, which must be decoded to obtain standard
DNA sequence. We extend the previous class of Dynamic
Programming algorithms to allow for errors in the encod-
ing, as well as the usual base substitutions, insertions and
deletions. Our algorithm remains O(nm) time, where n
and m are the length of the encoded and target sequence
respectively. We show in practice that performance is
decreased due to the added complexity of considering
encoding errors, although this can be somewhat mitigated
by standard search optimization. This performance
decrease must be kept in mind when comparing the over-
all computational cost of analyzing various next-genera-
tion sequencing technologies. Using this new algorithm,
local sequence alignment as well as error detection and
correction are performed in a reliable and systematic man-
ner, enabling the direct comparison of encoded DNA
sequence reads to a candidate reference DNA sequence.
This new algorithm should facilitate the use of two-base
encoded data for large-scale re-sequencing projects.

Methods
The Problem
To solve the DNA sequence comparison problem for
encoded sequences, we follow a constructive approach.
Given an encoded DNA sequence c = c1,..., cn, we wish to
maximize the similarity between c and some regular DNA
sequence y = y1,..., ym, with the valid edit operators Σ. In
this case the alphabet is {A, C, G, T} corresponding to the
bases in DNA, and the encoded alphabet is {0, 1, 2, 3}.
We assume the encoded sequence is composed of a two
base encoding, referred to as colors, as well as assume a
known start base p, which is known in practice [16,17,27].
The valid edit operators are:

1. A base substitution, which substitutes one base for
another in the encoded sequence after decoding.

2. An insertion, which inserts a base into the encoded
sequence after decoding.

3. A deletion, which deletes a base from the encoded
sequence after decoding.

4. A color substitution, which substitutes one encoded
color for another.

Operators 1–3 can be applied to base sequence and there-
fore we assume that all color substitutions are applied to
the encoded sequence, then the sequence is decoded to
allow the application of operators 1–3. We assign scores

to each operator. The function Δ (B1, B2) that returns the

base substitution score for substituting base B2 for base B1.

The score ρ is applied for the first insertion or deletion
operator used. Any insertion or deletion operator that is
applied so that the insertion or deletion is extended has a

score ε. Therefore, for a length g>0 base insertion or dele-

tion, the cost of the entire insertion or deletion is ρ + ε (g-

1) and has an average per-gap cost of (ρ + ε (g-1))/g. In
practice, this affine gap penalty is useful to penalize a start
of an insertion or deletion more heavily than extending

the insertion or deletion. The function Π(C1, C2) returns

the color substitution score for substituting color C2 for

color C1. The base and color substitutions functions are

both symmetric, and are defined even if B1 = B2 for Δ, or

C1 = C2 for Π. To decode an encoded sequence, we define

the function Γ(B, C) that returns the decoded base using
the encoded color C and the previous base B (see Figure
6). For example, to decode the encoded sequence c = c1,...,

cn with a known start base p, we iteratively use Γ. The

decoded sequence will be x1 = Γ(p, c1), x2 = Γ(x1, c2),..., xn

= Γ(xn-1, cn). To encode a sequence, we define the function

Φ(B1, B2) that returns a color using the bases B1 and B2,

where B1 occurs before B2 in the sequence (see Figure 1).

For example, to encode DNA sequence x = x1,..., xn, we

assume a known start base p and iteratively use Φ to

encode x. Here we have c1 = Φ(p, x1), c2 = Φ(x1, x2),..., cn =

Φ(xn-1, xn). This encoding function is analogous to the

Klein Four Group under addition or the X-OR function
when the colors and DNA are represented as binary num-

bers [14,15,17]. The function Φ is used to encode the base

sequence whereas the function Γ is used to decode the
color sequence. To represent the transformation of x into
y, we pair bases in x with bases in y as well as including
dashes to indicate that an insertion or deletion occurred.
If xi and yj are matched, then we pair xi and yj and draw:

