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Abstract

Background: Multilocus Sequence Typing (MLST) is a frequently used typing method for the
analysis of the clonal relationships among strains of several clinically relevant microbial species.
MLST is based on the sequence of housekeeping genes that result in each strain having a distinct
numerical allelic profile, which is abbreviated to a unique identifier: the sequence type (ST). The
relatedness between two strains can then be inferred by the differences between allelic profiles.
For a more comprehensive analysis of the possible patterns of evolutionary descent, a set of rules
were proposed and implemented in the eBURST algorithm. These rules allow the division of a data
set into several clusters of related strains, dubbed clonal complexes, by implementing a simple
model of clonal expansion and diversification. Within each clonal complex, the rules identify which
links between STs correspond to the most probable pattern of descent. However, the eBURST
algorithm is not globally optimized, which can result in links, within the clonal complexes, that
violate the rules proposed.

Results: Here, we present a globally optimized implementation of the eBURST algorithm —
goeBURST. The search for a global optimal solution led to the formalization of the problem as a
graphic matroid, for which greedy algorithms that provide an optimal solution exist. Several public
data sets of MLST data were tested and differences between the two implementations were found
and are discussed for five bacterial species: Enterococcus faecium, Streptococcus pneumoniae,
Burkholderia pseudomallei, Campylobacter jejuni and Neisseria spp.. A novel feature implemented in
goeBURST is the representation of the level of tiebreak rule reached before deciding if a link should
be drawn, which can used to visually evaluate the reliability of the represented hypothetical pattern
of descent.

Conclusion: goeBURST is a globally optimized implementation of the eBURST algorithm, that
identifies alternative patterns of descent for several bacterial species. Furthermore, the algorithm
can be applied to any multilocus typing data based on the number of differences between numeric
profiles. A software implementation is available at http://goeBURST .phyloviz.net.
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Background

Sequence based typing methods are rapidly becoming the
gold standard for epidemiological surveillance with the
data generated being also used to study microbial popula-
tion genetics.

Of the several methods developed, Multilocus Sequence
Typing (MLST) [1] has been widely applied to clinically
relevant bacterial species, and online databases have been
implemented [2-5], facilitating the sharing and analysis of
MLST data. The method itself is based on the sequencing
of specific regions of (typically) seven housekeeping genes
of the microorganism of choice. The selection of house-
keeping genes stems from the assumption that they are
under moderate to strong purifying selection, and the
resulting sequence variation is mostly neutral. Therefore,
the accumulation of variation by mutation, in the absence
of recombination, occurs approximately linearly with
time, and the resulting genetic distance tends to be pro-
portional to the time of divergence between alleles. Those
sequences are compared to an allele database for each
gene, each unique sequence is assigned a numerical iden-
tifier and the combination of alleles at each locus creates
an allelic profile. Each unique allelic profile is then con-
verted to a Sequence Type (ST) that unambiguously iden-
tifies a clone. The main aim of MLST is to provide a
portable, accurate, and highly discriminative typing sys-
tem and this approach has been used successfully with
many different bacteria and other microorganisms.

The first approach to the MLST data analysis for the illus-
tration of the relationships between isolates, was the crea-
tion of Unweighted Pair Group Method with Arithmetic
mean (UPGMA) dendrograms from distance matrices
containing the pairwise differences of allelic profiles [6,7].
This type of cluster analysis presents several advantages,
such as the ease of interpretation and the creation of an
hierarchical grouping of the isolates, that can provide a
global overview of the relatedness of the isolates under
study and how the defined clusters are connected to each
other. However, the topology of such dendrograms fre-
quently does not reflect the patterns of descent [8]. As dis-
cussed by Hall and Barlow [9] bifurcating tree-like
representations of the relationships between isolates are
frequently misinterpreted as depicting the precise evolu-
tionary history of the isolates and are particularly suscep-
tible to the confounding effects of recombination. A
bifurcating tree representation, rather than a graph-based
one, may more easily lead to false conclusions about the
relationships of the isolates, and the latter should be pre-
ferred when recombination is high [10].

Other analyses methodologies focus directly on the
sequence data instead of on an allelic profile. Although
supported by a large body of work [11], these methods
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face an even greater challenge of disentangling the role of
recombination over mutation. Distance metrics based on
the comparison of a simple alignment of concatenated
sequences can be greatly affected by a single recombina-
tion event that results on multiple nucleotide changes,
thereby disrupting the phylogenetic signal. In spite of
these caveats, Multilocus Sequence Analysis (MLSA) has
been successfully used for the phylogenetic analysis of
species relationships, partly because the use of multiple
loci helps to circumvent this problem [12,13]. Recently, a
new Bayesian model based method was proposed as a
solution for this problem by detecting if the differences in
the sequence came from recombination or mutation
events [14]. The model, implemented in the ClonalFrame
approach, relies on the analysis of the sequence of each
locus and assumes that recombination occurs only with
alleles not represented in the population, an unlikely
assumption for many bacterial species that have been
extensively sampled. The resulting distance matrix can
then be represented as an UPGMA tree with bootstrap
support or as a graph that should describe the contribu-
tions of both recombination and mutation.

