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Abstract

Background: Functional classification schemes (e.g. the Gene Ontology) that serve as the basis for
annotation efforts in several organisms are often the source of gold standard information for
computational efforts at supervised protein function prediction. While successful function prediction
algorithms have been developed, few previous efforts have utilized more than the protein-to-functional
class label information provided by such knowledge bases. For instance, the Gene Ontology not only
captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-
based hierarchy that captures rich inter-relationships between different classes. These inter-relationships
present both opportunities, such as the potential for additional training examples for small classes from
larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for
standard classification-based approaches.

Results: We propose a method to enhance the performance of classification-based protein function
prediction algorithms by addressing the issue of using these interrelationships between functional classes
constituting functional classification schemes. Using a standard measure for evaluating the semantic
similarity between nodes in an ontology, we quantify and incorporate these inter-relationships into the k-
nearest neighbor classifier. We present experiments on several large genomic data sets, each of which is
used for the modeling and prediction of over hundred classes from the GO Biological Process ontology.
The results show that this incorporation produces more accurate predictions for a large number of the
functional classes considered, and also that the classes benefitted most by this approach are those
containing the fewest members. In addition, we show how our proposed framework can be used for
integrating information from the entire GO hierarchy for improving the accuracy of predictions made over
a set of base classes. Finally, we provide qualitative and quantitative evidence that this incorporation of
functional inter-relationships enables the discovery of interesting biology in the form of novel functional
annotations for several yeast proteins, such as Sna4, Rtnl and Linl.

Conclusion: We implemented and evaluated a methodology for incorporating interrelationships between
functional classes into a standard classification-based protein function prediction algorithm. Our results
show that this incorporation can help improve the accuracy of such algorithms, and help uncover novel
biology in the form of previously unknown functional annotations. The complete source code, a sample
data set and the additional files for this paper are available free of charge for non-commercial use at http:/
Iwww.cs.umn.edu/vk/gaurav/functionalsimilarity/.
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Background

A variety of recently available high throughput data sets,
such as protein-protein interaction networks, microarray
data and genome sequences, offer important insights into
the mechanisms leading to the accomplishment of a pro-
tein's function. However, the complexity of analyzing
these data sets manually has motivated the development
of numerous computational approaches for predicting
protein function [1,2]. For a recent comprehensive survey
on this topic, see Pandey et al (2006) [3].

One of the most popular methods used for predicting pro-
tein function from biological data is classification [4-6].
Under the traditional classification framework, each pro-
tein is represented by a set of features, such as the expres-
sion profile of its corresponding gene or the set of proteins
it interacts with. Now, for each functional class, a model
is constructed using the feature sets of the proteins anno-
tated with this class. This model is then used to decide if
an unannotated query protein should be annotated with
this class. The key premise underlying this methodology
for predicting protein function is that proteins belonging
to the same functional class have "similar" biological
attributes.

Standard classification or predictive modeling techniques
for function prediction rely on positive and negative
examples from functional classification schemes, such as
the Gene Ontology [7] or FunCat [8], and typically treat
each functional class separately. However, this standard
approach fails to capture one of the key properties of such
classification schemes: most schemes not only provide
annotations to functional classes, but also capture inter-
relations between the functional classes. For example, the
Gene Ontology (GO) is arranged as a directed acyclic
graph in which the GO terms form a hierarchy capturing
everything from relatively general functions (e.g. metabo-
lism) to specific biological roles (e.g. nucleotide excision
repair). Such an organization of classes, particularly in the
case of GO, poses two important challenges for predictive
modeling techniques for function prediction. First, several
studies [9-11] have concluded that proteins in inter-
related, or similar GO functional classes tend to have sim-
ilar biological attributes. This limits the applicability of
the key premise of classification-based function predic-
tion discussed above, since distinguishing between such
similar GO classes becomes hard.

The second important issue that arises is that it is often
hard to construct reliable classification models for several
functional classes from a given data set due to complex
issues including noise in the data, low relevance of the
data set for some functional classes, and an insufficient
number of training examples for building accurate classi-
fication models [12]. These issues, particularly the last
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one, are expected to most severely affect functional classes
having few members, which also include classes located
deep in a functional hierarchy. This difficulty of construct-
ing reliable classification models is illustrated in Figure 1
for two classes from the GO biological process ontology,
which have 383 and 54 member proteins in Mnaimneh et
al's gene expression data set [13], representing a large class
(GO:0051252) and a class of median size (GO:0006352)
respectively. The histograms in this figure show, for each
protein in these classes, how many proteins in its neigh-
borhood belong to the same class. Neighborhood is
restricted to the twenty proteins with the most similar
expression profiles to the query protein, using correlation
as the similarity measure. These plots show that for most
of the proteins in both the large, as well as the much
smaller class, only a limited number of similar proteins in
the same class are available. For instance, in the large class,
243 of the 383 member proteins have less than three sim-
ilar proteins in the same class, while two is the maximum
number of neighboring proteins of the same class for pro-
teins in the smaller class. In fact, 40 of the 54 proteins in
the smaller class have no proteins of the same class in
their neighborhood. This lack of enough training exam-
ples having characteristics similar to the query protein,
which occurs due to the issues discussed above, illustrates
the difficulty of building classification models for func-
tional classes, particularly for the small ones.

However, the availability of the same well-defined struc-
ture of relationships between functional classes in the
form of Gene Ontology raises the following key question:
"Can the performance of standard classification algo-
rithms for function prediction be improved by incorporat-
ing these inter-relationships into them?". In this paper, we
address this question using an approach shown visually in
Figure 2(a). As illustrated by this figure, our approach uses
evidence in neighboring proteins belonging to similar
classes to bolster the evidence for annotation of the query
protein with the target class. Evidence for the abundance
of proteins belonging to classes similar to the target class
in the neighborhood of a query protein, and hence the
applicability of such an approach is presented in Figure
2(b) for the target class of median size (GO:0006352) dis-
cussed in Figure 1(b). Here, the semantic similarity of all
the classes with the target class, calculated using Lin's
measure [14], is plotted against the average number of
nearest neighbors of the corresponding class in the nearest
neighborhood of a protein belonging to the target class.
As can be seen from this scatter plot, even though the aver-
age frequency of the target class (similarity = 1) is very
small (less than 0.5), there are several classes, such as
G0O:0006366, GO:0051252 and GO:0016072, that are
more abundant, and have a substantial semantic similar-
ity with the target class (over 0.4). This similarity can be
used to enrich the information available in the neighbor-
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Figure 2 (see previous page)

Conceptual visualization of our approach for incorporating functional inter-relationships into function predic-
tions algorithms, and empirical evidence to show the abundance of proteins carrying labels similar to the tar-
get class in the neighborhood of a query protein (a) Overview of our approach. In addition to using the proteins
annotated with the target class (dark red circles) in the query protein's neighborhood, our approach also uses evidence from
proteins annotated with a class similar to the target class (lighter red circles) in order to determine whether the query protein
belongs to the target class (b) Distribution of nearest neighbors of similar classes for a target functional class (GO:0006352) of
medium size (54 proteins) in Mnaimneh et al's data set. The Y-axis denotes the semantic similarity of a functional class with the
target class, and the X-axis shows the average number of proteins in that class that are included in a size 20 neighborhood of
proteins annotated with the target class. Some of the classes (marked by arrows) have a significant similarity with the target
class, and have an average frequency higher than that of the target class (similarity = 1) itself.

hood of proteins being tested for a target class. Our
approach is based on this principle.

