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Abstract

Background: Searching for proteins that contain similar substructures is an important task in
structural biology. The exact solution of most formulations of this problem, including a recently
published method based on tableaux, is too slow for practical use in scanning a large database.

Results: We developed an improved method for detecting substructural similarities in proteins
using tableaux. Tableaux are compared efficiently by solving the quadratic program (QP)
corresponding to the quadratic integer program (QIP) formulation of the extraction of maximally-
similar tableaux. We compare the accuracy of the method in classifying protein folds with some
existing techniques.

Conclusion: We find that including constraints based on the separation of secondary structure
elements increases the accuracy of protein structure search using maximally-similar subtableau
extraction, to a level where it has comparable or superior accuracy to existing techniques. We
demonstrate that our implementation is able to search a structural database in a matter of hours

on a standard PC.

Background

Finding structures in a database which contain a substruc-
ture that is similar to a query structure or structural motif
is an important technique in analyzing protein structure,
function, and evolution. There are many existing methods
for finding structurally similar proteins which take diverse
approaches, such as: structural alignment at the level of
residues or backbone atoms [1,2] or (as an initial step)
secondary structure elements [3-7], purely topological
matching [8,9], and probabilistic approaches [10-12].
Detailed structural alignment, however, although capable
of great accuracy, is often slow [2], and therefore imprac-
tical for searching entire databases of the size of SCOP
[13,14] or the PDB [15].

The TOPS-based method [8,9] provides structural motif
searches, but by operating purely on topology it "ignores
other important spatial properties" [[16], p. 1331]. Non-
alignment approaches, such as PRIDE [10], can be
extremely fast, but not as accurate as alignment-based
approaches [17], and provide only a matching score, not
an alignment or a coarse-grained or seed alignment for
further refinement.

Two recent approaches, ProSMoS [16] and TableauSearch
[18], use spatial interactions between secondary structure
elements (SSEs) to find common structures. ProSMoS
constructs a "meta-matrix" of SSEs and the interactions
between them, and finds all possible submatrices in a
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database meta-matrix that match the query meta-matrix.
TableauSearch constructs tableaux [19,20], which repre-
sent relative orientations of SSEs, and finds substructural
matches by extracting maximally-similar subtableaux
between the query tableau and a database tableau. In the
exact (rigorous) technique, this problem is expressed as a
quadratic integer program (QIP) or integer linear program
(ILP) [18] and solved exactly using ILOG CPLEX [21].
Both ProSMoS and the exact tableau search formulation
allow substructures to be found within structures. They
also allow non-linear matchings, that is, sets of corre-
spondences between SSEs in which the sequential order of
corresponding SSEs is not preserved. Such non-linear
matchings have recently been shown to be significantly
more widespread than had previously been thought [22],
and are therefore of considerable interest.

The two most similar methods to tableau matching are
perhaps LOCK [5], and its newer version LOCK 2 [6], and
ProSMoS. LOCK and LOCK 2 also match SSE vectors
between structures, but use a more complex set of seven
scoring functions, both orientation dependent and orien-
tation independent, and use iterative dynamic program-
ming requiring parameters for each of the scoring
functions [5]. In contrast, the tableau matching formula-
tion is simpler and more elegant, although to obtain
higher accuracy we extend it with a distance difference
constraint that requires a parameter.

ProSMoS, although it is similar to tableau matching in its
use of SSE orientations, takes quite a different approach
from most existing structural search methods in that,
rather than taking a structure (or substructure) definition
as a query, the query meta-matrix is constructed manually
(or at least modified manually from one generated by the
supplied scripts) by the user. This is clearly useful for find-
ing user-specified motifs in a database of structures, but
creates challenges in assessing the performance of the
method since the results are so dependent on the user-
specified query. ProSMoS, in contrast to our method,
returns a list of hits to the query structure, rather than a
matching score for each structure in the database. This is
often simpler for the user, but it does have the disadvan-
tage that finding more (or fewer) hits requires editing the
query meta-matrix, which can be quite difficult to cali-
brate. Returning a score for each database structure means
that adjusting the sensitivity or specificity required is sim-
ply a matter of varying the cutoff score for a match to be
considered significant.

An advantage of the maximally-similar subtableaux for-
mulation is that it allows the discovery of similar substruc-
tures within two structures, without requiring that the two
structures are themselves similar as a whole, or that one of
the structures must match as a whole some substructure
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within the other structure. We may choose to use one
structure as a "query" motif, usually a small well-defined
structural folding pattern, and find structures that contain
this entire motif as a substructure, but it is also possible to
find common substructures in two unrelated folds.

However, the rigorous tableau searching method is too
slow for a full database search, and so Konagurthu et al.
[18] introduce TableauSearch. This method approximates
the exact solution using an alignment-like approach [23],
with two phases of dynamic programming. TableauSearch
is extremely fast, but loses the rigorous theoretical justifi-
cation and is not as accurate as the exact method. It is also
inherently sequential, thereby losing the ability to find
non-linear structural matchings, and, at least partly, loses
the ability to find substructural (local) rather than full
structure (global) matches. This may be possible, how-
ever, by removing end gap penalties [18].

Here we present a method, based on the exact tableaux
matching formulation [18] and recent work in alignment
of molecular networks [24], that allows searches for
occurrences of a query structure as substructures of struc-
tures in a database such as SCOP in practical time, allows
non-linear matchings, and is able to provide a set of cor-
respondences between SSEs.

Results and discussion

We evaluate the accuracy of our QP tableau matching
algorithm as a method for determining the fold of a struc-
ture, using SCOP as the truth. The tradeoff between sensi-
tivity and specificity for such a classification task can be
shown as a Receiver Operating Characteristic (ROC) curve
[25].

ROC curves for several different structural queries are
shown in Figures 1 and 2. Figure 1 shows results obtained
using only tableau information, while Figure 2 shows
results obtained using tableau and distance information
(see Methods). The area under the ROC curve (AUC - see
Methods) for each of these curves is shown in Table 1.
Incorporating distance information results in consistently
higher AUC values without significantly affecting the
elapsed time.

We find that the best-performing variation of our method,
using the discrete tableau encoding rather than numeric Q
matrices, and incorporating distance information, has an
AUC of 0.95 averaged over the eight queries in Table 1.