Nevertheless, the most popular analysis of the allelic pro-
files in order to infer an hypothetical phylogenetic rela-
tionship between STs is that performed by the eBURST
algorithm [8]. This algorithm allows for an unrooted tree-
based representation of the relationship of the isolates
analyzed, based on the number of differences in the allelic
profile, assigning isolates to clonal complexes (CCs). The
main advantage of eBURST is that it implements the sim-
plest model for the emergence of clonal complexes
[15,16]: a given genotype increases in frequency in the
population, as a consequence of a fitness advantage or of
random genetic drift, becoming a founder clone in the
population, and this increase is accompanied by a gradual
diversification of that genotype, by mutation and recom-
bination, forming a cluster of phylogenetically closely
related strains. This diversification of the "founding" gen-
otype is reflected in the appearance of STs differing only
in one housekeeping gene sequence from the founder
genotype - single locus variants (SLVs). Further diversifi-
cation of those SLVs will result in the appearance of varia-
tions of the original genotype with more than one
difference in the allelic profile: double locus variants
(DLVs), triple locus variants (TLVs), and so on. Upon
application of the eBURST algorithm to an entire data set,
the result is a forest, a disjoint set of trees (acyclic graphs),
where each tree corresponds to a clonal complex. Those
trees are the result of the application of a set of rules based
on the model just described to the graph representing all
SLV links. Thus, by considering only SLV links, eBURST
does not aim at linking the entire population but identi-
fies different clonal complexes.
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The final eBURST forest provides us with an hypothetical
pattern of descent for the strains analyzed, illustrating the
possible phylogenetic relationships between STs [8,17].
The reliance on the comparison of allelic profiles buffers
eBURST against the possibility of the introduction of mul-
tiple sequence changes by a single recombination event.

Another current data analysis methodology for sequence
based typing techniques relying on the difference between
two allelic profiles such as MLST and Multilocus Variable
Number of Tandem Repeats Analysis (MLVA), consists of
computing a Minimum Spanning Tree (MST) [18-21]. An
MST is a tree that connects all entries in such a way that
the summed distance of all links of the tree is the shortest
(minimum) [22-24]. In a biological context, the MST
principle and a maximum parsimony principle share the
idea that evolution should be explained with as few events
as possible. The main difference between the two is that
parsimony methods allow the introduction of hypotheti-
cal samples, that are created to construct the internal
nodes of the tree, whereas the real samples from the data
set are represented as the leaves of the tree. Those hypo-
thetical samples, are assumed to be common ancestors of
the current population that can no longer be sampled. In
the Bionumerics(tm) software MLST data can be analyzed
has a minimum spanning tree using a simple categorical
coefficient, and the algorithm was adapted to include
hypothetical STs whenever such an assumption decreases
significantly the total span of the tree. These hypothetical
STs usually correspond to missing types for which a
number of SLVs are present in the data set [25] and that
are assumed to exist but not to have been included due to
incomplete sampling. Although this is a reasonable
assumption with the model of clonal expansion and
diversification described above, it is a clear departure from
the MST problem, since one postulates the existence of
nodes that were not represented in the sampling and that
clearly affect the MST topology. A tool available at the
Pubmlst website [3] also allows users to construct MSTs
based on MLST data, but on the same page a link to a tool
allowing a BURST analysis of the data is also offered and
the relationship between the two methods is unclear. Up
to now, MSTs and eBURST for the analysis of MLST data
have been considered distinct methodologies.

In spite of both eBURST and the MST approach imple-
mented in Bionumerics(tm) being clearly related to the
MST problem, they present some particularities that
deserve clarification. The main difference between the two
methodologies is that MST will always connect all the STs
without forming defined clonal complexes as eBURST
does. Using MSTs, those clonal complexes have to be
infered by using empirical rules based on other data avail-
able for the isolates, or by a pre-defined allelic distance. If
the later is chosen, the most common definition of CC is
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a group of STs that have at least six alleles in common
with another member of the defined group. In the MST
problem one deals with a weighted graph for which one
searches for a spanning tree whose sum of link weights is
minimum. However, when analyzing MLST data the
methods do not clearly define link weights or have identi-
cal weights for most of the links. The simple categorical
coefficient of Bionumerics(tm) uses the number of allelic
differences between STs, similarly to the eBURST
approach. In a situation where multiple links connecting
different ST nodes have identical weights a number of
solutions to the MST problem exist. To overcome the
degeneracy of the MST problem and present a unique
solution, these methods usually consider a quality order-
ing of the links relying on additional measures of profile
similarity. Bionumerics(tm) also has a feature to include
sets of rules based on BURST rules (using only the number
of SLVs and DLVs) or to add other user defined rules. In
order to present the unique solution, the combinatorial
optimization problem becomes finding a tree with the
highest possible quality. The MST problem and the Maxi-
mum Weight Forest problem are particular cases of
graphic matroids [26]. Thus, finding a solution to repre-
sent MLST data by the use of MSTs consists of solving
instances of graphic matroids [26-28] which can be opti-
mally solved with a greedy approach [29]. We should also
note that many optimal solutions for a given instance may
exist that have the same quality. Formally, this happens
when considering the quality sorted lists of links for two
different optimal trees, the link lists have the same size
and, for each list position, links in both lists have the same
quality [24,26].