. A deletion of a base in x relative to y is represented

using a dash (-) and the base yj, and is drawn as: . An

insertion into x relative to y is represented using a dash

and the base xi, and is drawn as: . For example, for x

= GATTACA and y = GATACA, a valid alignment may be:
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. In this example, we apply

three base substitution operators, one insertion operator,
and then three base substitution operators. The base sub-
stitution operators do not change the bases in this exam-
ple, but are defined for completeness when xi = yj. In this

manner, we describe an alignment using the base substi-
tution, insertion and deletion operators. To model encod-
ing errors, we assume a two-base encoding scheme;
therefore, the encoding can be visualized by placing the
colors in between the bases assuming the starting base is
an A. For the reference sequence y, we place colors of the
encoded version of y in between the bases of y. Let c' be the
encoded DNA sequence resulting from applying all color
substitution operators to c. Below we place the colors of
the encoded sequence c' between the bases of the decoded
version of c'. Finally we place the original encoded
sequence c below c'. Given an encoded sequence c =
2030311 and target DNA sequence y = GATACA a valid
alignment may be:

. The

placement of the color (in y) within the insertion (relative
to c) is arbitrary since it is compared to the composition
of the colors within insertion in c as will be seen later. In
the above alignment, the second color is changed using a
color substitution, where the second color encodes for the
first and second base. Without the color substitution, the
alignment would be:

  

illustrating the necessity to model encoding errors.

Our goal is to transform x into y by maximizing the simi-
larity score, thus maximizing sequence similarity. In prac-
tice, x is an observed encoded sequence, and y is a decoded
target or reference sequence. We prefer to penalize appli-
cations of the edit operators where base substitutions or

color substitutions occur. Therefore, for all B1 ≠ B2 and C1

≠ C2, we assume that Δ(B1, B2) ≤ 0, 0 ≤ Δ(B1, B1), ε ≤ 0, ρ

≤ 0, Π(C1, C2) ≤ 0 and 0 ≤ Π(C1, C1). Furthermore, to

avoid always placing an insertion, we must have that for

any C1 that ε + Π(C1, C1) ≤ 0 and ρ + Π(C1, C1) ≤ 0. A sub-

tle but important point is that two adjacent color substi-
tutions in the encoded sequence in some cases are
equivalent to a base substitution in-between the two
colors. An example of this equivalence can be seen in the

following two sub-alignments 

and . In practice we make the

assumption that for any bases B1, B2, , B3 with B2 ≠ ,

and for any colors C2, , C3,  with C2 ≠  and C3 ≠

 such that Γ (B1, C2) = B2, Γ (B2, C3) = B3,

, :

This will ensure that two adjacent color substitutions (

for C2 and  for C3 above) that are compatible with a

base substitution (  for B2) will not be preferred over

the compatible base substitution. Considering more com-
plex alignments, for example whether to prefer two adja-
cent color substitutions or an adjacent color substitution
and a base substitution, can help fine-tune the power to
detect color errors as well as base substitutions by adding
additional constraints on the scoring functions.
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The Algorithm
In this algorithm, we search over all possible base substi-
tutions, base insertions, base deletions, and color substi-
tutions. Similar to Ewans and Grant [10] and Jones and
Pevzner [11], we give a recursive formula that describes
the basic calculation that is repeated in our algorithm.

Intuitively, we are filling in an n by m matrix, with each
cell containing 12 sub-cells. The h sub-cells correspond to
bases that are present in y but deleted in x, the v sub-cells
correspond to bases inserted into x but absent in y, and
each s sub-cell represents a base xi (where

) aligning to a base yj to the reference

sequence y. All possible color substitutions are considered

by transitioning from a sub-cell , , or

 to the sub-cell .

We first observe that base substitutions and color substi-
tutions occur in tandem. This is because given the previ-
ous base xi-1, the subsequent base xi uniquely determines
the joining color ci (or equivalently the joining color ci
uniquely determines the subsequent base xi). Addition-
ally, we assume that color substitutions do not occur
directly before a base that has been deleted. In the dele-
tion case, we have one color that spans the entire deletion.
Due to base substitutions and color substitutions occur-
ring in tandem, we must consider a color substitution
while considering a base substitution, which occurs at the
end of the deletion. For insertions, if the color substitu-
tion score are equal, meaning the same score is given for
all color matches and color mismatches respectively, we
need only consider σ = Γ(φ, ci) in the v-term. This reduces
the number of terms over which we compute the maxima
from eight terms to two terms. The simplification results
from the absence of bases for which to compare the
inserted base(s) as well as the observation that placing the
color substitution at the end of the insertion will result in
the same score as placing the color substitution anywhere
else in the insertion, including the beginning of the inser-
tion. Since base substitutions are to be penalized, as was

previously assumed, we assume that the inserted bases,
and therefore the colors encoding the inserted bases, are
correct. Thus, when beginning or extending an insertion,
we ignore the color substitution score, and consider the
insertion of the base xi = Γ(xi-1, ci). Finally, we ignore the
case where an insertion (or deletion) is directly followed
by a deletion (or insertion), since for current technologies,
the length of the sequences being compared are very short
making this scenario (switching) very biologically
unlikely. Nevertheless, to include this case requires mini-
mal modification to Equation 2.