We can see in Table 1 that the ferredoxin fold query
(d1lbhne ) performs significantly worse than the others.
We examined the results from this query and found that a
large number of false negatives occur (many members of
this fold are not given a high score by our method). Exam-
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Table I: AUC and time for some widespread folds.
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distance information

without with
Fold SCOP sid # SSEs AUC time AUC time
[-grasp dlubia_ 8 0.80 O0h47m 0.92 0h32m
Key-barrel dltttbl 9 0.80 0h50m 0.97 0h50m
Immunoglobulin dlae6hl 13 0.89 I h47 m 0.95 I h53m
Plait (ferredoxin) dlbhne 15 0.61 I h53m 0.85 2hI8m
GFP-like dlhérb_ 17 1.00 3h06m 0.99 3h06m
Jelly-roll d2phlbl 19 0.87 4h24m 0.93 5hi3m
Tim-barrel ditima_ 21 0.99 4h3lm 1.00 4h30m
NAD-binding fold difedc_ 30 0.98 14h45m 0.99 16 h33m

Area under ROC curve (AUC) and time taken for searches for several structural folding patterns against the ASTRAL SCOP 95% sequence identity
non-redundant database consisting of 15273 domains using discrete tableaux, both with and without incorporating SSE distance information. Times
(in hours and minutes) reported are elapsed times using the sparse matrix (UMFPACK) implementation on an Intel Xeon 3.2 GHz machine with 8
GB memory running Linux. The table is sorted by query size (number of SSEs in query).
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ROC curves without using distance information. ROC curves for the structural folding patterns in Table | as the query
structure, using the discrete tableau encoding and no distance information. A true positive is a "hit" on a structure that is in the

same SCOP fold as the query.
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ROC curves using distance information. ROC curves for the structural folding patterns in Table | as the query structure,
using the discrete tableau encoding and distance information. A true positive is a "hit" on a structure that is in the same SCOP

fold as the query.

ining some of these false negatives in detail, we find that
it is often due to DSSP [26], which we use to define SSEs,
not defining some of the SSEs required to match the query
structure (in an extreme case, d2atcbl, DSSP defines
only a single helix and nothing else). Although we have
the capability of using STRIDE [27] rather than DSSP, the
results are often similar (as in the d2atcbl example).
This is a shortcoming of any method that depends on SSE
definitions, although ProSMoS solves it to some degree by
using PALSSE [28], a secondary structure assignment
method that assigns many more residues to SSEs precisely
in order to avoid this problem [16]. False negatives can
also occur independently of the SSE definition algorithm,
if a structure does not have some SSEs not considered
essential to the fold according to SCOP (but which are
included in our query structure) and/or sufficiently differ-
ent in their orientation that tableau matching does not
assign them a high score. An example of this is d1g8ba_,
which does not have all the helices in the query structure,
and some which it does include have rather different ori-

entations from those in the query, but it is nevertheless
classified as a member of the ferredoxin-like fold.

Table 1 shows that a search in a database of 15273 struc-
tures takes approximately one hour for a small (10 or
fewer SSEs) query structure on a single CPU of a standard
PC, and under four hours for query structures with fewer
than 18 SSEs, but can take more than 16 hours for a query
structure with 30 SSEs. Since 75% of domains in the data-
base have fewer than 20 SSEs, and the most frequent
number of SSEs is 10, most queries for a structure drawn
from a set of structures with the same distribution of tab-
leau size as the database will complete within 4 hours. We
note that the peak at 10 differs from the results of [20],
who find the peak is at 6, as we have used DSSP to define
SSEs and have included 7 and 3,,-helices, while Kamat
and Lesk [20] used the assignments of helices and strands
from PDB files.
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Table 2: AUC for the 200 query set.

Method Normalization AUC
SHEBA None 0.941
QP tableau search norm2 0.925
QP tableau search norml| 0.904
QP tableau search norm3 0.904
VAST None 0.890
TableauSearch norm2 0.871
TOPS None 0.871
TableauSearch norml 0.869
QP tableau search None 0.854
TableauSearch None 0.846
TableauSearch norm3 0.832

Area under ROC curve (AUC) for the 200 query set against the
ASTRAL SCOP 95% sequence identity non-redundant database
consisting of 15273 domains, for different methods and
normalizations. Note that only the tableau search methods (our
method (QP tableau search) and TableauSearch) require
normalization, as VAST, SHEBA and TOPS report normalized scores
themselves and so do not require an external normalization step to
combine results for different queries. The table is ordered by
decreasing AUC.

For a larger-scale test, we used a set of 200 queries chosen
from the ASTRAL SCOP 1.73 95% sequence identity non-
redundant data set [14,29]. The queries were chosen so
that each class (¢, §, ¢/, @+ f) is represented in the query
set in the same ratio as it is in the database. The overall
AUC for different normalizations (see Methods) and dif-
ferent methods are shown in Table 2. It can be seen that
normalization norm2 is the best normalization function
for the tableau search methods, and that SHEBA [30] is
the best performing method, followed by our method,
then VAST [3,4], and lastly TableauSearch [18] and TOPS.
Figure 3 shows the ROC curves for the different methods
(using the best normalization function where appropri-
ate). It can be seen that the curve for SHEBA lies above
that for VAST at every point, consistent with the results for
all-against-all comparisons in the ASTRAL SCOP 1.63
40% sequence identity non-redundant data set reported
in [25]. The curve for our method lies between the two at
low false positive rates, but crosses over the SHEBA curve
at a false positive rate of approximately 0.4, indicating it
has a slightly higher sensitivity at high false positive rates
than SHEBA. SHEBA, however, is more sensitive at low
false positive rates, a generally more useful attribute.

In terms of elapsed time (for a single processor core), Tab-
leauSearch is by far the fastest method. On our system, it
has a total elapsed time for the 200 query set of only 1
hour 25 minutes, compared to 28 hours for VAST, 52
hours for SHEBA, and 741 hours for our method. Large
scale comparisons with the exact solution of the QIP or
ILP with CPLEX are not practical, as a single comparison
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takes at least several seconds and can take up to several
days, and in some cases exhausts the virtual memory of
our machine.

Comparison with MAX-CMO heuristic

Maximum Contact Map Overlap (MAX-CMO) is a formu-
lation of the problem of finding the similarity of two pro-
tein structures. MAX-CMO uses the contact map
representation of proteins, in which a protein with n resi-
dues is represented as a square symmetric matrix C, , ,
where C;;= 1 when the distance between residues i and j is
less than some threshold, and C; = 0 otherwise. Typically
this distance is defined as the C, distance, and the thresh-
old is for example 7 A. The MAX-CMO problem is then to
find a (non-crossing) alignment of residues that maxi-
mizes the overlap between two contact maps. The value
(or score) of the alignment is the number of contacts in
one protein whose residues are aligned with residues that
are also in contact in the other protein [31].

MAX-CMO is an NP-hard problem, and methods for solv-
ing it exactly, by such techniques as integer programming
with Lagrangian relaxation [31,32] or branch-and-bound
[33] can be impractically slow.