The eBURST algorithmic implementation can be enunci-
ated as follows: the STs are clustered with respect to their
number of SLVs, DLVs, TLVs and occurrence frequency.
Given a graph where each ST is a node and where a link
between two STs exists whenever they are SLVs, we want
to construct a forest, i.e. a collection of disjoint trees, such
that each ST connects to the neighbor with highest
number of SLVs. In case of a tie, we should consider the
number of DLVs, followed by TLVs and lastly by the
neighbors occurrence frequency.

In the current eBURST implementation [8,17] a two step
approach is used for each disjoint graph. In the first step,
the algorithm builds a tree by doing a breadth-first search
(BFS) starting from the group founders, i.e. the STs with
highest rank in the disjoint graphs, considering the tie-
break rules of number of SLVs, DLVs, TLVs and occurrence
frequency. The BFS is done iteratively. First, the group
founder is connected to all its SLVs, then, each one of
those, following the ST ordering, is connected to their
SLVs not yet present in the tree. This process is repeated
until every element of the disjoint graph is present in the
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tree. The second step consists in a local optimization of
the tree. For each ST on the tree, the algorithm checks if a
SLV exists with higher rank than the current parent. If such
SLV exists, and if it is not a grandparent of the current ST,
the link is deleted and the higher rank SLV becomes the
new parent of the ST, thus locally improving the tree. The
grandparent check is needed to verify that the tree is not
broken nor does it form loops. As we have mentioned, the
initial BFS tree is locally optimized, therefore, the
obtained solution may not be the optimal solution. Nev-
ertheless, and although eBURST v3 readme file [17] sug-
gests that the problem cannot be solved without using ad-
hocrules, the described problem can be stated as a graphic
matroid [26,28]. These problems can be optimally solved
with the algorithm of Kruskal [23,24,26]. Thus, in this
article we provide the formulation of this problem and we
solve it with the mentioned algorithm (goeBURST - glo-
bal optimal eBURST). We also provide an exhaustive anal-
ysis of the existing biological data sets and comparison of
the results with both implementations. To allow readers
to use the new implementation, a prototype software is
provided at http://goeBURST.phyloviz.net where users
can analyze their data sets with the proposed algorithm.

Results and discussion

Algorithm

In this section we provide a formal definition of the prob-
lem to be solved and the proposed algorithm. The
eBURST analysis of MLST results consists of building a
spanning forest in a graph where each ST is a node and
two STs are connected if and only if they are SLVs. Since
this forest should be optimal with respect to link selec-
tion, we want to select links between STs with higher
number of SLVs. In case of tie we should consider the
number of DLVs, the number of TLVs and lastly the occur-
rence frequency of STs. Thus, given a graph G and the set
of all forests over G, i.e., a matroid [26-28], the optimiza-
tion problem is to find an optimal forest. As we men-
tioned before, the current implementation of the BURST
rules in the eBURST algorithm may not provide an opti-
mal solution. In order to achieve this goal we propose the
following algorithm: if we start with a forest of singleton
trees (each ST is a tree), we can build the optimal forest by
iteratively selecting links connecting STs in different trees
and with the higher number of SLVs. In the current imple-
mentation of the eBURST algorithm, it is implicitly
defined a total order for links based on the number of
SLVs, DLVs, TLVs and occurrence frequency of the con-
nected nodes. This set of rules is what we defined as
eBURST rules, i.e., the BURST rules as implemented in the
eBURST software. In the proposed algorithm we include
as last tiebreak rule the assigned ST number (ID).
Although this last tiebreak is rarely reached, this criterion
is necessary to provide a consistent and unique solution to
the problem as, independently of the sorting algorithm
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used, it will always provide a consistent tiebreak solution
due to the uniqueness of ST ID. As implemented, lower ST
IDs take precedence over higher ST IDs. The rational for
this choice was that, assuming a growing database with
data of several contributing international studies, the
more common STs are sampled first and will have lower
ST IDs than the subsequent studies that will add more STs
do the database.

Problem formalization
Let S be the set of STs and let A :SxS— N be a function

such that A(u, v) is the number of variable loci between
STsuand v, i.e.,

2u,v)= Y 8w, 7(v),), 1)

where 7(u) is the allelic profile of u and ¢'is the Kronecker
delta function.

Given G = (V, E), where V=8 and E = {(u, v) € V2|(u,
v) = 1}, we define a total order < on E by comparing the
number of SLVs, DLVs, TLVs and the occurrence frequency
of the nodes. Let 1z & — N4 be a function such that z(u)
is a vector which components are the numbers of SLVs,
DLVs, TLVs and the occurrence frequency ofu € S . Given
that these values should be relative to the connected com-
ponent (clonal complex) C containing u, we formally
define y as

u(w); 3 {ves| A v) =} NC], )

fori=1, 2,3, and g(u), is simply the occurrence frequency
of u. Then, given (uy, v;), (4, v,) € E, we say that (u,, v,)
< (u, v,) ifand only if £> 0, being & computed as follows,
starting with i = 1:

1. set & <= max {g(u,)i, 4(v,);} - max {u(u,);, p(v1);};

2. if £ = 0, then set & « min {x(u,); p(v,);} - min

{p(uy); p(vy):}s

3.ife=0andi<4, thenseti« i+ 1andgotostepl,
otherwise return &.