More specifically, using Lin's measure [14] for evaluating
the semantic similarity between classes in an ontology, we
incorporate such functional interrelationships into the k-
nearest neighbor classifier [4]. We evaluate our algorithm
on two large microarray data sets [13,15], a recent protein
interaction data set [16] and a combination of interaction
and microarray data sets, each of which is used for the
modeling and prediction of over hundred classes from the
GO Biological Process ontology. The results show that,
compared to the base k-NN classifier, this incorporation
produces more accurate predictions for many of the func-
tional classes considered, and also that the classes benefit-
ted most by this approach are those containing the fewest
members. We also illustrate how the proposed framework
can be used for integrating information in the entire GO
Biological Process ontology to improve the accuracy of
prediction over a set of target classes. Finally, we provide
qualitative and quantitative evidence that this incorpora-
tion of functional inter-relationships enables the discov-
ery of interesting biology in the form of novel functional
annotations for several yeast proteins, such as Sna4, Rtn1l
and Linl1.

Note that since the rest of the discussion in this paper will
be concerned with classification within the context of GO,
the terms (functional) class, (GO) term, node (in an ontol-
ogy) and label will be used interchangeably in the rest of
the text.

Related Work

Recently, some approaches have been proposed to
address the problem of incorporating inter-relationships
between functional classes in GO into function prediction
algorithms. These approaches can be categorized using
the following two types of relationships between classes
constituting the DAG-based functional hierarchies in GO:

Parent-child relationships

The basic structure of the ontologies in GO is constructed
from edges between parent and children terms. Some
approaches have recently been proposed for enforcing the
consistency required by these relationships, namely a pro-
tein annotated with a child node must be annotated with
the parent node, into function prediction algorithms.
Barutcuoglu et al [17] proposed a Bayesian network-based
approach for this incorporation. In this work, they trained
individual SVM classifiers on all the nodes of the hierar-
chy. Then, by constructing a Bayesian network using the
structure of the ontology, the predictions of all the nodes
were corrected iteratively in order to ensure consistency
between parent-child annotations throughout the hierar-
chy, obtaining significant improvements over the individ-
ual classifiers. Carroll and Pavlovic [18] proposed a
similar approach using probabilistic chain graphs for this
problem. However, due to the limited evaluation experi-
ments on small hierarchies, it is unclear how the perform-
ance of this approach would scale for a large set of classes
from GO. Some other researchers, such as Shahbaba and
Neal (2006) [19], have also studied this problem,
although their techniques are limited to tree-structured
hierarchies.

Sibling and other distant relationships

An effect of the structure of the ontologies in GO is the for-
mation of sibling relationships between nodes that are
children of the same parent. These relationships can be
further generalized to extended family relationships, such
as cousin and other more distant relationships. King et al
[20] approached the problem of incorporating these dis-
tant relationships into function prediction algorithms by
predicting the functions of a protein using the decision
tree and Bayesian network models trained on the patterns
of annotations of other proteins. Tao et al [21] extended
King et al's approach further by augmenting the prediction
model with the semantic similarity between different
classes. Here, they used Lin's similarity measure [14], also
used in our study but using a different definition, to meas-
ure the interrelationships between the functional classes
in GO, and thus to measure the similarity between the sets
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of functional labels of two proteins. This similarity meas-
ure is then used within the framework of a k-nearest
neighbor classifier for predicting whether an unannotated
protein belongs to a certain functional class or not. The
results of this study provided important evidence for the
utility of semantic similarity between functional classes
for enhancing the performance of function prediction
algorithms. However, since this technique uses the known
annotations of a protein to predict its other potential
annotations, it can not make predictions for proteins with
no known annotations, since such a protein will have no
similarity to the other proteins using this measure. This
motivates the need for methods that can incorporate
external genomic data into the prediction process, so that
similarity can be computed for both characterized and
previously unannotated proteins alike. Our work takes
this approach of augmenting biological data-based func-
tional classification algorithms with inter-relationships
between functional classes measured using standard
semantic similarity measures. Notably, Yu et al have
recently proposed a similar approach for this problem
[22], where they use taxonomic similarity measures
between functional classes to modify a simple protein
function prediction algorithm. We compare our method
with this approach.

The incorporation of both these types of relationships is
important for making use of the information available in
the entire hierarchy. One of the advantages of the direct
incorporation of distant functional relationships, which is
the focus of the latter set of studies, is that it is possible to
incorporate information from nodes farther away in the
hierarchy, as compared to the hierarchical incorporation
approaches, which only utilize the subgraph of the hierar-
chy corresponding to the set of target classes. Our work
provides a framework for incorporating these distant
functional inter-relationships into standard function pre-
diction algorithms. Notably, this task is more challenging
than the hierarchical consistency enforcement problem
since there is a much larger number of relationships
between nodes to be considered than just the parent-child
relationships, which are relatively fewer. This factor makes
the incorporation of non-hierarchical relationships more
challenging. Furthermore, as discussed above, we perform
this augmentation using the biological characteristics of
proteins captured in high-throughput genomic data, thus
addressing one of the limitations of King et al's [20] and
Tao et al's [21] studies. This enables us to make predic-
tions for poorly annotated and unannotated proteins, for
which experimental data, such as their interactions and
expression profiles, are available. Our experimental
results provide both qualitative and quantitative evidence
for this advantage of our approach. We also present the
results of a comparison between the performance of our
and Yu et al's GEST [22] approach.

http://www.biomedcentral.com/1471-2105/10/142

Our work is also related to the field of hierarchical and
multi-label classification in machine learning and data
mining [23]. However, most of the work in this field is not
directly applicable to the problem of hierarchy-based pro-
tein function prediction, since these techniques don't take
the hierarchical and multi-label nature of this classifica-
tion simultaneously into account. Also, they consider lim-
ited, if any, relationships between the classes, which is the
primary subject of this study.

Methods

Preliminaries

Semantic Similarity in an Ontology

In GO, nodes (classes or labels) are connected to other
nodes through parent-child edges, which impose hierar-
chical inter-relationships between them. Also, the nodes
contain member proteins that have been annotated with
the corresponding functional class. Thus, it is possible to
compute the similarity between two GO nodes, referred to
as semantic similarity, on the basis of their relative posi-
tioning in the hierarchy, their contents, or a combination
of both. Several information-theoretic semantic similarity
measures have been developed for computing similarity
between two concepts in a hierarchy, such as those by Lin
[14], Resnik [24] and Jiang [25]. These measures evaluate
the similarity of two nodes in terms of their proximity in
the ontology, as well as their content. In particular, we use
Lin's measure [14] as defined in Equation 1.