Therefore, heuristic approaches are useful, and recently a
variable neighborhood search (VNS) algorithm for
approximating MAX-CMO has been published, with an
analysis of its effectiveness in ranking protein similarity
[34].

Here we compare the performance of the QP formulation
of maximally-similar subtableaux extraction with the VNS
heuristic for MAX-CMO of [34].

Figure 4 shows the ROC curves for the Fischer data set [35]
at the fold level, and Table 3 shows the corresponding
AUC values. Figure 5 and Table 4 show the corresponding
results at the class level. It is apparent that for the Fischer
data set, the QP tableau search method achieves signifi-
cantly higher accuracy at both levels than the MSVNS3
method, regardless of normalization type.

Figure 6 shows the ROC curves for queries in the Nh3D
data set [34,36] at the architecture level, and Table 5
shows the corresponding AUC values. Figure 7 and Table
6 show the corresponding results at the class level. At the
architecture level, there is no significant difference in the
performance of the two methods, but at the class level
again QP tableau search has significantly higher accuracy
when measured by AUC.

We should perhaps discount any superiority in the per-
formance of the tableau search method at the class level,
as this level of classification in the CATH hierarchy indi-
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ROC curves for different methods. ROC curves for the 200 query set against the ASTRAL SCOP 95% sequence identity

non-redundant database consisting of 15273 domains.

cates only the percentage of a-helices and S-strands in the
domain [37]. Since tableaux are based on SSEs (defined
by DSSP) we could trivially obtain good classification per-
formance at this level just from the DSSP classification,
while MAX-CMO uses only residue contact information,
and so must score protein similarity at this high level
without having SSEs defined by an existing method.

Ignoring the class level comparisons therefore, we find
that QP tableau search has significantly superior accuracy
compared to MSVNS3 on the Fischer data set, and similar
accuracy to MSVNS3 on the Nh3D data set.

For the Fischer data set, MSVNS3 took 8 hours while the
sparse matrix (UMFPACK [38-41]) implementation of QP
tableau search took 2 hours on a PC with an Intel Core 2

Table 3: Area under the ROC curve (AUC) for the Fischer data set at fold level.

95% confidence interval

Method Normalization AUC standard error lower upper
MSVNS3 None 0.788 0.017 0.754 0.821
MSVNS3 norml| 0.791 0.017 0.758 0.824
MSVNS3 norm2 0.809 0.016 0.777 0.842
MSVNS3 norm3 0.781 0.017 0.747 0.815
QP tableau search None 0.837 0.016 0.807 0.868
QP tableau search norm| 0.882 0.014 0.855 0.909
QP tableau search norm?2 0.887 0.014 0.861 0914
QP tableau search norm3 0.860 0.015 0.831 0.889
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Table 4: Area under the ROC curve (AUC) for the Fischer data set at class level.

95% confidence interval

Method Normalization AUC standard error lower upper
MSVNS3 None 0.666 0.009 0.647 0.684
MSVNS3 norml 0.604 0.010 0.586 0.623
MSVNS3 norm2 0.696 0.009 0.678 0.714
MSVNS3 norm3 0.628 0.010 0.610 0.647
QP tableau search None 0.789 0.008 0.773 0.805
QP tableau search norml 0.833 0.008 0.819 0.848
QP tableau search norm?2 0.851 0.007 0.837 0.865
QP tableau search norm3 0.824 0.008 0.809 0.839

Duo processor and 2 GB of memory running 32-bit Linux.
For the Nh3D data set, MSVNS3 took 62 hours while QP
tableau search took 8 hours.

Examples

Figure 8(a) shows the superposition of the top 20 hits
from the f-grasp query on the query structure (dlubia ),
showing that these high scoring matches are correctly
matching corresponding SSEs in similar structures. This is
not a multiple alignment, but simply a superposition of
each structure onto the query structure according to the
SSEs matched by our method. Figure 8(b) is a true multi-
ple alignment of the top 20 hits from our method, gener-
ated with MUSTANG [2].

Substructure queries need not be entire structures them-
selves. In order to illustrate the ability of our method to
find substructural matches, we chose the B/C sheet of the
the canonical active serpin, ¢;-antitrypsin, PDB id
1QLP[42] as a query tableau. Figure 9 shows the substruc-
ture represented by this query. Of the total 18 structures in
our database classified by SCOP as belonging to the serpin
fold, 17 are matched as the top 17 hits (d1glpa_ itself is
the top hit). One, however, d1m93.1, is only at rank
1411 in the sorted hit list. This is the cleaved form of the
serpin, but this does not account for the failure to detect
its similarity, as, for example, d1jjo. 1 is also the cleaved
form and it is at rank 11 in the sorted hit list. Inspection
of the tableaux for the B/C sheets of these two serpins
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T ©
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o
[oR
0} < ]
2 o
l_
MSVNS3 norm1
N MSVNS3 norm2
e MSVNS3 norm3
QP tableau search norm1
QP tableau search norm2
g - QP tableau search norm3
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Figure 4

ROC curves on the Fischer data set at fold level. ROC curves for MSVNS3 and QP tableau search with different normal-

ization functions on the Fischer data set at fold level.

Page 7 of 21

(page number not for citation purposes)


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1QLP

BMC Bioinformatics 2009, 10:153

http://www.biomedcentral.com/1471-2105/10/153

Sa
[ce]
2
(V]
T ©
o S ]
=
.(“%
o
[oR
[0} <
> o
|_
—— MSVNS3 norm1
N | --- MSVNS3 norm2
= --- MSVNS3 norm3
QP tableau search norm1
-—-— QP tableau search norm2
g _| —— QP tableau search norm3
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Figure 5

ROC curves on the Fischer data set at class level. ROC curves for MSVYNS3 and QP tableau search with different nor-

malization functions on the Fischer data set at class level.

shows that while that ford1jjo. 1 is visibly similar to the
query tableau, the relative angles of the strands in the B/C
sheet of d1m93.1 are different enough from the query
that the tableau is no longer sufficiently similar to find the
correct matching of the two sheets. Using the entire serpin
structure d1glpa_ as the query, however, results in all 18
serpins as the top 18 hits.

Figure 10 shows the SSEs found as corresponding between
the query substructure and a serpin from a thermophilic
prokaryote, SCOP identifier dlmtp. 1, at rank 7 in the
sorted hit list. This demonstrates that the #strands in the
B/C sheet have been correctly identified by our method.
Figure 11 shows superpositions and multiple alignments

of the top 10 hits, showing that the B/C sheet has been
correctly identified by our method in these serpins.