To illustrate the problem with a practical example con-
sider links (211, 300) and (56, 99) from the largest con-
nected component/clonal complex in Burkholderia
pseudomallei data set. We have
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u(56) = (12,46, 59, 5)

1(99) =(13,36,104, 8)
u(211) =(12,50,81,6)
1(300) =(13,57,121,4)

and, by computing e, we know that (56, 99) < (211, 300)
with & = 11 computed at DLV level. Note that the con-
nected component C is unequivocally identified for each

ue S.

eBURST algorithm

In this section we detail the current eBURST implementa-
tion for comparison purposes. eBURST algorithm imple-
mentation performs two major steps, namely an
expansion step and a local optimization step. In the first
step the algorithm expands a tree from the ST with the
highest number of SLVs as follows:

1. select a ST with maximum number of SLVs (in case
of tie select by DLVs, TLVs and finally by ST fre-
quency), add it to list Ly and set d < O;

2. sort L,;in decreasing order of SLVs (in case of tie con-
sider DLVs, TLVs and at last ST frequency);

3. foru € L, add all new discovered SLVs of u to L,,,
as descendents of u, i.e., add SLVs of u not yet in the
tree;

4.ifL;,,# O, setd < d + 1 and go to step 2.

Note this expansion may not get an optimal solution, thus
the algorithm runs a second step where it tries to optimize
the tree. In this second step we should consider each L,
for d > 2, and proceed as follows:

1. for each u € L, select the best SLV v of u;

2. if v is not a descendent of u in the expansion step, v
becomes the parent of u.

This last condition avoids broken trees resulting from
local optimization. Note also that, whenever we set the
parent for a given node, it implies adding a link to the
spanning tree.

The above algorithm should be executed for each con-
nected component, i.e., we obtain a spanning forest. And,
with respect to the space and time complexities, it requires
O(V + E) space to store the graph and it takes O(V log V +
E) time, note that expanding all adjacencies takes O(E)
time and sorting the lists takes O(V log V) time. Since
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building the graph takes O(V?2) time, the running time is
dominated by graph construction.

goeBURST algorithm

The problem that we want to solve may be formalized as
follows: find a list L of links that is maximized with
respect to <, i.e., given other list L' and assuming that both
lists are sorted against <, L is such that L'[i] < L[], fori =
1,..., |L|. Note that any list with links of a spanning forest
of G must have the same size. This problem can be solved
by a family of well known greedy algorithms [23,29].

As mentioned above, the algorithm can be stated as find-
ing the maximum weight forest or, depending on weight
definition, as finding the minimum spanning tree. All
these problems are particular cases of a general class of
problems known as matroids, namely graphic matroids.
The Kruskal algorithm [23,24,26] provides an optimal
solution for this problem class and, given G = (V, E), it
works as follows:

1. sort E with respect to the total order < in decreasing
order;

2. create a forest F where each u € Vis a tree;

3. iterate over E in decreasing order and, for each (u, v)
€ E, ifu and v are in different trees, add (u, v) to F com-
bining both trees as single tree;

4. return F.

The goeBURST algorithm takes O(V + E) space to store the
nodes, links and all necessary information. It takes O(E
log V) time to sort the links, O(V) time to create the initial
forest and O(Ee(V, E)) to build the optimal forest, where
a is the well known inverse of Ackermann function. The
last complexity term arises from the use of disjoint sets
data structure to efficiently trace the nodes in each tree
[24]. Since building the graph takes O(V?2) time and com-
puting the connected components and the vectors g for all
STs takes O(V + E), the running time is dominated by the
graph construction. Thus, analyzing a MLST instance takes
O(V2) time.

Groups defined at higher allelic distances

As described in the previous section, the resulting forest
(where each tree is a clonal complex) is defined for an
allelic distance of one, i.e, the minimum distance of any
ST to at least one of the STs of the same Clonal Complex
is a difference in a single locus. The user may choose to
display sets of isolates related at higher levels than SLV but
those are represented as sets of disjoint CCs, i.e., as a forest
of trees each one connected at SLV level. Nevertheless,
groups can also be defined at distances greater than one
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allele difference, iteratively following the same set of
eBURST rules for link selection. As an example, to define
groups at TLV level, the rules are first applied to the selec-
tion of all SLV links between the STs, and afterwards all
the possible links between CCs or STs that are DLVs are
evaluated using the same rules, and the best DLV link for
each pair of CCs/STs is selected. The same process is then
applied to STs or groups that can have TLV links between
them.