1,) = 2X[log pms(l1.12)] (1)

linsim(1,,
sl 2) =1 g ot y+log (i)

Here, [, and I, are the labels (or nodes) between which

similarity is being calculated, while p(I) denotes the prob-
ability of a protein being annotated with label I, and is
estimated from the available set of GO annotations for an

organism. Also, p,,.(};,1,) = legn(lir%z)p(l), where S(1;, 1,) is

the set of common ancestors of I, and 1,. Thus, p,,(};, 1)
denotes the probability of the minimum subsumer of I, and
I,. Intuitively, this formulation measures the semantic
similarity of I; and I, in terms of the contents of their min-
imum subsumer node in the ontology. Clearly, linsim(l;,
I,) = 1 when [, = I,, and linsim(1;, 1,) = 0, when their mini-
mum subsumer is the root of the ontology. An additional
advantage of this measure is that it is bounded between
[0, 1]. These fixed bounds are very useful for the incorpo-
ration of functional inter-relationships into prediction
algorithms, as explained in the proposed approach sec-
tion.
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An example of a label similarity matrix computed for the
set of functional classes used in this study is shown in Fig-
ure 3(a).

k-Nearest Neighbor Classifier

One of the most intuitive classification algorithms is the
k-nearest neighbor (k-NN) classifier [4], which is based on
the principle of abundance of the target label in the neigh-
borhood of the query example. We use a weighted variant
of this classifier, similar to the direct k-NN classifier used
by Kuramochi and Karypis [6], which counts the abun-
dance of each label in the neighborhood of size k of a pro-
tein, weighted by the feature similarity of the neighboring
proteins having the corresponding label. Thus, if the fea-
ture set of a protein p is denoted by feature(p), then the
likelihood score of a label I for a protein p is given by
Equation 2.

likelihood(p, 1) = z [sim( feature(p), feature(p”)) x I[l € labels(p’)]]
p'eNbd(p)

(2)

Here sim(feature(p), feature(p')) denotes the similarity
between the feature vectors describing proteins p and p',
and [ is an indicator function that returns 1 if / belongs to
the set of labels p' is annotated with, 0 for the other labels.
Applying this formula for p for each label, and then
repeating the calculation for all the proteins, produces a
|proteins| x |labels| matrix, named LL,,,, of likelihood
scores. The performance of this algorithm for each label
can then be evaluated using any threshold-free evaluation
measure, which was chosen to be the area under the ROC
curve (AUC score) [4] in our study.

We chose k-NN as the base classifier in our study since it
is much simpler than other classification methods, such as
SVM [4], and hence it is easier to incorporate additional
factors into the model. Also, for the problem of protein
function prediction, some authors have reported that with
suitable parameter settings, k-NN produces comparable
performance to SVM [6,26,27].

Proposed Approach

Modified classification algorithm

It can be observed from Equation 2 that k-NN is an addi-
tive model, i.e., the likelihood scores are obtained by add-
ing the contributions of all the examples in the
neighborhood of the test example. Thus, it is intuitively
easy to incorporate contributions from examples anno-
tated with similar labels. This is implemented in our
approach using Equation 3.

likelihood(p, 1) = z [sim( feature(p), feature(p')) x ( z linsim(1,1))]

p’eNbd(p) I'elabels(p’)
3)
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Equation 3 represents a direct extension of the model
described in Equation 2, where, in addition to the label
being tested (I), contributions are also taken from labels
similar to I. The latter factor is incorporated into the

model using the second term Zl,elabels(p,)linsim(l,l'),

which denotes the sum of Lin's similarities between the
target label I and all the other labels I' assigned to a neigh-
boring protein p'. In fact, if LL,, ;. represents the |proteins|

x |labels| like-lihood matrix derived using the direct k-NN
model (Equation 2), and LinSim is the matrix of pairwise
label similarities computed using Lin's similarity measure
(Equation 1), then the above equation can be written con-
veniently as follows, where LL, i, contains the final like-

lihood scores.
LLlabelsim = LLbasic X LinSim (4)

Equation 4 makes the implementation of our approach
much easier.

Filtering of label similarities

The label similarity matrix contains a value (however
small or large) for each pair of labels. Many of these sim-
ilarities, especially the smaller ones, are likely to be unin-
formative, since all the labels (functional classes here) are
not expected to interact with all the others, particularly in
a large diverse set of labels. Indeed, we observed a signifi-
cant deterioration in the performance of the label similar-
ity-incorporated classifiers when the raw label similarity
matrix is used for incorporating inter-class relationships.
In order to handle this issue, we used the following heu-
ristic approach for filtering or sparsifying the label similar-
ity matrix. For each label, we determined a filtering
threshold using a cross-validation procedure. This thresh-
old was determined by running a grid search over the
interval [0, 1] in steps of 0.05. For each such threshold ¢,
all the label similarities for this label that are less than ¢ are
converted to 0, and a leave-one-out cross-validation pro-
cedure is run over the training set to determine the AUC
score of the resulting label similarity-incorporated classi-
fier for this label. The threshold that results in the highest
AUC score for the resultant label similarity-incorporated
classifier is chosen as the filtering threshold for this label.
Repeating this process for each label produces a set of
thresholds, which is used to generate a filtered version of
the original label similarity matrix. A filtered version of
the label similarity matrix shown in Figure 3(a) is shown
in Figure 3(b).

Note that such a cross-validation-based filtering proce-
dure is expected to produce a more informative version of
the original label similarity matrix that is expected to per-
form well for the unseen test set. However, one issue to
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Figure 3

Original and filtered class/label similarity matrices (labels X labels) generated using the labels of genes in one of
the training sets from Mnaimneh et al 's data set using Lin's semantic similarity measure (a) Original label similar-
ity matrix (b) Filtered label similarity matrix.
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consider for this filtering approach is that of consistency
between the thresholds computed for the different labels
using different training sets. We observed that this issue
did not affect our results significantly, but should be con-
sidered when applying this approach to other data sets or
problems.

Results and discussion

In this section, we compare the functional relationship-
incorporated kNN classifiers with the base kNN classifiers
for protein function prediction. This evaluation is con-
ducted using both a cross-validation methodology, as well
as a quantitative and qualitative evaluation of the predic-
tions made by these classifiers for independent sets of test
proteins. However, before presenting these results, we
detail the data sets and the experimental methodology
used for these evaluations.

Data Sets

We used several high-throughput data sets for evaluating
our approach. The first was Mnaimneh et al's gene expres-
sion data set [13], which measures the expression of all S.
cerevisiae (budding yeast) genes under a set of 215 titra-
tion experiments. The second was another large scale data-
set known as the Rosetta gene expression compendium
[15] prepared by subjecting yeast cells to a set of 300
diverse mutations and chemical treatments. Pearson's cor-
relation coefficient, used commonly for measuring the
similarity between the expression profiles of two genes
[28], was used as the feature similarity function sim (Equa-
tions 2 and 3) for these data sets. We also evaluated our
approach on Krogan et al's recently published data set of
7123 highly reliable physical interactions between pro-
teins in yeast [16]. This data set was represented as an n x
n adjacency matrix A, with the A(i, j) cell containing the
reliability of the interaction between proteins i and j, if
any. We used the h - confidence measure for measuring the
similarity between the interaction profiles of two proteins
in this matrix, which has been shown in a previous study
[29] to handle the noise and incompleteness problems of
protein interaction data robustly. Finally, we also consid-
ered a combined data set, which was prepared by combin-
ing the yeast protein interaction data in the BIOGRID
database [30] with the two microarray datasets discussed
above. This dataset was constructed by preparing the adja-
cency matrix for the BIOGRID interaction dataset, and
concatenating the rows of this matrix with the gene
expression profiles of the constituent genes. Also, any col-
umns in the resultant data matrix that have less than two
non-zero values are removed, since they do not contribute
to the similarity computation. For this data set, we used
the cosine similarity measure, since most of the data set is
constituted by sparse interaction data.