Substructure search

Evaluated as a substructure (motif) query, the S-grasp
query (dlubia_) using the discrete tableau encoding has
an AUC of 0.94. Since the data set used as the gold stand-
ard in this case is that defined by ProSMoS [16], that
method by definition has an AUC of 1.00 on this query.

Table 7 shows the results of using the eight query struc-
tures to query the ASTRAL SCOP 1.73 95% sequence iden-
tity non-redundant database with ProSMoS, SSM [7],
TOPS and our method. In all methods except ProSMoS,

Table 5: Area under the ROC curve (AUC) for the Nh3D data set at architecture level.

95% confidence interval

Method Normalization AUC standard error lower upper
MSVNS3 None 0.537 0.005 0.528 0.547
MSVNS3 norml| 0.617 0.005 0.607 0.627
MSVNS3 norm2 0.583 0.005 0.573 0.593
MSVNS3 norm3 0.598 0.005 0.588 0.608
QP tableau search None 0.578 0.005 0.568 0.588
QP tableau search norm| 0.617 0.005 0.607 0.626
QP tableau search norm?2 0.608 0.005 0.598 0618
QP tableau search norm3 0.599 0.005 0.589 0.608
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Table 6: Area under the ROC curve (AUC) for the Nh3D data set at class level.

95% confidence interval

Method Normalization AUC standard error lower upper
MSVNS3 None 0.590 0.003 0.585 0.595
MSVNS3 norml 0.559 0.003 0.554 0.564
MSVNS3 norm2 0.543 0.003 0.538 0.548
MSVNS3 norm3 0.551 0.003 0.546 0.557
QP tableau search None 0.708 0.002 0.703 0.712
QP tableau search norm| 0.740 0.002 0.735 0.744
QP tableau search norm2 0.726 0.002 0.722 0.731
QP tableau search norm3 0.700 0.002 0.695 0.704

the exemplar SCOP structure is used directly as the query.
ProSMoS, however, requires a manually edited query
meta-matrix. We found that the query meta-matrices pro-
duced by the scripts included with ProSMoS applied to the
query structures resulted in no hits, even when extensively
edited to make them less specific, and so we used manu-
ally constructed meta-matrices instead (see Methods).

Therefore the ProSMoS results reflect not only the per-
formance of ProSMoS, but also our construction of the
relevant query matrices.

We note that our results here differ significantly from
those in Table 2 of [16]: our method of constructing this

table is similar, but not identical, to that of [16], we have
used slightly different queries (with the exception of the 4
grasp query, where we used the meta-matrix described in
[16]) and different versions of the software and a different
database have been used. Consistently with [16], SSM
finds the least number of matches. In our results, how-
ever, ProSMoS does not always return the greatest number
of matches: sometimes TOPS does, since we are using a
version of TOPS that computes scores for all matches,
rather than the precomputed "classic" structure patterns.

TOPS also tends to have more false positives than ProS-
MoS or our method, that is, superfamilies found by TOPS
that are not considered by the SCOP descriptions to con-
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Figure 6

ROC curves on the Nh3D data set at architecture level. ROC curves for MSVNS3 and QP tableau search with different
normalization functions on the Nh3D data set at architecture level.
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ROC curves on the Nh3D data set at class level. ROC curves for MSYNS3 and QP tableau search with different normal-

ization functions on the Nh3D data set at class level.

tain the fold in question. This is consistent with TOPS
being a purely topological method, which does not take
account of other structural properties. Sometimes this also
results in TOPS finding true positives which the other
methods do not, for example when using the ferredoxin
query, only TOPS finds the monooxygenase (hydroxy-
lase) regulatory protein superfamily, d.137.1, which
SCOP describes as having "some topological similarity to
the ferredoxin-like fold". SCOP also notes in the family
description for d.137.1.1 that "the solution structure
determinations disagree in the relative orientations of two
motifs", so topological similarity without taking into
account more detailed structural similarity (specifically,
SSE orientation, as used by our method and ProSMoS) is
a more appropriate method to find matches to this struc-
ture, reflected in the relatively better performance of
TOPS, and the previously discussed poor performance of
our method on this query.

In order to better examine the unique properties of each
method, Table 8 shows, for each method, the number of
superfamilies found only by that method, and the
number of these for which SCOP explicitly mentions the
relevant query pattern. SSM finds no hits that the other
methods do not, and TOPS usually finds the most. For the
ferredoxin query, we can see that TOPS finds a large
number of true positives (17) that the other methods do

not; our method finds 3 and ProSMoS 1. However, on the
TIM-barrel query, TOPS finds 11 unique hits, none of
which are considered to contain the TIM-barrel motif
according to SCOP, while our method finds 3 unique hits
that all contain the TIM-barrel motif according to SCOP.
With the exception of SSM, we can see that each method
finds some unique true matches that the others do not. As
an example of true positive hits that only our method
finds, consider the jelly-roll query. Only QP tableau
search finds the viral protein domain superfamily b.19.1,
and the membrane penetration protein 1 superfamily
e.35.1, both of which are described by SCOP as contain-
ing a jelly-roll motif.

An interesting example is the ferredoxin fold, where the
performance of our method as a structural search method
is relatively poor. However, as a substructure search tech-
nique, some true positives are found only by our method.
Only QP tableau search finds the peptide methionine sul-
foxide reductase superfamily d.58.28, the CcmK-like
superfamily d.58.56, and the release factor superfamily
e.38.1. The first two are members of the ferredoxin-like
fold but d.58.28 is described by SCOP as having the com-
mon fold "elaborated with additional secondary struc-
tures”. The release factor superfamily (e.38.1) is described
by SCOP as having 4 domains, one of which is a ferre-
doxin-like fold.
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Figure 8

(b)

Superposition of S-grasp query hits. (a) Superposition of the top 20 hits to the f-grasp query structure dlubia . This
superposition is generated by simply finding the orthogonal transformation that minimizes the RMSD between the C  atoms in
the most central residues of the SSEs that are matched between the query and the hit structure. (b) Multiple alignment of the
top 20 hits generated with MUSTANG [2]. Five structures are missing as they have multiple NMR models, which MUSTANG
cannot currently handle. Figures were generated with PyMOL [63].

Itis important to note several caveats in interpreting Table
7 and Table 8. First, as already discussed, ProSMoS queries
were manually constructed, which is not the case for the
other methods. Second, ProSMoS and SSM return a set of
hits for a query, whereas the other methods return a
matching score between the query and every database
structure. Hence, in order to construct the tables, a cutoff
score needs to be chosen (see Methods). The values in the
tables are therefore very sensitive to the method used to
choose the cutoff score: we could find arbitrarily many
superfamilies simply by decreasing the value at which a
score is considered a hit. Third, as discussed in [16], the
lack of explicit mention of a structure in the SCOP
description does not necessarily mean the structural motif
is absent.