In the current eBURST implementation, the connection
between STs at levels higher than SLV is not explicitely
represented. In the goeBURST implementation, the user
has the choice to link these forests to create a single tree
for each clonal complex, up to TLV level. As stated above,
the same eBURST rules can be followed to choose the sin-
gle link to be represented connecting disjoint CCs or STs.
The choice of the TLV level as the upper level of connec-
tion to be displayed was based on two factors: 1) the
defined rules for eBURST only use tiebreaks up to TLV
level, so creating groups higher than TLV will not make
any changes in the drawn links and would only further
join CCs/STs, and 2) the number of links to be evaluated
grows quadratically with the number of STs, being com-
putationally intensive in terms of time and memory for
large data sets. An important feature in the goeBURST
algorithm is that, similarly to the eBURST implementa-
tion, the number of DLVs and TLVs is always calculated
for each group defined at the chosen allelic distance. This
means that, for the purpose of link selection, only DLVs
and TLVs that are within that group are taken into
account. Therefore higher allelic distances may result in a
higher number of DLVs or TLVs for each ST that can influ-
ence the decisions reached by the tiebreak rules and which
links are effectively drawn.

Examples of population snapshots created with groups
defined a TLV level for Staphylococcus aureus [See Addi-
tional File 1] and Streptococcus pneumoniae [See Additional
File 2].

Testing

goeBURST was applied to several public MLST databases
for clinically relevant microorganisms: Helicobacter pylori,
Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumo-
niae, Pseudomonas aeruginosa, Enterococcus faecalis, Kleb-
siella pneumoniae, Campylobacter upsaliensis, Streptococcus
suis, Neisseria spp., Haemophilus influenzae, Campylobacter
jejuni, Streptococcus uberis, Staphylococcus epidermidis, Sta-
phylococcus aureus, Streptococcus agalactiae, Burkholderia
pseudomallei and Enterococcus faecium. These databases
were retrieved from public MLST database repositories
available in different websites (see Acknowledgments for
more details). In order to provide examples of the results
for different species obtained by the goeBURST algorithm,
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population snapshots were created for the following spe-
cies: Staphylococcus aureus [see Additional Files 1 and 3],
Streptococcus pneumoniae [see Additional Files 1 and 4],
Neisseria spp. [see Additional File 5], Enterococcus faecium
[see Additional File 6] and Burkholderia pseudomallei [see
Additional File 7].

Of those allelic profile databases tested, five presented dif-
ferences between the current locally optimized imple-
mentation of the eBURST rules and goeBURST. These
results are presented in Table 1. The differences observed
are due to the heuristic optimization procedure of the
eBURST implementation described in the Introduction,
since the local optimization fails to consider all the possi-
ble ties at a certain tiebreak rule. In contrast, goeBURST
will always provide an optimal solution for the link
assignment, since it performs a global optimization taking
into consideration all possible ties at all levels between
STs in the data set.

An illustration of the type of differences that can be
observed in the patterns of descent for Burkholderia pseu-
domallei can be seen on Figure 1 and Figure 2. In Figure 1
a partial view of the CC48 (clonal complex with ST48 as
founder) is shown, highlighting the link between ST211
and ST300. This link represents the assignment that con-
forms to all rules, from 53 possible options (ties) when
creating the tree using eBURST rules. The current eBURST
implementation returns the pair ST56-ST99 as the drawn
link. Although both possible pairs have the same relation-
ship in terms of number of SLVs (both ST300 and ST99
have 13 SLVs while ST211 and ST56 have 12 SLVs), the
link between ST300 and ST211 should be drawn accord-
ing to the eBURST rules, since the STs in this pair have
more DLVs (ST300 has 57 DLVs and ST211 has 50 DLVs
while ST56 has 46 DLVs and ST99 has 36 DLVs). This
change completely alters the proposed pattern of descent
within CC48, with ST211 and closely related STs consti-
tuting a bridge between the group founder (ST48) and
closely related STs with a marked star-like topology and a
more dispersed set of STs with a more linear topology. Fig-
ure 2 illustrates another change that occurs within CC48.
The representation of a link between ST70 and ST290
instead of the link between ST66 and ST67 provides a bet-
ter solution for a simpler tiebreak with only 3 ties at the
SLV level.

Link confidence assessment

Another advantage of having a global optimal solution is
the possibility of using the distinctiveness of a link among
all possible links that could have been drawn as a confi-
dence measure for the drawn link. The measure is based
on the level of the tiebreak needed to decide if a certain
link should be selected in detriment of others. The higher
the level of tiebreak rule reached before such a decision
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Table I: Comparison between eBURST and the proposed implementation.

# diffs Group Ties Links
Dataset founder size # breaker created deleted
Enterococcus faecium | 17 268 3 SLV 50-177 50-204
Streptococcus 3 124 78 3 SLV 392-2803 440-2803
pneumoniae 138 189 14 SLV 171-361 338-3163
217 33 2 SLV 618-3577 1325-1331
Burkholderia 4 48 348 3 SLV 435-667 116—435
pseudomallei 48 348 53 DLV 211-300 56-99
48 348 3 SLV 70-290 66—67
48 348 4 DLV 24-643 570-643
Campylobacter 5 21 849 29 SLV 104—492 474-577
jejuni 21 849 14 SLV 353462 2395-2517
21 849 2 SLV 2141-2842 1076-2951
21 849 4 SLV 824-214| 878-2141
177 53 2 SLV 1022-1503 1387-2162
Neisseria 7 Il 296 18 SLV 8-1058 66—1058
spp. 1l 296 | SLV 10-2174 10-5091
22 344 23 SLV 23-1062 1062—-1625
60 164 9 SLV 1157-1421 1421-1649
269 322 21 SLV 275-352 3521163
1583 67 | SLV 1905-6717 1579-1901
1583 67 4 SLV 1590-1928 1599-1903

The following data sets presented no differences: Helicobacter pylori, Streptococcus pyogenes, Staphylococcus aureus, Bacillus cereus, Pseudomonas
aeruginosa, Enterococcus faecalis, Klebsiella pneumoniae, Campylobacter upsaliensis, Streptococcus suis, Haemophilus influenzae, Streptococcus uberis,

Staphylococcus epidermidis and Streptococcus agalactiae.

can be made, the smaller the difference between similar
links exist in the list of ties at that level and less confidence
we have on link selection. This is a direct result of the tie-
break rule order of eBURST implemented in goeBURST.