http://www.biomedcentral.com/1471-2105/10/142

In addition to these data sets, the structure of the GO bio-
logical process ontology, and the GO annotations for S.
cerevisiae proteins were obtained from the Gene Ontology
website http://www.geneontology.org in February, 2008.
At this point, only non-IEA annotations were included in
the S. cerevisiae annotations. These annotations were proc-
essed, and all the terms are assigned proteins annotated to
any of their descendants, in order to ensure the hierarchi-
cal consistency of the annotations. Next, each of the data
sets mentioned above is used to construct classification
models for a subset of 138 functional classes from the Bio-
logical Process ontology of GO (listed in Additional File
1), that have at least 10 members in the corresponding
data set. We chose these classes, since, using expert opin-
ion, Myers et al [31] have estimated that the predictions
made for these classes are likely to be testable in a wet lab
and thus are of interest to biologists. Another important
reason for the choice of these classes is that no parent-
child relationships exist between these classes, and thus it
is difficult to wuse hierarchical relationship-based
approaches for these classes. Also, these classes are spread
throughout the ontology, and thus are suitable for illus-
trating the use of semantic similarity to improve predic-
tions by incorporating information from several distant
but related functional classes.

Table 1 shows the resultant number of proteins, features
and classes used for each data set, as well as the value of k
for the k-NN classifier used in our evaluation. Note that
we limited the genes/proteins considered in each of these
data sets to those annotated by at least one of the classes
considered for the cross-validation experiments.

Experimental Methodology

Our overall experimental methodology is shown in Figure
4. Below, we discuss the details of some of the individual
components.

Computation of label similarity matrix

The first step of our experimental procedure is the con-
struction of the similarity matrix between the labels, or
the inter-relationship matrix between the corresponding
classes, for each of the above data sets. For each set of
labels, the original set of annotations are collected from
the yeast GO annotations, and the |proteins| x |labels|

Table I: Details of the data sets used for evaluating the label
similarity-incorporated classifiers using a cross-validation
methodology.

Dataset # Proteins # Features # Classes k

Mnaimneh 4062 215 137 20

Rosetta 3980 300 137 20

Krogan 2117 2117 108 5

Combined 3762 4277 136 10
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Overall methodology for predicting the functional annotations of a test protein using the label similarity-incor-
porated k-NN algorithm. This methodology is used for our cross-validation experiments, as well as making predictions for
test proteins not annotated with any of the target functional classes.

binary matrix corresponding to the functional classes used
for each of the data sets is prepared, where a 1 denotes that
a protein is annotated with the particular class, and 0 oth-
erwise. Equation 1 is then applied to all pairs of labels in
this matrix to obtain the final label similarity matrix. Note
that only the training examples are used for computing
this matrix, both in the cross-validation and independent
test set prediction experiments. An example of the matrix
constructed from one of the training sets derived from
Mnaimneh et al's data set is shown in Figure 3(a).

Classification and evaluation

Here, for each protein p in the test set, Equation 3 is used
to calculate the likelihood score for p to be annotated with
each class c. In the cross-validation experiments, where a
five-fold cross-validation procedure is followed, repeating
this process for each protein in each fold, using the other
four folds as training sets, produces the global protein-
label likelihood score matrix, which can then be evaluated
by computing an AUC score for each label. Although the
results reported for these experiments are based on five-
fold cross validation, we obtained very similar results with
other fold configurations also. The use of this methodol-
ogy for making predictions in the independent test set
experiments is straightforward, and is described in detail
in a later section. Also, the values of k chosen for each data
set, shown in the last column of Table 1, is chosen in
accordance with the density or the sparsity of the corre-
sponding data set. Thus, k is chosen to be high (20) for the
dense microarray data sets, low (5) for the sparse protein
interaction data set (Krogan), and an intermediate value
(10) for the combined dataset constructed by combining
both microarray and interaction data. However, we

obtained similar results using other values of k. Finally, an
important intermediate step in our method is the filtering
of the original label similarity matrix, which is imple-
mented as explained in the Proposed Approach section
earlier.

Using this general classification framework, we evaluated
the performance of the base kNN classifiers and the func-
tional or label similarity-incorporated classifiers using
two validation methodologies. In the first set of experi-
ments, we used a five-fold cross-validation methodology
for this evaluation on the four data sets detailed in Table
1. In the second set, we used these portions of the Rosetta
and Mnaimneh data sets as training sets, and made predic-
tions for the proteins covered in the GO annotation data-
base but not in the cross-validation experiments. Using
annotations added to the GO database between February-
September 2008, we validated these predictions quantita-
tively, and also examined independent evidence that vali-
dated three of these novel predictions biologically. The
following two sections discuss the results from these two
evaluation methodologies in detail.

Results from cross-validation experiments

In this section, we compare the performance of the label
similarity-incorporated classifier with the base k-NN clas-
sifier using a five-fold cross-validation approach, and
illustrate how the use of inter-relationships between
classes can help improve the accuracy of predictions made
over a set of target classes. Note that all the AUC scores
and the associated statistics presented in this section are
obtained as the average of fifty five-fold cross validation
runs of each classifier, unless otherwise stated.
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Improvement of performance for a large set of classes

Table 2 lists specific comparative statistics about the AUC
scores obtained for all the classes using the base k-NN
classifiers and their label similarity-incorporated versions.
As can be seen, a non-trivial improvement is observed in
the average AUC score over all the classes for all the data
sets, and the maximum improvement on at least one of
the classes is usually very high. For instance, for the
Mnaimneh data set, an average improvement of 3.57% is
observed for all the classes, while the maximum improve-
ment in AUC over one of the classes is 0.1882, which
accounts for a nearly 40% improvement.

We also examined the effect of our approach on the per-
formance of classification for each class individually. Fig-
ure 5 shows the comparison of performance of individual
base k-NN classifiers for each functional class, and their
functional similarity-incorporated versions for Mnaim-
neh et al's data set. In this figure, the AUCs of individual
k-NN classifiers for each class are plotted on the x-axis,
while those of the functional similarity-incorporated k-
NN are plotted on the y-axis. Thus, the points above the
y = x line indicate an improvement in the AUC score of the
corresponding class, and vice versa. Using this interpreta-
tion, it is easy to see from this plot that the performance
of a substantial fraction of the classes (74/137) are
improved by incorporating contributions from similar
classes. Another encouraging aspect of this plot is that
almost none of the classes suffers a major loss of predic-
tion accuracy due to the incorporation of label-similarity,
and in most cases, the difference can be accounted for by
the effect of randomization in the cross-validation proc-
ess. This implies that for those classes whose performance
is invariant, the label similarity filtering process is able to
infer that incorporating label similarity is not appropriate
for these classes, and does not identify irrelevant relation-
ships in the filtered label similarity matrix. Similar results
are obtained for the other data sets as well.