Non-linear matchings

In order to verify the capability of our method to find
non-linear matchings when the SSE ordering constraint is
disabled, we first use an artificial test. Five different ran-
dom permutations of the eight tableaux (that is, unique
random re-orderings of the rows, and columns to preserve

symmetry, of the tableaux) previously discussed and
shown in Table 1 were generated. These were then used as
queries, and the AUC for each calculated in the same way
as for Table 1. The average AUC for each fold over its five
permutations is shown in Table 9. From this table we can
see that, despite the tableaux being permuted so that the
SSEs in the query are no longer in the same sequence as in
the database structures, the structures are still matched,
albeit sometimes with a lower AUC than for the correctly
ordered SSEs with the ordering constraint enabled.

As a demonstration of a real case of a non-linear match-
ing, we use as the query the hypothetical novel-fold pro-
tein TA0956 (PDB id 2IMK) [43] which was recently
found to have several non-linear alignments [44]. When
ordering constraints are enabled, our method finds no sig-
nificant matches in the ASTRAL SCOP 1.73 95% sequence
identity non-redundant database. However, when order-
ing constraints are disabled, some high-scoring hits are
found, in particular the top-scoring hit is to d1kb9b1,
cytochrome bc, core subunit 2. The superposition of these
two structures is shown in Figure 12. This is different from
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Figure 9
Serpin B/C sheet query substructure. (a) 3D structure of the canonical active serpin, ,-antitrypsin, PDB id 1QLP. Figure

generated with PyMOL. (b) Topology cartoon of 1QLP. In both cartoons, the B/C sheet used as the substructure query is

colored blue.

(a) (b)

Figure 10
The serpin B/C sheet query substructure found in a serpin from a thermophilic prokaryote. (a) 3D cartoon of the

strands in the serpin B/C sheet from PDB identifier 1QLP used as the query structure. (b) 3D cartoon of a serpin from a ther-
mophilic prokaryote, SCOP identifier d1mtp. 1, one of the top 10 hits to this query structure. SSEs from each structure that
are found to be corresponding according to our method have the same color. Both cartoons were generated with PyMOL.
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Figure 11
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Superposition of serpin B/C sheet query hits. (a) Superposition of the top 10 hits to the serpin B/C sheet query substruc-
ture, generated by simple orthogonal transformation to minimize RMSD between C,atoms of the central residue in SSEs that
are matched to each other between the query and the hit structure according to our method. (b) Multiple alignment of 5 of the
top 10 hits generated by MUSTANG. Five are missing as they contain multiple chains which MUSTANG currently cannot proc-

ess. Both images were generated with PyMOL.

the result reported by Guerler and Knapp [44] using
GANGSTA+ [44,45], who find that PDB identifier 1GO4
is the most similar structure (d1go4a_ is at rank 244 in
the sorted hit list with our method). Therefore, we used
the GANGSTA+ webserver [46] with 2IMK as the query,
and found that after setting the selection criteria to require
atleast 10 matching SSEs, d1kb9b1 is the fourth most sig-
nificant hit, demonstrating that GANGSTA+ is in agree-
ment with our method that this non-linear matching is
significant.

Conclusion

We have introduced an improved method of searching for
protein structures with similar folds using tableaux, incor-
porating constraints on the distances between SSEs to
improve accuracy. This method is capable of finding
either matches of an entire structure to the query, or
matches where the query is a substructure of a larger struc-
ture. It is capable of finding non-linear matchings, where
structurally equivalent parts do not have the same relative
positions in the sequences of the two proteins. It also pro-

vides a set of corresponding SSEs, useful for manual vali-
dation of the result or as a seed for a more detailed
structural alignment.

In assessing their VNS heuristic for MAX-CMO, Pelta et al.
[34] ask whether it is necessary to solve MAX-CMO exactly
in order to perform structure classification, and conclude
that it is not: the heuristic solution is sufficient. We have
shown that, consistent with previous work using the tab-
leau representation of protein folds [18,20], the much
more coarse-grained (and hence smaller and faster to
solve) tableau representation is sufficient to accurately
represent protein folds and perform structure classifica-
tion. Specifically, we have shown that the efficient approx-
imation of maximally-similar subtableaux extraction by
relaxed quadratic programming is able to consistently
classify folds at least as accurately as the VNS heuristic for
MAX-CMO. In addition, our implementation is able to do
so in less time than the MSVNS3 implementation
described by [34].
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Table 7: Comparison of methods for substructure searching.
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Fold SCOP sid P S T Q R P/R S/IR T/R QR
f-grasp dlubia_ 33 9 42 14 ) I5/15 9/15 13/15 10/15
Key-barrel dltttbl 10 3 0 17 5 5/5 1/5 0/5 4/5
Immunoglobulin dlae6hl 27 | 4 | I 9/l 1711 4/11 1711
Plait (ferredoxin) dlbhne_ 20 I 61 14 28 7128 1128 24/28 6/28
GFP-like dlhérb | | 58 21 | 1/1 I/1 I/1 171
Jelly-roll d2phlbl I I 19 15 12 1/12 1/12 10/12 5/12
TIM-barrel dltima_ 16 16 40 33 32 16/32 16/32 28/32 32/32
NAD-binding fold dilfedc_ I I 42 19 8 1/8 1/8 7/8 5/8

The number of superfamilies in the ASTRAL SCOP 95% sequence identity nonredundant database found for the eight query structures by ProSMoS
(P), SSM (S), TOPS (T) and our method, QP tableau search (Q). ProSMoS and SSM return a list of significant hits, so the number of superfamilies
found by these hits is shown. Other methods return scores for all database structures, and the number of superfamilies in the hits with a Z-score >
3.0 are shown. The R column is the number of superfamilies, from the combined list of those found by all methods, in which the relevant query
pattern or fold description is explicitly mentioned in the SCOP structure description. The ratio columns show the number of superfamilies in the R

column found by the specified method.

We have demonstrated that the accuracy of our technique
assessed as a protein fold recognition method compares
favorably with some existing methods, and that it is fast
enough to scan protein structure databases in a practical
time, unlike the exact solution using CPLEX. It is, how-
ever, not as fast as some existing methods such as SHEBA
and VAST, and the TableauSearch dynamic programming
approximation introduced by [18] is faster still. These
methods, however, cannot be used to find substructures
or non-linear matchings.