The higher the level of tiebreak rule invoked to support
the decision, the more probable it is that the identification
of new STs, by more extensive sampling of the population,
will change the number of SLVs, DLVs or TLVs, within the
CC under study leading to the replacement of these lower
quality links. It is important to note that to ensure unique-
ness of the solution, a final and decisive tiebreak based on
the ST identification number was implemented as previ-
ously described in the Algorithm subsection.

In Figures 1 and 2 examples using the Burkholderia pseu-
domallei data set are represented. Links where the tiebreak
occurred at the number of SLVs, DLVs and TLVs are shown
by the goeBURST software in blue, green and red lines
respectively. Black lines are links where no tie was found.

Changes in the studied data sets

Enterococcus faecium

Only one difference was found in the Enterococcus faecium
data set studied. The changed link occurs in the largest

eBURST clonal complex for the data set (containing 65%
of the STs in the data set and 84% of the isolates), with
ST17 as the assigned founder (Figure 3). Recent molecular
epidemiology studies of E. faecium have shown the exist-
ence of a genetic lineage, within this largest clonal com-
plex designated "CC17" [30-32]. This designation refers
only to a subgroup of STs within the largest clonal com-
plex defined by eBURST, that are associated with hospital
outbreaks and isolates recovered from infections in hospi-
talized patients. The importance of the detected incorrect
link between ST50 and ST204, lies in the fact that ST204
is part of "CC17" while ST177 is not. The new link con-
nects ST50 with ST177, outside the "CC17" group, which
could lead to the redefinition of "CC17" patterns of
descent.

Streptococcus pneumoniae

The differences described in Table 1 occur in 3 different
clonal complexes: CC124, CC138 and CC217. For CC124
and CC138, the observed changes alter the pattern of
descent within each CC. In CC124 the sub-group founder
ST392 has now a shorter SLV path to the group founder
ST124 than the sub-group founder ST440. The other
affected group, CC138 is the second largest group in the
Streptococcus pneumoniae data set with 189 STs and 380
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Partial snapshot of Burkholderia pseudomallei CC 48. Partial snapshot of Burkholderia pseudomallei CC 48 highlighting
one of the differences (bold green lines) between current eBURST implementation (dashed lines) (ST 99 — ST56) and the pro-
posed algorithm (full lines)(ST211 — ST300). The gray interrupted line represents the decision in the tiebreak that needs to be
taken. The tiebreak level was at DLV level indicated by the green color of the link. See text for further details.

isolates (approximately 5% of the entire data set for both
number of STs and number of isolates). The observed
change completely altered the pattern of descent from
CC176, the largest sub-group founder and possibly the
most plausible group founder since it has only 2 SLVs less
than ST138 but has more DLVs and TLVs and a more
marked star-like topology. The change observed in CC217
is more subtle involving the evolutionary path between
the founder ST and the hypervirulent ST618 [18], that is
the ST representative of more isolates in the CC.

Burkholderia pseudomallei

For Burkholderia pseudomallei all the differences were
observed in the largest CC for the data set, with ST48 as
the founder (Figure 4). This CC encompasses 53% (348 of
652) of the STs in the database and 58% (1005 of 1725)
of the isolates. Two of the changes observed lead to major
rearrangements in the topology of the eBURST tree (Fig-
ures 1 and 2), while the two other changes only reflect
local small distance rearrangements in the tree.

Also interesting, is that a large number of links in CC48
(32 being 9.2% of the total links in the CC) were chosen

at a tiebreak level of DLV and three links had a tiebreak
level of TLV. This indicates that some links of this large
group are unreliable and that the real pattern of descent
within this group can be very different from the one pro-
duced by the optimal solution based on eBURST rules.

Campylobacter jejuni

In this data set, four of the five differences observed were
in CC21, the largest clonal complex with 849 STs (approx-
imately 30% of all STs in data set) and 1655 isolates (37%
of the isolates in data set). Several studies identify this
clonal complex as diverse and widely distributed, and
associated with poultry and human isolates. Of these
changes the largest impact is the creation of a link between
ST2141 and ST2842 instead of a link between ST1076 and
ST2951, while the other changes correspond mostly to
local rearrangements.