Improvement of performance for small classes

One of the primary motivations for the incorporation of
label similarity into standard function prediction algo-
rithms was to improve the prediction accuracy for data-
poor classes, as discussed in the Background section ear-
lier. Our approach is expected to be useful for this task, as,

http://www.biomedcentral.com/1471-2105/10/142

in our model, the small classes can seek a contribution
from classes of bigger sizes that have a high semantic sim-
ilarity with them. To test this hypothesis, we selected
classes of size at most 30 in all the data sets being used,
and analyzed the results obtained using label similarity, as
against those from basic classification. Table 3 provides
detailed statistics about these results. Indeed, it can be
seen from these results that the improvements, both in
absolute terms and as a percentage of the average AUC
score of the base classifiers, for these classes are signifi-
cantly higher than the corresponding figures in Table 2.
This shows that the label similarity-based classification
approach is indeed able to help improve the accuracy of
the predictions made over data-poor classes, for which it
is hard to build very accurate base classifiers.

The class-by-class improvements for each small class in
Mnaimneh et al's data set are shown graphically in Figure
6. While the performance of some classes is invariant
(close to the y = x line), several classes show a large
improvement in performance. In particular, we investi-
gated the class GO:0051049 (regulation of transport), which
has only 11 members in Mnaimneh et al's data set, and
shows the maximum AUC improvement of almost 40%.
In order to identify the classes that contributed to the
improved performance of this class (besides itself), we
identified the classes that had a non-zero semantic simi-
larity with this class in the filtered label similarity matrix
shown in Figure 3(b). Table 4 provides details of the eight
classes so found.

As can be observed from Table 4, all the classes contribut-
ing to the improvement of predictions made for
GO:0051049 are fairly large in size, and their high seman-
tic similarity with the target class enables the label similar-
ity-incorporated classifier to make use of the members of
these classes to acquire more information about the data-
poor class. Also, interestingly, most of these classes are
biologically related to the target class, since most of them
are related to the processes of transport (vesicle-mediated
transport and establishment of protein localization) and regu-
lation (regulation of DNA metabolic process, regulation of
RNA metabolism etc). These semantic relationships are
shown graphically in Additional File 2, which shows the
positions of these classes in the biological process ontol-

Table 2: Statistics about the comparative performance of the base k-NN classifiers and their label similarity-incorporated versions,
measured in terms of the number of classes for which AUC scores are improved by the latter over the former, and the average and

maximum improvement in AUC scores over all classes.

Dataset Total # classes # Classes improved Average improvement over all classes Maximum improvement

Mnaimneh 137 74 0.0219 (3.57%) 0.1882 (39.92%)
Rosetta 137 47 0.0083 (1.33%) 0.2091 (38.66%)
Krogan 108 30 0.0045 (0.63%) 0.1982 (31.82%)

Combined 136 59 0.0079 (1.02%) 0.1129 (20.39%)
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Figure 5

Comparison of the performance of functional similarity-incorporated k-NN classifiers with individual k-NN
classifiers for Mnaimneh et al 's data set. The X-axis shows the AUC scores of the base classifiers for each class, and the
Y-axis denotes the AUC scores of their label similarity-incorporated classifiers.

Table 3: Statistics about the comparative performance of the base k-NN classifiers and their label similarity-incorporated versions on
small classes (size < 30), measured in terms of the number of classes for which AUC scores are improved by the latter over the
former, and the average and maximum improvement in AUC scores over all classes.

Dataset  # Small cl #Cl improved Average improvement over all small classes Maximum improvement

Mnaimneh 47 27 0.0358 (6.24%) 0.1882 (39.92%)
Rosetta 48 21 0.0225 (3.82%) 0.2091 (38.66%)
Krogan 40 14 0.0129 (1.89%) 0.1982 (31.82%)

Combined 48 28 0.0197 (2.72%) 0.1129 (20.39%)
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Table 4: Details of the classes most similar to GO:0051049 (regulation of transport) that are found to help improve the prediction

accuracy of this class in Mnaimneh et al's data set.

GO Term Definition Size Similarity with target class
GO:0016192 Vesicle-mediated transport 328 0.4085
GO:0016458 Gene silencing 100 0.4067
GO:0016481 Negative regulation of transcription 163 04317
GO:0040029 Regulation of gene expression 100 0.4067
GO:0045184 Establishment of protein localization 273 0.4014
GO:0045941 Positive regulation of transcription 102 0.4143
GO:0051052 Regulation of DNA metabolic process 80 0.4058
GO:0051252 Regulation of RNA metabolism 383 0.4743
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Figure 6

Comparison of the performance of functional similarity-incorporated k-NN classifiers with individual k-NN
classifiers for small classes (size < 30) in Mnaimneh et al 's data set. The X-axis shows the AUC scores of the base
classifiers for each class, and the Y-axis denotes the AUC scores of their label similarity-incorporated classifiers.
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ogy, and their structural relationships in the ontology sug-
gest that it is useful to incorporate such relationships into
the prediction process for small classes, such as the one
discussed in this example.

This analysis also supports our hypothesis that the label
similarity filtering process is able to capture the most
meaningful relationships between functional classes in a
given label similarity matrix, and the label similarity-
incorporated classification process is able to utilize these
relationships to improve the predictions over individual
classes.

Incorporating information in the whole GO biological process
ontology

Unlike the hierarchical consistency enforcement
approach discussed in the related work section, which
focuses on the subgraph of the functional hierarchy corre-
sponding to the target classes, one of the advantages of the
direct incorporation of relationships into the classifica-
tion model is that relationships in the entire hierarchy can
be incorporated into the classification model, while hold-
ing the set of target classes constant. This can be done by
simply modifying the label similarity matrix to include
the semantic similarities between the target classes and all
the other classes in the hierarchy. Thus, instead of using
an |l| x |l| matrix of similarities, one can use a |I| x |L|
matrix, where |I| is the number of target classes, and |L| is
the number of all the (non-empty) classes in the hierar-
chy. The rest of the approach, as shown in Figure 4,
remains the same.

We tested this idea for Mnaimneh et al's data set, using the
GO biological process ontology as the source of all the
functional inter-relationships, which produced a 137 x
2395 label similarity. The results of this experiment, gen-
erated using ten rounds of five-fold cross validation, are
summarized in Table 5, for all the classes and for the small
classes. It can be observed that these results are compara-
ble to those obtained from Mnaimneh et al's data set using
only the target classes for identifying functional relation-
ships. However, some results are improved when the
whole hierarchy is used, namely the average and the max-
imum improvement over the small classes (6.32%-vs-
6.24% and 53.93%-vs-39.92% respectively), showing
once more that the small classes are able to utilize the

http://www.biomedcentral.com/1471-2105/10/142

label similarity matrix more effectively. However, it is
important to carefully identify the relationships to be uti-
lized due to the very large number (137 x 2395) of possi-
ble relationships, many of which are expected to be
uninformative. This task may need a more sophisticated
methodology than that used for only the target classes
which had fewer (137 x 137) possible relationships.

In summary, these cross-validation-based results show
that the incorporation of direct relationships between
functional classes constituting the GO functional hierar-
chies, measured using a suitable semantic similarity meas-
ure, is a useful method for improving the accuracy of the
predictions made over a set of target classes, particularly
for classes with a small number of member proteins.

Comparison with Yu et al's GEST approach

As mentioned before, Yu et al proposed the GEST
approach [22] for incorporating semantic similarities
between functional classes into a protein function predic-
tion algorithm. They used two different semantic similar-
ity measures, namely PK-TS and SB-TS, in this study. Here,
we present a comparison of the results produced by our
label similarity-incorporated classification algorithm and
GEST for our target set of 138 classes.