We have also demonstrated the use of our technique as a
method for searching for substructures in protein struc-
tures, and compared it with some existing techniques,
including ProSMoS. Complications in objectively assess-
ing the performance of these methods make definite con-
clusions in this area difficult: we can perhaps say at most
that each method has different enough properties that
they are all capable of finding unique hits that others
miss. A structural biologist searching for matches to a

motif or substructure, then, would do well to employ sev-
eral of these methods rather than relying on just one. As
noted by Li et al. [24], further theoretical work to find tight
sufficient conditions for the QP to have an integer solu-
tion is required, although empirically an integer solution
is almost always found.

Methods

We built a database of tableaux, which is a file containing
the tableau representation for each structure in the data-
base. By pre-computing the tableaux in this way, only the
query structure needs to have its tableau built when
searching for occurrences of that structure. The search pro-
cedure is then to compute a matching score between the
query tableau and each tableau in the database. Sorting
the results by score allows the desired balance of sensitiv-
ity and specificity to be found by choosing a threshold
score above which a match is considered a "hit" of the
query to the database structure.

Table 8: Comparison of the unique hits from each method for substructure searching.

Fold SCOP sid Pu Su Tu Qu R Pu/R Su/R Tu/R Qu/R
[-grasp dlubia 17 0 27 4 | 1/1 0/1 0/1 0/1
Key-barrel dltttbl 4 0 0 10 | 1/1 0/1 0/1 0/1
Immunoglobulin dlae6hl 25 0 2 0 9 7/9 0/9 2/9 0/9
Plait (ferredoxin) dlbhne 8 0 48 7 21 1721 0/21 17121 3/21
GFP-like dlhérb 0 0 56 19 0 0/0 0/0 0/0 0/0
Jelly-roll d2phlbl 0 0 15 Il 9 0/9 0/9 719 2/9
TIM-barrel dltima_ 0 0 I 3 3 0/3 0/3 0/3 3/3
NAD-binding fold difedc 0 0 33 10 4 0/4 0/4 3/4 1/4

The number of superfamilies in the ASTRAL SCOP 95% sequence identity nonredundant database found by only that method for the eight query
structures by ProSMoS (Pu), SSM (Su), TOPS (Tu) and our method, QP tableau search (Qu). The R column is the number of superfamilies, from the
combined list of those found uniquely by each method, in which the relevant query pattern or fold description is explicitly mentioned in the SCOP
structure description. The ratio columns show the number of superfamilies in the R column represented by the superfamilies found only by the

specified method.

Page 14 of 21

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:153

Table 9: AUC for non-linear matchings averaged over five
permutations of each of the fold query tableaux.

Fold SCORP sid Average AUC
f-grasp dlubia 0.84
Key-barrel ditttbl 0.90
Immunoglobulin dlae6hl 0.92
Plait (ferredoxin) dlbhne 0.65
GFP-like dlhé6rb_ 1.00
Jelly-roll d2phlbl 0.90
TIM-barrel dltima_ 1.00
NAD-binding fold difedc_ 0.99

Tableaux

An orientation matrix is a square symmetric matrix which
describes the relative orientation of secondary structures
in a protein; a tableau is a concise encoding of this matrix
where the angles have been discretized using a double-
quadrant encoding [19]. Tableaux have been found to
accurately differentiate folds [20] and form the basis of
the structural searching algorithm of [18].

Figure 12

Superposition of 2JMK and dl1kb9bl _. Superposition
resulting from the non-linear matching of the query structure
2JMK (green) to the top hit d1kb9b1l (blue). The figure
was generated with PyMOL.

http://www.biomedcentral.com/1471-2105/10/153

The orientation matrix (), for a protein with n SSEs, is an
n x n symmetric matrix. Each element @;0fQ, -7< ;< 7,
1 <4, j < n is the relative angle between the axes of SSEs i
and j. Computing Q therefore consists of three steps:
defining the SSEs, fitting axes to the SSEs, and computing

the interaxial angle between each pair of SSE axes.

The tableau is derived from the orientation matrix by a
double-quadrant encoding scheme, in which the range of
angles is divided into quadrants in two ways which differ
in orientation by 7/4, in order to prevent a small variation
in angle resulting in two completely different encodings.
The first quadrant encoding is labelled P, O, L, R for par-
allel, anti-parallel, crossing-left, and crossing-right,
respectively, and the second arbitrarily E, D, S, T [19].

Because the orientation matrix and tableau are symmetric,
we need only store one triangle, and since the main diag-
onal is the meaningless self-angle, we use it to store the
type of SSE represented by that row and column (see Fig-
ure 13).

Quadratic integer programming formulation of extraction
of maximally-similar subtableaux

The extraction of maximally-similar tableaux by quadratic
integer programming (QIP) was described by Konagurthu
et al. [18]. We use the same formulation:

Let Q, = (a),-f ), 1 <14, j £ N, be the orientation matrix for

protein/structure A with N, SSEs and Qp = ( coé3 ), 1<4,j<
Ny the orientation matrix for protein B with N SSEs. Sim-

ilarly let T, = (¢ ) and Ty = () be tableaux.

Define Boolean variables x;, 1 <i <N,, 1 <j < Nywherex;
= 1 indicates that the ith SSE in structure A is matched with
the jth SSE in structure B.

Define a scoring function {'which gives high scores to sim-
ilar orientations, as follows:

L(of0f) ="~ Ao M
where

Aa):min{|a){2—a)ﬁ|,27T—|60{2—a’ﬁ|} )

When comparing (discrete) tableaux, the scoring function
is defined as:
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(a)

0.000
2.654 0.000
-1.173 2.147 1.000

0.389 -2.757 1.352 3.000

2,040 -1.438 2.079 -1.651 0.000
-1.258 1.556 -1.108 -1.647 2.985 0.000
1.693 -1.808 -1.851 1.309 -0.370 -2.913

-0.590 2.102 -1.231 0.959

(c)
Figure 13

3.000

2.566 -0.721 2.264 0.000
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LE RT xa

PD 0S RD xg
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PE RT LE RD OT PE RT e

(d)

[-grasp query structure and tableau. (a) 3D structure of ubiquitin, PDB identifier 1UBI. Image generated with PyMOL. (b)
Topology cartoon of IUBI. (c) Orientation matrix Q for 1UBI. Each angle is in radians between -7 and 7z The main diagonal

denotes the SSE type by 0.000, 1.000, 2.000, or 3.000 for fB-strands, a-helices, 7-helices, and 3,-helices, respectively. (d) Tab-
leau for 1UBI. The main diagonal denotes the SSE type by e, xa, xi, or xg for fstrands, a-helices, 7-helices, and 3,y-heli-

ces, respectively.