Neisseria spp

The data set used contains data for Neisseria meningitidis,
Neisseria lactamica and Neisseria gonorrhoeae, since the
same MLST scheme proposed can be effectively used to
type the three species. Seven differences were found
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between the two eBURST implementations: two in CC11
complex of Neisseria meningiditis, one difference each in
CC60, CC20 and CC269 also from Neisseria meningiditis
and two in CC1583 of Neisseria gonorrhoeae. The two
changes in CC11 of N. meningiditis change the pattern of
descent between the group founder (ST11) and the largest
subgroup founder, ST8. This clonal complex has several
strains of recognized clinical importance due to their inva-
siveness and hypothetical capsular replacement [33,34].
CC1583 of Neisseria gonorrhoeae is a small CC with 67 STs
and 132 isolates on the data set where the changes
observed drastically change the topology of the group.

Implementation

Availability

The goeBURST algorithm was implemented in java and
matlab (MathWorks Inc). A java interface was created
allowing users to test their data sets and visualize the
results of the algorithm. It is available at http://goe
burst.phyloviz.net/. It uses the Prefuse visualization
toolkit [35] and the VectorGraphics package of the Free-
HEP Java library [36]. For a full description of the interface
capabilities a tutorial is available at http://goeburst.phy
loviz.net/Tutorial.html and a help section is available in
the software.
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413

Clonal Complex 17 of Enterococcus faecium. Representation of the largest clonal complex for Enterococcus faecium, with

ST17 as the determined founder.

Changing the founder of a clonal complex

One of the features in the current implementation of the
eBURST algorithm is allowing the user to test an hypoth-
esis of an alternative pattern of descent by changing the
founder of a group, that eBURST defines as the ST with
more SLVs. Since the current implementation relies on an
heuristic local optimization procedure, when changing

the assigned founder ST, the optimization could also lead
to non-optimal rearrangements in the tree, leading to a
solution that violates the eBURST rules. In the proposed
implementation, when a new founder is selected, the
algorithm draws all the links between this ST and its SLVs,
effectively deciding all tiebreaks in favor of the presumed
founder. This is the only observed change since the calcu-
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Clonal Complex 48 of Burkholderia pseudomallei. Representation of the largest clonal complex for Burkholderia pseu-

domallei, with ST48 as the determined founder.

lated tree is already optimal, however, this can still impact
on the overall topology of the tree if the SLVs are them-
selves subgroup founders and important hubs in the tree.

Conclusion

eBURST provides researchers with the ability to create
groups of closely related strains from MLST data. A recent
simulation study showed that the eBURST definition of
clonal complexes and the inferred pattern of descent
within them is reliable in conditions comparable to those
of the majority of natural bacterial populations of many
different species while also uncovering conditions when
eBURST performance is suboptimal [37].

In this paper, we propose an algorithm for an optimal
implementation of the eBURST rules. This was achieved
by formalizing the problem as a matroid, namely a
graphic matroid that generalizes the MST problem. Our
analysis clarifies the relationship between an MST and the
eBURST approach. If one considers only the allelic profile
to derive an MST connecting all STs, multiple optimal
solutions exist due to the limited and discrete space of ST
differences. eBURST is similar to finding a MST on the
entire data set but restricting the links only to those
between SLVs and selecting the trees with the highest

quality as defined by a set of rules. The eBURST approach
uses a set of rules to create an ordered list of the links to
be drawn and this optimization problem, although akin
to the MST problem, should not be confused with the
MST problem itself which implies a weighted graph. For-
mally eBURST can be stated as the more general class of
combinatorial optimization problems over a matroid.
This relationship between eBURST and a general problem
category indicates that the optimal solution following the
eBURST rules can be provided by a greedy approach iden-
tifying the optimal forest with respect to the defined par-
tial order on the set of links between STs. To achieve that
goal we propose using the Kruskal algorithm due to its
desirable properties and ease of implementation,
although other algorithms also provide optimal solutions
to these problems. goeBURST provides a global optimal
solution and corrects links that were not strictly following
the eBURST rules occurring in the present software imple-
mentation, due to the use of an heuristic local optimiza-
tion procedure. The changes were observed in bacteria
with a high ratio of recombination to mutation, and the
majority occurred in the largest clonal complex in each
data set. These clonal complexes have usually a "straggly"
appearance, meaning that the resulting tree diverges sig-
nificantly from a star-like topology and presents a number
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of higher order ramifications. CC17 of Enterococcus fae-
cium (Figure 3), CC41 of Neisseria meningiditis (Figure 5)
and CC48 of Burkholderia pseudomallei (Figure 4) are
prime examples of such straggly groups. The majority of
the differences found occurred in clinically relevant clonal
complexes for the bacterial species under study and signif-
icantly altered the pattern of descent within the CC, ren-
dering them of critical importance for the epidemiological
analysis based on MLST. Furthermore, the ongoing
growth of MLST databases resulting from the increased
sampling of bacterial populations, is expected to generate
more complex optimization problems that could further
bring forward the limitations of the current implementa-
tion.

MSTs have recently attracted attention for the analysis of
MLST data since they share a similar principle to the max-
imum parsimony method frequently used in phylogenetic
analysis. The Bionumerics(tm) software has been used to
identify MSTs using a simple categorical coefficient and
MLST data [18,20,21]. As we discussed, the analysis of
MLST or MLVA data using MSTs is incompatible with a
unique solution due to the limited space defining the
weights of the links. The publication describing this fea-

http://www.biomedcentral.com/1471-2105/10/152

ture of the software [19] clarifies that, with the default
options, rules similar to those of BURST are used to define
the quality of each link. The Bionumerics(tm) approach is
therefore formally identical to the BURST implementa-
tion proposed here if one excludes the creation of hypo-
thetical nodes and if all the rules are followed. Similarly
the MST analysis using Prims's algorithm [24] provided at
the Pubmlst site [3] is formally identical to the goeBURST
implementation, as long as the same set of rules are used.