In the first experiment, we compared the accuracy of the
predictions of our approach and GEST in the case where
only the similarities between the target classes are incor-
porated into the prediction algorithm, corresponding to
the results presented in the Improvement of performance for
a large set of classes section. Note that the SB-TS measured
used in GEST is not applicable in this experiment, since it
only considers similarities between classes that have an
ancestor-descendant relationship between them, and our
set of target classes do not have any such relationships
among them. Thus, the results presented here are gener-
ated using the PK-TS similarity measure. Table 6 provides
comparative statistics about the AUC scores obtained for
all the target classes using our approach and GEST on all
the test data sets with the same parameter values as used
earlier.

The statistics in Table 6 show that for a substantial
number of classes, more than half in most cases, our
approach is able to produce more accurate predictions

Table 5: Statistics about the comparative performance of the base k-NN classifiers and their label similarity-incorporated versions
using information in the whole GO biological process ontology for all as well as small (size < 30) target classes in Mnaimneh et al's data
set, measured in terms of the number of classes for which AUC scores are improved by the latter over the former, and the average

and maximum improvement in AUC scores over all classes.

Total # classes # Classes improved

Average improvement over all classes

Maximum improvement

All classes 137 71
Small classes 47 29

0.0167 (2.65%)
0.0363 (6.32%)

0.2492 (53.93%)
0.2492 (53.93%)
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Table 6: Statistics about the comparative performance of GEST and our label similarity-incorporated kNN classifiers, measured in
terms of the number of classes for which AUC scores are improved by the latter over the former, and the average and maximum

improvement in AUC scores.

Dataset Total # cl #Cl improved Average improvement over all classes Maximum improvement

Mnaimneh 137 87 0.0116 (1.86%) 0.1788 (37.83%)
Rosetta 137 65 0.0004 (0.06%) 0.1854 (36.6%)
Krogan 108 60 0.0059 (0.84%) 0.1307 (23.53%)

Combined 136 75 0.0081 (1.04%) 0.2117 (48.85%)

than GEST, particularly in terms of the maximum
improvement over at least one of the classes. This overall
improvement is illustrated in greater detail in Additional
File 3, where the AUC scores for each class considered for
Mnaimneh et al's data set using our method is plotted
against those generated by GEST. This plot shows that sev-
eral classes indeed obtain a significantly high improve-
ment in the AUC score using our method.

In another set of experiments, we compared the accuracy
of the predictions made by our method and GEST, using
the similarity between the target functional classes for
Mnaimnebh et al's data set and all the non-empty GO Bio-
logical Process classes, using a methodology similar to the
one used in the Incorporating information in the whole GO
biological process ontology section. The SB-TS measure was
also used in these experiments, since all the relationships
in the Biological Process ontology are considered here.
Table 7 details the results of the comparison between the
results produced by our method and those by GEST-PK-TS
and GEST-SB-TS.

Similar to the results discussed earlier, the results in Table
7 also show that our method is able to improve the results
of GEST for a significant number of classes. These
improvements in both the set of experiments can be
explained on the basis of the following two differences
between our and GEST's methodologies:

¢ The semantic similarity measures used in GEST are
only computed on the basis of the structure of the
ontology, while the formulation of Lin's similarity
measure used in our method also takes the set of
members at each node into account. This can help
uncover similarities between nodes that are otherwise
reasonably distant in the ontology, but have very sim-

ilar set of proteins contained in them, thus indicating
a semantic relationship between them that is not cap-
tured by the structure of the ontology.

e GEST uses the maximum of the similarities of all the
annotations of a neighborhood protein to the target
class as the contribution to the score of the target pro-
tein for this class. On the other hand, our cross valida-
tion-based method for filtering the label similarity
matrix is more adaptive, since it determines which
classes should contribute to the score of a given target
class on the fly. This can help avoid collecting spurious
contributions due to small values of similarity
between the target and the contributing classes.

These conceptual differences lead to the differences
between the results produced by our method and Yu et al's
GEST method. However, we would like to stress here that
for several classes, GEST is able to produce more accurate
predictions than our method. This indicates the possibil-
ity for the development of a hybrid system that makes the
best use of both the methods, although this is beyond the
scope of the current study.

Validation of function predictions for proteins in the test
set

One of the important distinctions between our approach
and some other approaches that address the problem of
incorporating functional inter-relationships into function
prediction algorithms [20,21] is that we perform this
incorporation into classifiers that make predictions based
on genomic data instead of annotation patterns. This
offers the important advantage of the ability to make pre-
dictions for proteins that have not been assigned any func-
tional annotations so far. In order to illustrate this
advantage, we tested if the ability of the label similarity-

Table 7: Statistics about the comparative performance of GEST classifiers and our label similarity-incorporated classifiers using
information in the whole GO biological process ontology, measured in terms of the number of classes for which AUC scores are
improved by the latter over the former, and the average and maximum improvement in AUC scores.

Method Total # classes # Classes improved Average improvement over all classes Maximum improvement
GEST-PK-TS 137 75 0.0235 (3.82%) 0.2171 (42.04%)
GEST-SB-TS 137 77 0.0144 (2.34%) 0.2137 (47.4%)
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incorporated classifiers to make more accurate predictions
than the base classifiers, demonstrated in the previous sec-
tion through cross-validation experiments, can help
uncover the annotations of currently unannotated pro-
teins. We tested this hypothesis both quantitatively, using
a historical rollback-type strategy [21], and qualitatively,
by showing that three predictions made by the label sim-
ilarity-incorporated are supported by independent evi-
dence from the literature.

In the quantitative evaluation, we made predictions for
proteins not used in the cross-validation experiments, i.e.,
those proteins that were not annotated with any of the
classes considered, using the set of proteins considered in
cross-validation as the training set. In order to use our
approach for this task, we randomly split the original
training set in an 80 - 20 ratio, with the larger set serving
as the final training set. The smaller set is used as a valida-
tion set for determining the thresholds to be used for fil-
tering the label similarity matrix. The likelihood scores
generated for the test set using both the base kNN and the
label similarity-incorporated kNN classifiers for the
classes considered were averaged over ten rounds. This
computation was performed for the Mnaimneh and
Rosetta gene expression data sets to maximize the cover-
age of the test set, and the same value of k = 20 as for the
cross-validation experiments, was used here. Also, we
used only the version of the label similarity matrix con-
taining pairwise similarities between the classes over
which predictions are being made, such as the one shown
in Figure 3(a).

The scores produced by both the classification algorithms
(base and label similarity-incorporated) were ranked in
descending order independently for each class, and pro-
teins with the same score (mostly in the case when the
score is 0) were sorted by their ORF name. The complete
ranked lists of predictions for the Mnaimneh and Rosetta
data sets are available as Additional Files 4 and 5 respec-
tively. Now, since we had used the current annotations as
of February, 2008 in constructing the training set, we used
the annotations added for these classes to the GO data-
base between February and September, 2008 to evaluate
the accuracy of these predictions. More specifically, we
compared how the ranks of accurate predictions com-
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pared between the base kNN and the label similarity-
incorporated classifiers. Table 8 details the results
obtained from this validation. As can be noted, the
median ranks assigned to the valid predictions by the
label similarity-incorporated classifiers are significantly
lower than that by the base kNN classifiers, showing that
an accurate prediction is uncovered much earlier using
label similarity than by the base classifiers. The difference
between the distribution of the entire set of ranks of vali-
dated predictions is quantified by a p-value, which is com-
puted using Wilcoxon's signed-rank test for comparing
two paired distributions [32]. These p-values are also low,
particularly for Mnaimneh's data set (0.0047), indicating
that these sets of ranks are significantly different. Combin-
ing these pieces of evidence, it can be said that label simi-
larity-incorporated classifiers generally assign better ranks
to annotations that are subsequently found to be valid.