A _ B
2, if tik = tjl
A B e A _ B
St ty)=q L ifty =t (3)
-2, otherwise.
where 4 =t jB, means the two tableau codes are identical,

and t} = th, means they differ in only one quadrant, for

example OS and OT, or OT and RT.
Then the QIP is:

maximize

subject to

z C(w{;i, wﬁ)xijxkl (4)

1<, k<N 4 1<), 1SN

1<i<N, (5)

1<i< Ny (6)
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Constraints (5) and (6) ensure each SSE in one tableau is
matched with at most one SSE in the other. We introduce
a further condition that two SSEs of different types (for
example an o-helix and a fstrand) should not be
matched, by assigning a low score to such a matching, for
which we use the SSE type information encoded on the
diagonal of the tableau or Q matrix.

We may optionally avoid non-linear matchings by assign-
ing a low score to matches between SSEs whose indices i,
k in one structure and j, I in the other satisfy both of the
following inequalities:

1<i<k<N, (7)

1<1<j<Ng (8)
Without this condition, non-linear matchings are found.

In order to avoid false positives when SSEs in two struc-
tures have similar orientations relative to other SSEs in
their respective structures, but are at very different dis-
tances from those other SSEs, we introduce a distance dif-
ference constraint, disallowing matches between SSEs
where the difference in distances between the SSEs
exceeds a threshold distance z.

xj+xy SVif [dfy —djj[>7, 1<i k<N, 1<jl<Ny
)
where DA= (dj ), 1<i,k<N,and DB=(d ), 1<j, 1< N,

are SSE midpoint distance matrices. These are square sym-
metric matrices, of the same dimensions as the orienta-
tion matrices and tableaux, where each entry is the
distance (in Angstroms) between the centroids of the C,
atoms used in computing the respective SSEs' axes. We use
the value 7 = 4.0 A for the distance difference threshold.
This value was found empirically to give good results after
testing various values between 2.0 A and 8.0 A on a subset
of the queries in Table 1. As with tableaux, these distance
matrices are precomputed and stored as a triangle with
SSE information on the main diagonal. As before, we do
not implement this constraint directly, but instead penal-
ize the objective function when it is violated.

Relaxed quadratic programming formulation and solution
by interior point method

The QIP just described is NP-hard. Even though the
instances are quite small, direct solving with CPLEX is too
slow for practical use in searching a structure database
[18]. A solution to this problem is provided by the work
of Li et al. [24], whose formulation of biological network

http://www.biomedcentral.com/1471-2105/10/153

alignment is strikingly similar to the QIP for extracting
maximally-similar tableaux. They show that the con-
straints (5)-(6) are totally unimodular, allowing the QIP
to be relaxed to a quadratic program (QP) by removing
the integrality constraints on the Boolean variables x;;, and
that the QP will have an integer solution under certain
conditions. This allows this (nonconvex) QP to be solved
with an efficient interior ellipsoidal trust region method
[47-49].

The standard form of a QP is

(10)

R 1
minimize 5 xTQx +clx

(11)

where Q is the symmetric n x n objective matrix, A is the
constraint left-hand m x n matrix, b is the constraint right-
hand m x 1 vector, c is the objective n x 1 vector, and x is
the solution n x 1 vector.

subjectto Ax<b,x=>0

In expressing the maximally-similar subtableaux QIP (4)-
(6) in standard form, the vector c is zero as there is no lin-
ear term in the QIP objective function (4). The coefficient
matrix A contains only 1s and 0s, since the constraints (5)

and (6) are all of the form Z?:] x; <1; hence A is totally

unimodular as shown by Li et al. [24]. The objective
matrix Q contains the values of the scoring function ¢
these values are simply negated to transform the maximi-
zation problem (4) to the minimization problem (10).

Constraints (5) and (6), to ensure each SSE in one tableau
is matched with at most one SSE in the other, are
expressed in the standard form, that is, in the A matrix and
b vector in equation (11). Constraints on SSE midpoint
distance differences, mismatching SSE types and linearity
of matchings, when desired, are not expressed directly,
due to the infeasibly large matrices that would result from
so doing. Rather, we relax them and penalize their viola-
tion by assigning a low score to such matches. This results
in the following modified objective function for the dis-
crete (tableau) version, where the negation to transform
the problem to a minimization problem has also been
shown:

0 if
1 if
L= Y x 0

10, k<N, 1<),ISN

A B A B

ti 2t Vig =0

i<kanj>l)v(i>knanj<l
] ]

1 A B

if ldj —dj >

—g(zﬁ;,tﬁ) otherwise

(12)
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The choice of 0 and 1 as the penalties in conjunction with
the discrete tableau scoring function ¢ (3) was found
empirically to give good results.

We find in common with Li et al [24], that although the
sufficient conditions described in the Supplementary
Materials of [24], are not always met, that nevertheless an
integer solution is almost always obtained.

Evaluation

We computed tableaux for all 15273 domains in the 95%
sequence identity non-redundant subset of the ASTRAL
SCOP 1.73 database [14,29]. Unless otherwise stated, all
queries, other than those for comparison with MAX-CMQO
using the Fischer or Nh3D data sets, discussed in the
results were against this database of tableaux.

The larger scale query set is a set of 200 queries chosen
from the ASTRAL SCOP 1.73 95% sequence identity non-
redundant data set. The queries were chosen so that each
class (o, f, o/ B, a+ p) is represented in the query set in the
same ratio as it is in the database. The list of queries is
available with the source code and other data as described
in the Availability section.

The Fischer data set, described in Table 2 of [35], consists
of 68 proteins. Several PDB identifiers in this table have
since been obsoleted, and we replaced these with their
new versions according to the RCSB PDB website [50,15].
As was done by [34], we performed an all-against-all com-
parison in this data set, including redundant compari-
sons, resulting in 4624 comparisons.

The Nh3D v3.0 data set [36] consists of 806 structures,
each representing a different CATH [37] topology. We per-
formed the same 58838 comparisons as [34] by compar-
ing each of the 73 structures listed in the Supplementary
Material of [34] against every structure in the Nh3D v3.0
data set.

The MSVNS3 implementation and tableau search imple-
mentations produce unnormalized scores. MSVNS3 pro-
vides an overlap value, QP tableau search provides the
maximum value of the tableau scoring function, and Tab-
leauSearch also provides an approximation of the maxi-
mum value of the tableau scoring function. For
comparing sets of pairwise scores between proteins of dif-
ferent sizes, a normalization function is required. We use
the same three normalization functions as [34], namely:

score(Pj,Pj)

norml(P;, P;) = (13)

min {size(P;) size(P})}

http://www.biomedcentral.com/1471-2105/10/153

score(Pi,P]')

norm2(P;, P;) =2 — - (14)
51ze(Pl')+51ze(Pj)
el P —size( Ps
siae(Py)-size(Pl
norm3(P;, P;) = max{size(P;),size(P;j)}
norml(P;, P;) otherwise
(15)

where score is the overlap value or tableau matching score
for MSVNS3 or tableau search, respectively, and size is the
number of contacts or number of SSEs for MSVNS3 or tab-
leau search, respectively.