Considering the proposed algorithm it becomes intuitive
that the pattern of descent within the clonal complexes
produced as well as the clonal complexes themselves, can-
not be considered static and are highly dependent on the
available data. Each link has a number of ties and a level
of tiebreak rule reached to decide if the link should be
drawn. Through the evaluation of these two parameters
one can determine if the patterns of descent within a
clonal complex are robustly defined or if the availability
of new data, by more complete sampling, may signifi-
cantly alter the proposed evolutionary path. goeBURST
allows the evaluation of link confidence through the tie-
break level reached enabling the researcher to determine
by visual inspection of the tree if a drawn link represents

Figure 5

Clonal Complex 41 of Neisseria spp. Representation of the largest clonal complex for Neisseria spp., with ST41 as the

determined founder.
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a reliable connection between STs or if other connections
with only a slightly worse quality exist, alerting for the
possibility of alternative patterns of descent. At a clonal
complex level, the existence of several links that were
drawn at higher tiebreak levels (DLV, TLV or ST fre-
quency) could point to two possible scenarios: insuffi-
cient or biased sampling or, alternatively, high
recombination or mutation levels generating, in a very
short time period, sets of allelic profiles with ties at all lev-
els.

The general applicability of graphic matroids and the evo-
lutionary model underpinning the eBURST rules suggests
that goeBURST can be used successfully for the analysis of
other microbial typing data. Any multilocus typing meth-
odology whose results can be coded into a numeric or
character sequence and in which the similarity between
two such profiles can be assessed by the number of differ-
ences, is amenable to analysis by goeBURST. MLVA and
CRISPRs analysis [38,39] are examples of methodologies
whose results are typically analyzed by MST and where the
goeBURST algorithm can be fully applied. The growing
interest of SNP analysis to probe the recent evolutionary
history of monomorphic bacterial pathogens [39,40] has
been accompanied by the use of multiple methods to ana-
lyze the data generated. The use of MSTs in this context in
different studies [40,41] without a clear reference to the
tiebreak rules used, may compromise their reproducibility
and comparability. goeBURST can be used in the analysis
of SNP data without these caveats and using tiebreak rules
based on an evolutionary model that has proven useful in
the analysis of bacterial short-term evolution. Neverthe-
less, depending the number of loci analyzed by these
methods and the distribution of the number of differ-
ences found between isolates, the tiebreak rules may need
to be revised since they were originally conceived for the
analysis of seven loci MLST data.

The large body of work on graphic matroids can be tapped
to provide novel analysis tools that may offer fresh
insights into microbial population dynamics.
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Additional material

Additional file 1

Population snapshot of Staphylococcus aureus with groups defined
at TLV level. Population snapshot of Staphylococcus aureus created
g0eBURST v1.2 software using a data set downloaded from http://sau
reus.mlist.net/. Gray lines define the links at DLV or TLV between the CCs
(darker gray — DLV link; lighter gray — TLV links), defined following the
eBURST rules (see text).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-S1.pdf]

Additional file 2

Population snapshot of Streptococcus pneumoniae with groups
defined at TLV level. Population snapshot of Streptococcus pneumo-
niae created by goeBURST v1.2 software using a data set downloaded
from http://spneumoniae.mist.net/. Gray lines define the links at DLV or
TLV between the CCs (darker gray — DLV link; lighter gray — TLV links),
defined following the eBURST rules (see text).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-82.pdf]

Additional file 3

Population snapshot of Staphylococcus aureus representing Clonal
Complexes (defined at SLV level). Population snapshot of Staphyloco-
ccus aureus created by §0eBURST v1.2 software using a data set down-
loaded from http://saureus.mist.net/.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-83.pdf]

Additional file 4

Population snapshot of Streptococcus pneumoniae representing
Clonal Complexes (defined at SLV level). Population snapshot of Strep-
tococcus pneumoniae created by goeBURST v1.2 software using a data
set downloaded from http://spneumoniae.mist.net/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-54.pdf]

Additional file 5

Population snapshot of Neisseria spp. representing Clonal Complexes
(defined at SLV level). Population snapshot of Neisseria spp. created by
0eBURST v1.2 software using a data set downloaded from http://
pubmlst.org/neisseria/.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-85.pdf]

Additional file 6

Population snapshot of Enterococcus faecium representing Clonal
Complexes (defined at SLV level). Population snapshot of Enterococcus
faecium created by goeBURST v1.2 software using a data set downloaded
from http://efaecium.mist.net/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-10-152-S6.pdf]
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Additional file 7

Population snapshot of Burkholderia pseudomallei representing
Clonal Complexes (defined at SLV level). Population snapshot of Bur-
kholderia pseudomallei created by goeBURST v1.2 software using a
data set downloaded from http://bpseudomallei.mist.net/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-152-87.pdf]
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