Looking further into these results, we examined the distri-
bution of the difference between the ranks assigned by the
base and label similarity-incorporated classifiers to the
valid annotations, i.e. (rank by base kNN)-(rank by label
similarity-incorporated kNN), shown in Figures 7(a) and
7(b) for the Mnaimneh and Rosetta data sets respectively.
It can be seen from these plots that in the cases where the
label similarity-incorporated classifiers assign lower ranks
than those assigned by the base classifiers (rank difference
> 0), the difference is significantly higher than that in the
converse cases (rank difference < 0). In numbers, the
median difference of ranks in the former case for Mnaim-
neh's data set is 345, while that in the converse case in
151, and the numbers for the Rosetta data set for these
cases are 308 and 190 respectively. This shows that for the
valid predictions, whenever the label similarity-incorpo-
rated classifiers assign a worse rank than the base classifi-
ers, the difference is significantly smaller than in the
converse case.

As the final test in the historical rollback-based evalua-
tion, we examined how many of the top-n ranked predic-
tions (n = 100, 200,.., 500) for each class could be
validated using the annotations added to GO between
February-September 2008. Figures 8(a) and 8(b) show
these numbers of accurate predictions made from the
Mnaimneh and Rosetta data sets respectively. It can be

Table 8: Statistics about the predictions made by the base kNN classifiers and their label similarity-incorporated versions for the genes
in Mnainmeh and Rosetta data sets not covered in the cross-validation experiments, and how many of these predictions could be
validated based on the annotations added to the GO database between February-September 2008.

Dataset # Test genes #i# Validated predictions Median of ranks in label similarity Median of ranks in base kNN P-value
kNN
Mnaimne 1621 1003 497 637 0.0047
h
Rosetta 1609 998 509 560 0.319
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Figure 7

Histograms showing the distribution of differences between the ranks assigned by the base kNN and label sim-
ilarity-incorporated classifiers to functional annotations for a set of test proteins [(rank by base classifier)-
(rank by label similarity-incorporated classifier)] that have been validated in the GO database between Febru-
ary-September 2008 for the Mnaimneh and Rosetta data sets (a) Result from Mnaimneh dataset (b) Result from

Rosetta dataset.
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The number of predictions validated by the GO database between February-September 2008 among the top n
ranks assigned by the label similarity-incorporated and base kNN classifiers of each target class for the Mnaim-
neh and Rosetta data sets (a) Result from Mnaimneh dataset (b) Result from Rosetta dataset (best seen in color).
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seen clearly that for every value of n, the label similarity-
incorporated classifiers are able to make more accurate
predictions than the base classifier. This again shows that
the incorporation of functional inter-relationships into
function prediction algorithms can help improve both the
precision and recall of valid functional annotations, even
for proteins currently not members of the functional
classes considered.

These results quantitatively illustrate the effectiveness of
incorporating label similarity into protein function pre-
diction algorithms for uncovering the functions of unan-
notated proteins. To show that this incorporation can also
help characterize some proteins for which little functional
information is available, we investigated the predicted
functions for several uncharacterized proteins to deter-
mine whether there is independent evidence to support
our predictions. Indeed, we found several instances where
predictions unique to the label similarity-incorporated
classifiers are supported by compelling independent evi-
dence, which makes these proteins promising candidates
for further experimental validation. These examples are
discussed in detail below.

Possible novel link between vacuolar [H+]-ATPase dissociation and
microtubules supported by YDLI23W

YDL123W (Sna4) is a protein that is known to localize to
the outer vacuolar membrane, but its biological role has
not yet been characterized [33]. Our label similarity-based
classifier, based on the Rosetta expression dataset, made a
high-confidence prediction of this protein to be involved
in the function GO:0031023 (microtubule organizing center
organization and biogenesis), ranking it as the 3rd highest
prediction. This prediction is interesting, since the vacu-
olar ATPase is known to dissociate in yeast in response to
glucose depletion [34]. This process of dissociation has
not been extensively characterized, but recent studies have
demonstrated that nocodazole, a drug that disrupts
microtubules, specifically inhibits v-ATPase dissociation
[34]. Thus, we hypothesized that Sna4 may support the
microtubule-based dissociation of the v-ATPase. This
hypothesis is supported by independent high-throughput
evidence. For example, Sna4 shares physical interactions
with three components of the V1 domain of the v-ATPase
(Vmal3, Vma7, Vma8) [35]. In addition, Sna4 interacts
physically with Hxtl [35], a low-affinity glucose trans-
porter, which may suggest a connection to the main envi-
ronmental signal known to signal v-ATPase dissociation,
i.e., glucose deficiency. We were unable to find any spe-
cific Sna4 connections to microtubule-related proteins,
but the fact that this prediction appeared in the high-con-
fidence region of this particular GO term along with inde-
pendent physical evidence supporting a potential role in
v-ATPase dissociation suggest that this is a promising can-
didate for further experimental exploration and valida-
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tion. Notably, this prediction was only made by the label
similarity-incorporated classifier, and it appeared at a low
rank of 403 in the predictions from the base kNN classifier
for this term. The AUC score for this term, to which only
16 members in the Rosetta data set were known to be
associated, was 0.5949 using the label similarity-incorpo-
rated classifier, as compared to 0.4604 using its base kNN
classifier.

YDR233C may play a previously uncharacterized role in
mannoprotein metabolism

Glycoproteins are an important class of proteins charac-
terized by the addition of oligosaccharide chains to their
polypeptide side-chains. Glycosylation of these proteins
typically plays an important role in their function, and
they are known to be central for several cellular functions
including the recognition of cell structures, inter-cell sign-
aling and transport [36]. Mannoproteins are glycopro-
teins with high enrichment for mannose oligosaccharides,
and in yeast, these have been specifically associated with
regulation of the porosity of the cell wall [37].