We evaluated the accuracy of structural search by counting
a hit (a score above the threshold) as correct (a true posi-
tive) if the structure is in the same SCOP fold as the query
structure, and incorrect (a false positive) otherwise. By
using SCOP as the gold standard in this way, large scale
automatic evaluation on a large number of different que-
ries is possible.

For the Fischer data set, we evaluated at both the fold and
class level. At the fold level, a true positive is counted
when the score is above the current cutoff and the two
structures are in the same fold according to Table 2 of
[35]; similarly for the class level. For the Nh3D data set,
we evaluated at both the architecture and class levels in
CATH. At the architecture level, a true positive is counted
when the score is above the current cutoff and the two
structures have the same CATH architecture identifier and
the same CATH class identifier. At the class level, they
need only have the same class identifier.

Evaluation of the accuracy of substructure queries is more
challenging, since we require as our gold standard a data-
base of structures that contain a motif as a substructure. By
using dlubia , an exemplar of the S-grasp fold, as the
query, we used the data from Table 1 of [16] as the gold
standard. A hit is considered a true positive if it is in the
same SCOP superfamily as the exemplars listed in Table 1
of [16] for the S-grasp core and gregarious fold [51] cate-
gories, or if it is one of the structures considered by [16] to
contain the f#-grasp motif by structural drift [52].

We can then compute the true positive rate (TPR), or sen-
sitivity, as

TpR:E
N

where TP is the number of true positives and N is the
number of structures that match the query according to
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the gold standard (SCOP or the f-grasp data set). The false
positive rate (FPR), which is equal to 1 - specificity, is

FpP

FPR =
TN+FP

where FP is the number of false positives and TN is the
number of true negatives. We then construct a ROC curve
by plotting the TPR against the FPR for all values of the
score threshold. The area under the ROC curve (AUC) is
an overall measure of the quality of a classification
method; a perfect classifier has AUC = 1.0, and a random
classifier has AUC = 0.5. We approximate AUC by the tra-
pezium integration rule.

When multiple queries are being assessed in one ROC
curve, as in the Fischer and Nh3D data sets, and the 200
query set in the 95% sequence identity non-redundant
subset of the ASTRAL SCOP 1.73 database, all the scores
are combined together (after normalization), with each
labelled as either a positive or a negative according to the
appropriate gold standard. The ROC curves were then
plotted with the ROCR package [53] in R [54] and the
AUC and its standard error, when reported, are calculated
by the Hanley-McNeil method [55].

For comparisons with other methods, SHEBA version
3.1.1, VAST downloaded from [56], ProSMoS down-
loaded from [57], and the TOPS matching software down-
loaded from [58] were used. TableauSearch was supplied
by Dr Arun Konagurthu (personal communication). The
authors' implementation of the VNS heuristic for MAX-
CMO [34], MSVNS4MaxCMO, was downloaded from
[59]. We used MSVNS3, the best performing version of the
heuristic according to [34], for all tests.

For MAX-CMO, we generated contact maps for each struc-
ture with a threshold of 7.0 A and sequence separation of
2 residues using a modified version of PConPy [60]. For
QP tableau search, we generated tableaux and distance
matrices for each structure with our own implementation
of the tableau creation algorithm, including zand 3,, hel-
ices and using DSSP to define secondary structure ele-
ments. We built the TOPS database for the ASTRAL SCOP
1.73 95% sequence identity non-redundant subset using
TOPS downloaded from [61] (July 2007) with default
parameters (DSSP is used to define SSEs).

For the comparison with SSM, the SSM webserver [62]
running SSM v2.36 and searching the SCOP 1.73 database
was used, with default parameters. The search was
restricted to the 95% sequence identity non-redundant
subset by uploading the relevant ASTRAL SCOP identifier
list as the list of SCOP 1.73 codes for the target.

http://www.biomedcentral.com/1471-2105/10/153

For the comparison with ProSMoS, we found that the
query meta-matrices produced by the scripts included
with ProSMoS applied to the query structures resulted in
no hits, even when extensively edited to make them less
specific. Therefore, we manually constructed the query
meta-matrices based on the following information:

e DSSP SSE assignments

¢ automatically generated topology cartoons
e 3D structure as shown by PyMOL [63]

e SCOP description of the fold

o the list file generated by the ProSMoS matrix genera-
tion scripts for the query structure.

When comparing methods for substructure search, apart
from the detailed analysis of occurrences of the f-grasp
motif available in Table 1 of [16], for constructing the
comparisons detailed in Table 7 and Table 8 we follow a
procedure similar to that described for Table 2 of [16],
and count SCOP superfamily and fold descriptions that
mention the query structure in question. ProSMoS and
SSM give a list of hits to the query structure, and so we can
simply count the number of superfamilies represented by
these hits. Our method, however, and also the version of
TOPS we are using, does not return such a list of hits but
rather assigns a score to each database structure. This
makes the computation of ROC curves, as previously
described, a useful and appropriate method of assess-
ment, but creates a difficulty for the superfamily counting
method: we need a method to determine a score above
which a hit is considered significant. In order to do this,
we compute a Z-score for each matching of a query to a
database structure as

7 -STH (16)

o
where s is the score assigned to the matching, ux is the
arithmetic mean of the scores for all database structures
for that query, and o is the standard deviation. For both
our method and TOPS, we choose a significant hit to be a
matching with Z > 3.0, a value which was found empiri-
cally to give a reasonable number of hits without exclud-
ing too many true positives amongst our set of example
queries.

Implementation

We implemented scripts for creating tableaux, building
the tableaux database, evaluating results against SCOP
and converting search output for visualization with
PyMOL in Python. Our implementation of the tableaux
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creation algorithm optionally allows a list of SSEs in the
structure to be represented in the tableau, rather than all
SSEs in the structure, in order to generate tableaux for sub-
structure queries. We used the BioPython library [64] and
the Bio.PDB file parsing and structure class [65] to parse
PDB files and the Bio.SCOP interface [66] to read SCOP
and ASTRAL data. We re-implemented the QP solving
algorithm [47,48], originally implemented in MATLAB
[67], in Fortran 77 with the BLAS [68] and LAPACK [69]
libraries for dense matrices, and the UMFPACK 5.2 [38-
41] library for sparse matrices. The tableau searching pro-
gram itself was written in Fortran 77.

Availability
Source code, data sets, and executable binaries are availa-
ble from http://www.cs.mu.oz.au/~astivala/gpprotein/.
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