What is left is to describe is how to initialize , ,

, , , and  for i > 0, j ≥ 0, and σ ∈ {A, C, G,

T}. In our specific application, we wish to align the entire
encoded sequence c to the target sequence y. Therefore, we

initialize for i>0  =  = -∞,  if σ = Γ (p, c1) and

 otherwise, and for i>1  if σ = Γ (φ, ci)

and  = -∞ otherwise, so that the local alignment spans

the entire encoded sequence as well as allowing for an
insertion at the beginning of the alignment. We initialize

 = -∞ for j ≥ 0 so that the alignment does not begin

with a deletion. We observe that deletions are detected on
the basis that a reads spans the deletion breakpoint. This
is reflected in our scoring system where we assume that a
deletion has negative score, and therefore the alignment
resulting from removal of a deletion at the beginning or
end of the alignment has a score greater than or equal to
the original alignment. We thus remove from considera-
tion any instances of a sequence starting or ending with a

deletion. We initialize  = -∞ for j ≥ 0 and σ ∈ {A, C, G,

T}. If σ = p then we t  = 0, and  = -∞ otherwise, for

j ≥ 0 and σ ∈ {A, C, G, T}. This initialization enforces that
the starting base is p. Other initializations can find the
optimal subsequence of x that aligns to y, among other
applications [10,11]. To find the optimal local alignment

we search over cells  and  for a cell

with maximum score, again ignoring the case where the
alignment ends with a deletion, and backtrack to recover
a maximum scoring alignment.

From Equation 2, and for each i and j, we must calculate
maxima over 88 different values, which can be reduced to
64 values if the color match and color mismatch scores
respectively are the same. In contrast, the Dynamic Pro-
gramming solution with affine gap penalties to compare
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sequences with no encoding requires the calculation of a
maxima over 7 different values [10,11]. Although the run-
ning time of this algorithm is O(nm), where n is the length
of the encoded sequence and m is the length of the target
sequence, the running time is nonetheless greater than the
algorithm without encoding as seen in practice (see
Results).

Simulations
To evaluate the power of the algorithm, we created sets of
100,000 test sequences randomly sampled from the
Human genome (build 36), and gave each a known
number of errors, base substitutions, insertions and dele-
tions. For encoded sequences, we model errors as color
substitutions (encoding errors) and for decoded
sequences we model errors as base substitutions. It is pos-
sible for a class of alignments to have equal likelihood,
and therefore we define an alignment to be correct if the
alignment returned has equal score to the true alignment.
To evaluate the performance of the algorithm, we created
1,000,000 artificial sequences from the Human genome
(build 36) with no edits applied. In both cases, we evalu-
ated sequences of length 25 and 50, reflecting a range of
possible and currently available sequences generated with
color space encoding. The target DNA reference sequence
had length three times the length of the encoded sequence
to allow for potential insertions and deletions to be
placed correctly. For the simulations, in accordance with
Equation 1, we set ρ = -175, ε = -50, Π(C1, C2) = -125 (C1
≠ C2), Π(C1, C1) = 0, Δ(B1, B2) = -150 (B1 ≠ B2), and Δ(B1,
B1) = 50. Since the color match and color mismatch scores
respectively are the same, we are able to make the simpli-
fication to the v-term in Equation 2 as described above.
For these evaluations, we used a dual quad-core Intel
Xeon E5420 machine at 2.5 GHz, with 32 GB of RAM and
2TB of RAID 0 disk space, although the actual hardware
requirements of the algorithm itself are negligible relative
to any modern computer. The implementation for all the
simulations performed can be found in BFAST at http://
genome.ucla.edu/bfast, which was configured using the –
enable-unoptimized-sw argument (Homer N, Merriman
B, Nelson SF: BFAST: the BLAT-like Fast Accurate Search
Tool for Large-Scale Genome Resequencing, submitted).
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