Our label similarity-incorporated classifier predicted the
previously uncharacterized protein YDR233C (Rtn1) to
have a strong association to the term GO:0006056 (man-
noprotein metabolism) based on the Rosetta expression
dataset. Rtn1 has been localized to the endoplasmic retic-
ulum (ER) and ER membrane in yeast [38], but little else
is known about its function, as indicated by no annota-
tions in either the molecular function or biological proc-
ess ontologies in GO. We found its predicted role in
mannoprotein metabolism interesting because glycopro-
tein biosynthesis is largely carried out by the ER, and spe-
cifically relies on the activity of proteins in the ER
membrane [36,39,40], which is consistent with the con-
firmed localization of Rtn1. Another important piece of
independent evidence for our prediction of Rtn1 involve-
ment in mannoprotein metabolism is its reported genetic
interaction (phenotypic enhancement) with Dpm1 [41],
an essential protein known to be involved in mannose-
specific glycosylation in the ER [36]. Due to these pieces
of strong evidence, we suspect that Rtn1 would be a prom-
ising direction for follow-up experiments for biologists
interested in mannoprotein metabolism. Again, this pre-
diction is unique to the label similarity-incorporated clas-
sifier for this term, as it appeared as the 392nd highest
prediction by the base kNN classifier but the 9th highest
prediction by the label similarity-incorporated classifier.
The AUC score for this term, to which only 11 members
in the Rosetta data set were known to be associated, was
0.7136 using the label similarity-incorporated classifier,
as compared to 0.5366 using its base kNN classifier.
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Elucidation of an uncharacterized protein's involvement in RNA
processing

YHR156C (Linl) is a protein whose function is largely
uncharacterized (no current biological process or molecu-
lar function annotations in GO). Interestingly, Linl
appeared at the top of several lists of predictions made by
the label similarity-incorporated classifiers for processes
related to RNA metabolism or processing, including
snoRNA metabolism (GO:0016074), RNA 3'-end process-
ing  (GO:0031123), and mRNA  metabolism
(GO:0016071). The same protein was not predicted at a
similar confidence level by the base classifiers for these
classes (792nd, 865th and 17th respectively).

Interestingly, although this protein's function is not cap-
tured by current biological process or molecular function
annotations, it is known to be involved in the U5 small
ribonucleoprotein (snRNP), which is a component of the
spliceosome in yeast [42]. The spliceosome is a highly
conserved nuclear component involved in pre-mRNA
splicing [42,43]. Given Lin1's involvement in the spliceo-
some, its association with general mRNA metabolism is
not surprising or particularly novel, but it does provide
good validation of our methodology of incorporating
functional inter-relationships into function prediction
algorithms. However, we do find it interesting that Lin1 is
predicted more specifically to play a role in snoRNA
metabolism and RNA 3'-end processing. snoRNAs are typ-
ically encoded within introns of other genes, and recent
evidence has shown a striking dependence of splicing effi-
ciency on the proximity of the 3'-end of the snoRNA and
the intron branch point [44]. Thus, our predictions might
suggest a more specific role of the U5 snRNP in the pro-
duction of snoRNAs.

All of these validations represent instances where a pro-
tein with relatively shallow previous characterization has
been associated with a specific GO term using our predic-
tion methodology, which has allowed us to generate non-
trivial hypotheses about its cellular role. Furthermore, all
of the functional associations discussed here were unique
to the label similarity-incorporated classifiers, which indi-
cates that such an approach can be used to predict reliable,
specific, and novel biology. We have provided the ranked
prediction lists for both the versions of the classifiers as
Additional Files 4 and 5, which may help in the discovery
of novel functional annotations other than those dis-
cussed above.

In summary, the cross-validation experiments and the
quantitative and qualitative evaluation of the predictions
for previously unannotated proteins shows how the incor-
poration of inter-relationships between functional classes
into standard function prediction algorithms can help
expand the set of annotated proteins in S. cerevisiae and
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other genomes to include proteins for which currently no
or very little functional information or annotations are
available.

Conclusion

In this paper, we demonstrated the utility of incorporating
functional interrelationships into protein function predic-
tion algorithms, in order to improve the predictions made
by them. We modeled these relationships using Lin's
semantic similarity measure [14] and modified the com-
monly used k-nearest neighbor classification algorithm in
order to seek contributions from other classes, weighted
by their semantic similarity with the target class. Cross-
validation results on several large genomic data sets
showed that this approach is able to improve the results
for a large majority of the classes considered. In particular,
a bigger improvement was seen for smaller classes, which
are otherwise harder to model and predict. In addition, we
also provided qualitative and quantitative evidence that
this incorporation of functional inter-relationships ena-
bles the discovery of interesting biology in the form of
novel functional annotations for several yeast proteins,
such as Sna4, Rtnl and Linl1.

Our work can be extended in several directions. It will be
useful to incorporate the concept of functional similarity
into SVMs, which do not have the additive characteristic
like k-nearest neighbor, and other function prediction
algorithms, such as FunctionalFlow [45] for protein inter-
action networks. Another important direction will be to
carefully analyze the relationships between a set of target
classes with all the other classes in the hierarchy, in order
to incorporate more information into the classifiers, while
reducing the effect of spurious relationships. As noted in
the related work section, incorporating both parent-child
and more distant relationships between classes into func-
tion prediction algorithms will be required for making
optimal use of relationships constituting GO. For this, it
will be useful to integrate our framework with the Baye-
sian network-based approach of Barutcuoglu et al [17] for
enforcing parent-child consistency between the results of
standard prediction algorithms. As an example of a possi-
ble methodology of integrating these approaches, distant
functional relationships could be incorporated first using
our technique, and then the resulting likelihood scores
could be propagated hierarchically using the Bayesian net-
work approach. Investigation of such schemes will be a
topic of our future research.

Availability and requirements
¢ Project Home Page: http://www.cs.umn.edu/vk/gau
rav/functionalsimilarity/

¢ Operating System(s): Platform independent.
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¢ Programming language: Matlab (Tested for version 7.4
and above, but expected to work with earlier versions
also).

e License: None.

® Any restrictions to use by non-academics: This paper
must be cited.
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Additional material

Additional file 1

Details of the GO classes used for evaluation. Details of the 138 func-
tional classes from the GO Biological Process ontology whose subsets
(classes having at least 10 members in the corresponding data set) are
used for evaluation using several genomic data sets in this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-142-S1.xls]

Additional file 2

Arrangement of the functional classes aiding the improvement of the
AUC score of the GO:0051049 (regulation of transport) class in the
GO biological process ontology. This figure shows the arrangement of the
functional classes aiding the improvement of the AUC score of the
GO:0051049 (regulation of transport) class (listed in Table 4) in the GO
biological process ontology. Their structural proximity to the target class
(GO:0051049) suggests their potential to help improve the predictions for
this class.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-142-S2.png|

Additional file 3

Comparison of AUC scores from our approach and GEST. This figure
shows the comparison of the performance of our functional similarity-
incorporated k-NN classifiers with individual GEST classifiers for
Mnaimneh et al's data set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-142-S3.eps]
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Additional file 4

Ranked list of predictions from the Mnaimneh gene expression data
set. A detailed list of ranked predictions produced by the label similarity-
incorporated kNN classifiers (first worksheet) and base kNN classifiers
(second worksheet) for the test genes extracted from the Mnaimneh gene
expression data set. The GO terms, arranged in columns, are sorted from
left to right in the order of decreasing AUC improvements by incorporating
functional relationships into their base classifiers. The genes in each col-
umn are ranked in descending order by the score assigned by the corre-
sponding kNN classifier. Genes with the same score (mostly in the case
when the score is 0) are sorted by their ORF name.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-142-S4 xls]

Additional file 5

Ranked list of predictions from the Rosetta gene expression data set. A
detailed list of ranked predictions produced by the label similarity-incor-
porated kNN classifiers (first worksheet) and base kNN classifiers (second
worksheet) for the test genes extracted from the Rosetta gene expression
data set. The GO terms, arranged in columns, are sorted from left to right
in the order of decreasing AUC improvements by incorporating functional
relationships into their base classifiers. The genes in each column are
ranked in descending order by the score assigned by the corresponding
kNN classifier. Genes with the same score (mostly in the case when the
score is 0) are sorted by their ORF name.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-142-S5.xls]
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